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Abstract: A common treatment of focal ventricular tachycar-
dia is the catheter ablation of triggering sites. They have to
be found manually by the physician during an intervention in
a catheter lab. Thus, a method for determining the position
of the focus automatically is desired. The inverse problem of
electrocardiography addresses this problem by reconstructing
the source of the ectopic beats using the surface ECG. This
problem is ill-posed and therefore needs specific methods for
solving it. We propose a machine learning approach for local-
isation of the ectopic foci in the heart to assist cardiologists
with their therapy planning. We simulated 600 120-lead ECGs
with different known excitation origins in the heart using a cel-
lular automaton followed by a forward calculation. Features
from the ECGs were used as input for a support vector regres-
sion (SVR). We assumed a functional relation between fea-
tures from the ECG and the excitation origin. To benchmark
SVR, we also used the well-known Tikhonov Oth order reg-
ularisation to reconstruct the transmembrane potentials in the
heart and detect the location of the ectopic foci. Parameters for
SVR and regularisation were chosen using a grid search min-
imising the error between estimated and true excitation ori-
gin. Compared to the Tikhonov regularisation method, SVR
achieved a smaller deviation between estimated and real ex-
citation origin evaluated with 6-fold cross validation. Future
work could investigate on the behaviour on data from simu-
lations with other torso and electrophysiological models, the
influence of other methods for feature extraction and finally
the evaluation with clinical data.
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1 Introduction

Ventricular tachycardia caused by ventricular ectopic beats
(VEB) is a common heart disease. In some cases, catheter ab-
lation is a suitable treatment. During this, physicians try to
spot an ectopic focus in the ventricles, ablate it and hence,
terminate the triggering source of the VEB. Nevertheless, es-
pecially spotting the ectopic focus is very time consuming as
physicians have to find the origin of the pathological excitation
manually. By solving the inverse problem of electrocardiogra-
phy, it is tried to support the physician in the reconstruction of
the location of the triggering source using a multi-lead ECG,
a body surface potential map (BSPM). With this information,
physicians can navigate directly to the point of interest with-
out the need of determining the location of the ectopic focus
manually.

The underlying problem can be formulated as a forward
problem with a linear equation Ax = b, where b 2 R™1 s the
BSPM, A 2 R™" is the lead field matrix projecting the trans-
membrane voltages (TMV) x 2 R™ on the body surface [1].
However, in this case, a solution to the inverse problem, which
is a highly under-determined problem as there are many more
unknown sources in the heart than electrodes on the body sur-
face, is required. To overcome the problem of ill-posedness,
Tikhonov regularisation can be used to solve the problem [2]
[3]. In this work, 600 simulations of the heart and the corre-
sponding BSPM were performed. With these data, the inverse
problem was solved applying two different methods: first,
Tikhonov regularisation based on regularisation as a standard
method and second, a regression method based on machine
learning.

2 Methods

2.1 Simulated data

In order to test the methods in a controlled environment, 600
simulations with different excitation origins were performed.
A cellular automaton was used to simulate the de- and repolar-
isation waves on a heart mesh with n = 3340 nodes (according
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Figure 1: Heart surface from different perspectives. The blue dots
show 600 different origins of the simulated VEB.

Figure 2: Torso geometry used for the forward calculation. The
electrodes measuring the BSPM are visualised as blue dots.

to [4]). The spatial resolution of the mesh was 4 mm, the start-
ing node of the excitation for each VEB was chosen randomly.
Figure 1 shows the origin positions on the heart geometries as
blue dots. With a torso model including separate conductiv-
ities for lungs, lever and other intestines, a 120-lead BSPM
was extracted by a forward calculation. Figure 2 visualises the
position of the m = 120 electrodes on the torso surface.

