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Abstract: In this contribution we propose a feature-based 
method for motion estimation and correction in intraoperative 
thermal imaging during brain surgery. The motion is estimated 
from co-registered white-light images in order to perform a ro-
bust motion correction on the thermographic data. To ensure 
real-time performance of an intraoperative application, we op-
timise the processing time which essentially depends on the 
number of key points found by our algorithm. For this pur-
pose we evaluate the effect of applying an non-maximum sup-
pression (NMS) to improve the feature detection efficiency. 
Furthermore we propose an adaptive method to determine the 
size of the suppression area, resulting in a trade-off between 
accuracy and processing time.

Keywords: brain motion, Harris corner detection, non-
maximum suppression, Normalised Cross Correlation.

1 Introduction

Time-resolved thermal imaging is a novel technique to mon-
itor cortical temperature variations during neurosurgery. The 
goal of our work is to apply thermography to identify nor-
mal and anomalous brain tissue intraoperatively. Previously, 
Steiner et. al. [1] demonstrated an approach to cortical perfu-
sion imaging by analysing local temperature changes caused 
by an ice-cold saline solution injected via a central vein. Holl-
mach et. al. [2] investigated thermography with multivariate 
statistical data analysis to detect and demarcate tumour bor-
ders. Hoffmann et. al. [3] proposed a new classifier to locate 
the cerebral cortex in thermal images.

However, brain motion occurring during surgery can re-
duce the accuracy of the automated identification and has to be 
firstly removed. Furthermore, motion detection directly from 
thermographic sequences may cause errors because tempera-
ture shifts over time may not be related to brain motion, but to 
other brain activities we want to analyse. In a surgery system, 
a co-registered white-light camera is utilised for observation.
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In our approach we estimate the brain motion from white-light
images, since in this modality the brain motion is more unam-
biguous compared to thermography.

For the intraoperative application, a real-time motion cor-
rection is required. Since the processing time of feature-based
methods mostly depends on the number of tracked features,
we investigate the effect of non-maximum suppression (NMS)
methods to reduce the number of key points and hence to im-
prove the efficiency of feature detection.

2 Methods

Feature-based motion estimation establishes correspondences
between image features such as points, contours, and blobs.
These correspondences can be constructed to a dense displace-
ment field applying interpolation. Generally, we divide the
process into five steps: pre-processing, feature detection, fea-
ture description, feature matching, and interpolation.

I) The task of pre-processing is to reduce noise and to en-
hance the local contrast, such that the features can be better
distinguished. For noise reduction, we employ the non-linear
Perona and Malik diffusion filter [4]. Furthermore, we perform
the so-called Contrast Limited Adaptive Histogram Equalisa-
tion (CLAHE) [5] to improve the local contrast.

II) We apply the Harris corner detector [6] to identify fea-
tures in the image. The brain cortex is segmented manually as
a Region of Interest (ROI) for the feature detector.

III) The feature descriptor characterises local features. In-
spired by [7], a small patch (31× 31) of neighbouring pixels is
employed as the feature descriptor.

IV) The matching feature pairs are those that show very
similar patches. In the matching stage, the small patches are
compared by applying the similarity measure NCC:
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where 𝐼𝐼r and 𝐼𝐼t denote intensities of pixels located at the same
position in the reference and target images/patches. 𝐼𝐼 is the
average of all pixel intensities in an image/patch; both im-
ages/patches have the same number of pixels 𝑛𝑛. The value of
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NCC varies from ’0’ for totally different, to ’1’ for identical
images/patches.

V) A 2D cubic B-spline interpolation is applied to con-
struct the displacement vector field. Before the interpolation, a
mean value filter is employed to remove outliers and to smooth
the displacement field.

The Harris detector in II) calculates a corner response
which expresses intensity changes within a neighbourhood. A
point is assumed to be a corner when its corner response is
larger than a threshold. In our work, the image intensities for
the calculation of corner responses are 8-bit grey values.

NMS is the process of searching for the local maximum
within a certain neighbourhood and suppressing the rest. It
is usually applied as an edge thinning technique. Here the
method is applied to suppress points that do not exhibit the
locally maximal corner response. We implemented an NMS
using a dilation operator: We calculate the corner response for
every pixel, compose a new image whose pixel values are the
corner responses, and then dilate this image with a rectangular
structuring element. By comparing the dilated image with the
corner response image, all locally maximal responses are re-
tained. The size of the structuring element of dilation therefore
must be equal to the size of the suppression area.

Essentially, an application of an NMS can improve the
efficiency of feature matching because it suppresses redundant
points and selects unique points representing corners. On these
grounds, we test the effect of NMS as well as the influence of
the neighbourhood size.

3 Experiments and results

3.1 Dataset

The visual-light images were recorded using a white-
light camera (Basler acA1920-155us) with a resolution of
1920×1200 px in RGB colour channels. During an intraop-
erative application, the camera is operated with a frame rate of
7.5 fps. Here we analyse image sequences from five clinical
cases (S1 - S5). The patient of S1 and the patient of S2 have
metastasis, the patient of S3 has glioblastoma, the patient of S4
has reactive inflammatory changes, and the patient of S5 has
anaplastic astrocytoma. Each image sequence has a duration
of 10 seconds; no surgical procedure was recorded.