2.2 Tikhonov regularisation method

A standard method for solving the inverse problem of electro-
cardiography is Tikhonov regularisation. With Tikhonov reg-
ularisation, the sought TMV distribution x in the ventricles is
formulated as a minimisation problem [3]:

x = arg min(jjb - Axijj5 + A%jiLxij3) (1)
X

A? is the squared regularisation parameter and balances the
squared norm of the regularisation term ij‘ij% and the squared
norm of the residual jjb — Axjj3. L 2 R™™ was chosen to
the identity matrix, yielding Oth order Tikhonov regularisation.
The lead field matrix A was known from simulation. Through
the significant influence of the regularisation parameter A on
the inverse solution of the TMV, we applied a simple grid
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search for values of the regularisation parameter in the range
of 1078 to 1072. The A yielding the minimal distance between
estimation and truth was selected for calculating the TMV.

After the determination of the TMV courses of the sin-
gle heart nodes, we needed to detect the location of the VEB
origin analysing these signals. This was performed by eval-
uating the signals 0.01s after the start of the depolarisation
wave that is known from the simulation. We set a signal de-
pendent threshold by calculating the 5%-quantile of all TMV
and took the center of mass (according to [5]) of all signals
exceeding this threshold and took the heart node closest to the
calculated center of mass as the reconstructed VEB origin. In
contrast to many methods proposed in literature, the estimation
of the VEB origin was done for each coordinate separately to
be comparable to the second method. Hence, the estimation of
each coordinate could use its individual optimal regularisation
parameter.

2.3 Support vector regression

The problem of reconstructing the origin of a VEB was con-
sidered as a regression problem. We assumed, that there exists
a functional connection between the features of the BSPM and
the origin of the VEB and tried to find a function describing
exactly this connection. This can be done by a common re-
gression technique from the field of machine learning called
support vector regression (SVR), or support vector machine
regression [6]. It is tried to approximate the function f(x) by a
linear combination of the non-linear functions @:

flx, w) = hw, @(X)i 2

h-i is the dot product. The regression can be formulated as a
convex optimization problem with its associated dual problem
formulation as the maximisation of:

) | X X
L(a,a)=-= (an - an)am — am)k(xn, xm)
n=1 m=1
X
-€ (an+an)+ (an+an)ta 3)
n=1 n=1

. P, N N
subjectto: ;_;(@a-a)=0anda,a 2/0,C].

N is the number of data points. The e-SVR con-
tains k(x, X) as the kernel function defined as k(x,X) :=
hd(x), @(xT)i. A possible choice for k(x, X) is the gaussian
TPt
Jj’;;z” ) [6]. For an appropriate per-
formance of the SVR, the regularisation parameter C, the loss
function parameter € and the kernel parameter ¢ have to be

chosen in advance.

function: k(x, %) = exp(-
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2.3.1 Reconstruction of excitation origins

With the SVR method, we can try to estimate the cartesian
coordinates of the excitation origin of a VEB. As the formula-
tion of the SVR only allows one output, three different SVRs
were trained, each estimating one coordinate in the 3D space.
A principal component analysis of the matrix containing the
BSPM of all corresponding VEB origins was determined. The
first 10 principal component scores were used as input values
for the SVR. The transformation was calculated with the train-
ing data and applied equally to the test dataset. 6-fold cross
validation was used as evaluation method. Thus, the SVR was
trained using 500 of the 600 simulated data (approximately
83.3%) with known excitation origins. The performance of this
method was tested with the remaining 100 samples. The tun-
ing parameters C, € and o were chosen in an iterative process.
Therefore, parameters were varied in the interval [10_5 s 105]
similar to the grid search applied to determine the regularisa-
tion parameter in the Tikhonov regularisation method. The pa-
rameter combination yielding the lowest error was chosen for
evaluation. For each coordinate there was an individual com-
bination of C, € and o.

3 Results

3.1 Tikhonov regularisation method

Table 1 gives an overview on the results obtained with the stan-
dard method for solving the inverse problem. If we define the
obal estimation error as the euclidean distance dgjopar =

dz + d}z, +d2 we achieve a global error of dglobal, Tikh =
10.03 mm. This has to be seen alongside the heart mesh res-
olution of 4 mm. Figure 3 shows the spatial distribution of the
errors on the heart mesh.

3.2 Support vector regression

As described above, we allowed different combinations of the
parameters C, € and 0 to achieve a minimal error for each co-

Table 1: The results obtained with a standard method for recon-
struction. Regularisation parameter and estimation errors are
given for each coordinate separately.

Parameter/ X coordinate Y coordinate Z coordinate

Estimation error

log;,(2)
din [mm]

25
6.16

-3.5
5.90

-3
5.27

N. Pilia et al.: Determination of the excitation origin with SYR == 259

Figure 3: Estimation errors resulting from the Tikhonov regular-
isation method for the different VEB origins plotted on the heart
geometry viewed from different perspectives. Highest deviations
are visible in the region of the septum.

Table 2: Estimation errors of VEB origin obtained with SVR. Op-
timal parameters and estimation errors are given for each coordi-
nate separately.

Parameter/ X coordinate Y coordinate Z coordinate

Estimation error

log,(€) 0.65 -0.74 -10.63
log,0(C) 5.02 5.04 4.40
log,,(0) 2.18 2.19 1.95
din [mm] 0.92 1.08 0.99

ordinate separately. The optimal parameter combinations for
each coordinate are given in table 2. Additionally, the estima-
tion error of the excitation origin for the respective parame-
ter combination is given. The global error was dgjopal,svr =
1.73 mm. This has to be again seen alongside the heart mesh
resolution of 4 mm. Figure 4 shows again the spatial distribu-
tion of the errors on the heart mesh.

Errorin (mm)
799

800

I 000
Figure 4: Estimation errors resulting from the SVR method for the
different spatial excitation origins plotted on the geometry viewed

from different perspectives. Highest deviations are visible in the
apex of the heart.
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4 Discussion and conclusion

In this study, we used 600 simulations for the reconstruction
of the excitation origins using SVR and Tikhonov regular-
isation for comparison. The suitability of SVR in the con-
text of localising the VEB origins was underlined by a global
error of dgjopar,syr = 1.73 mm. The method for compari-
son using Tikhonov regularisation delivered a higher error of
dgiobal, Tikn = 10.03 mm although the lead field matrix A was
known from the simulation. A drawback of the Tikhonov reg-
ularisation method is the requirement of an anatomical model
of the patient e.g. for calculating the lead field matrix since it
is not known a priori in the clinical environment. SVR, how-
ever, needs only known data points for training which could
be determined without the patient’s heart geometry. Neverthe-
less, this work can only be seen as a proof of concept study.
Simulated data lack noise, which is usually part of realistic sig-
nals - even after filtering. This could influence the performance
of the method. Furthermore, only one patient model and one
TMV simulation method was used and therefore the patient
dependency of the method was not investigated. These draw-
backs, however, do not contradict the general suitability of a
reconstruction with SVR in the field of the inverse problem of
electrocardiography as shown in this work.

5 Outlook

A few follow-up steps result directly from the discussion.
To overcome the point of using simulated data created with
just one patient model and one simulation method, two pos-
sible follow-up studies should be considered: First, the ad-
ditional use of data created with another simulation method
(e.g. a monodomain simulation) for the evaluation of the
SVR method should be named. Second, other patient ge-
ometries can be considered for simulation. These could be
used to further investigate the independency of the SVR
method and the used features from other geometries, as well
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as to evaluate a possibly needed calibration. For sure, if
patient data are available, these should always be used. A
further point to be extended is feature extraction. By us-
ing other features from the BSPM, both temporal and spa-
tial, we could create a method for feature extraction that
is independent from the used signals. Moreover, a multi-
output SVR, that estimates all three coordinates at the same
time, could be used to incorporate cross relations between
the different coordinates. Finally, the comparison of the
methods for solving the inverse problem could be extended
to more of the standard methods as proposed in literature
(e.g. in [7]).
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