3.2 Performance metrics

We employ the similarity measure NCC according eq 1, which
is usually used to evaluate the alignment of images, as a per-

formance metric . The first frame of every image sequence is
selected to be the reference image and the others are target im-
ages. The target images are aligned to the reference image with
the obtained displacement fields. If a displacement field repre-
sents exactly the brain motion, the aligned image will have the
maximal similarity to the reference image with NCC≈1.

For an additional comparison we measured the process-
ing time. The programs are implemented in Python, the Harris
corner detector is implemented using the OpenCV library. All
computations, the metric included, are performed on the HPC
system at the Center for Information Services and High Per-
formance Computing at TU Dresden.

To assess the NMS method, we selected five sizes of sup-
pression neighbourhood: 10 × 10, 15 × 15, 20 × 20, 25 × 25,
and 30×30 px. For comparison we applied the method without
NMS, which determines the features by thresholding the Har-
ris corner response. We calculated the Harris corner responses
of all pixels in the ROI of the reference images (see Figure 1).
The features are pixels with large Harris corner responses, and
we assume that they amount to less than 10% of pixels. There-
fore we selected three thresholds: 104, 5 · 104 and 105. In the
NMS method we also eliminated negative Harris corner re-
sponses that indicate other features like edges and areas.
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Fig. 1: Harris corner responses of pixels in the ROI of the refer-
ence images in S1-S5.

3.3 Results

In Figure 2, the resulting NCC and processing time are plotted
against the number of features of every frame in the five se-
quences. The ranges of NCC values are almost the same with
or without NMS. Nevertheless, some frames have a clearly
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Fig. 2: NCC and processing time against the number of features of every frame without (magenta/cyan/green) and with (other colours)
NMS in five image sequences S1-S5

smaller NCC after applying NMS when the size of the sup-
pression area enlarges. The reason is that some of the relevant
feature points are suppressed. Furthermore, if there is a false
match, the error will become very large because of the large
suppression area (see Figure 3a).

Although the NCC values of the tests without NMS are
stable and slightly higher than with NMS, the computation
takes much longer. As shown in Figure 2, the processing time
is roughly proportional to the number of features. Further-
more, many features gather in the areas with high contrast (see
Figure 3b). These features do not contribute to a better mo-
tion estimation because they are located in the same area and
provide the same information about brain motion.

Repeatability is another problem of the simple threshold-
ing technique. As shown in Figure 1, the Harris corner re-
sponses of five image sequences are not generally similar. In
S5, the vessels are much denser than in S1-S4. When we use
the same threshold of 104, significantly more features are de-
tected in S5 (> 2 ·104) (see Figure 4). Table 1 shows the mean
number of features in five sequences with the three thresholds.

Fig. 3: Putative matches (green lines) in S3-frame 512 using (a)
NMS30×30, (b) without NMS, threshold 104.

Fig. 4: Features (red points) in (a) S4-frame 1 and (b) S5-frame 1,
without NMS and with threshold 104.

Tab. 1: Number (mean) of features detected with thresholds 104,
5 · 104 and 105 in five image sequences S1-S5.

thresh. S1 S2 S3 S4 S5

104 3,973 5,193 3,817 5,864 20,378
5 · 104 805 1,558 1,106 1,172 6,666

105 326 745 430 490 3,071

Furthermore, the computation of a single frame in S5 by
using a threshold of 104 takes longer than 40 minutes in con-
trast to maximally 40 seconds in the other sequences. Because
of this large time consumption we omitted the test with a
threshold of 104 throughout the whole sequence S5.

Since our project focuses on an intraoperative application,
it is inconvenient to adjust the threshold during surgery. Even
though we do not have to adjust the threshold in the NMS
method, the size of the suppression area must be determined.
Based on Figure 2, the number of features of around 103 is a
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good trade-off between accuracy and processing time. We pro-
pose an adaptive method to calculate an appropriate size 𝑧𝑧× 𝑧𝑧

of the suppression area with the help of the ROI size:

𝑧𝑧 = ⌊
√︀

𝐴𝐴ROI/4000⌋ , (2)

𝐴𝐴ROI being the number of pixels in the ROI. Table 2 shows the
number of features and the processing time with the suppres-
sion area calculated by eq 2. The numbers of features in S4
and S5 are larger than in S1-S3. This difference is reasonable
because of the floor function in eq 2. Additionally, areas with
specular reflections are masked, such that features in these ar-
eas are eliminated.

Tab. 2: Number (mean) of features and processing time (mean) by
applying an NMS. The sizes of the suppression areas 𝑧𝑧 × 𝑧𝑧 are
calculated by eq 2.

S1 S2 S3 S4 S5

z× z 8×8 6×6 5×5 9×9 9×9
# of features 1,012 1,069 1,076 1,305 1,359

Time/s 0.4664 0.5534 0.5909 0.5086 0.4220

4 Conclusion

We evaluated the performance of feature-based motion estima-
tion methods with and without NMS by calculating the simi-
larity measure NCC and the processing time. For comparison 
reasons, we reduced the number of features without NMS by 
thresholding the Harris corner response. This method is not 
efficient s ince a  l arge n umber o f r edundant f eatures a re de-
tected. The large amount of features also accounts for a long 
processing time. Moreover, this simple thresholding technique 
lacks of repeatability because of the varying image quality in 
different datasets. In contrast, we are able to control the num-
ber of features and the processing time in the NMS method 
through variation of the suppression area. However, large er-
rors occurred in some images because of the large suppression 
area. We therefore propose an adaptive method to determine 
the size of the suppression area.
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