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Drowsiness discrimination in an overnight 

driving simulation on the basis of RR and QT 

intervals

Abstract: We examined if ECG-based features are discrimi-

native towards drowsiness. Twenty-five volunteers (19–32 

years) completed 7×40 minutes of monotonous overnight 

driving simulation, designed to induce drowsiness. ECG 

(512  s
-1

) was recorded continuously; subjective ratings of 

drowsiness on the Karolinska sleepiness scale (KSS) were 

polled every five minutes. ECG recordings were divided into 

5-min segments, each associated with the mean of one self- 

and two observer-KSS ratings. Those mean KSS values were 

binarized to obtain two classes not drowsy and drowsy. The 

Q-, R- and T-waves in the recordings were detected; R-peak 

positions were manually reviewed; the Q- and T-detection 

method was tested against the manual annotations of Physio-

net’s QT database. Power spectral densities of RR intervals 

(RR-PSD) and quantiles of the empirical distribution of 

heart-rate corrected QTc intervals were estimated. Support-

vector machines and random-holdout cross-validation were 

used for the estimation of the classification error. Using 

either RR-PSD or QTc features yielded mean test errors of 

79.3 ± 0.3 % and 82.7 ± 0.5 %, respectively. Merging RR and 

QTc features improved the accuracy to 88.3 ± 0.2 %. QTc 

intervals of the class drowsy were generally prolonged com-

pared to not drowsy. Our findings indicate that the inclusion 

of QT intervals contribute to the discrimination of driver 

sleepiness. 
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1 Introduction 

The analysis of EEG and EOG provides, to date, the best 

results for the detection of driver drowsiness, therefore it’s an 

established standard in this field of research. It is, however, 

an impractical approach for the implementation of driver 

monitoring. The ECG, in comparison, can be easily recorded, 

has an amplitude that is several magnitudes larger, and is less 

afflicted by noise. Analyses of RR intervals have established 

that, under increasing sleepiness, heart rate variability is 

generally raised due to increasing parasympathetic autonomic 

activity. Such statements, however, can only be made on a 

larger time scale, as it has been shown, for example, that 

ECG features cannot reliably estimate the probability of 

microsleeps within a time frame of 30 to 120 seconds [1]. 

Recently, we have conducted a study involving an over-

night driving simulation that was designed to induce a high 

level of drowsiness. In this work, we investigated the rela-

tionship between RR-interval variability and driver sleepi-

ness and, particularly, whether the inclusion of QT interval 

information contributes to the discrimination of subjective 

sleepiness. 

2 Material 

Twenty-five volunteers (12 female, 13 male, 19–32 years 

old) participated in the study. All subject had been accus-

tomed to the laboratory’s driving simulator, which consists of 

a real-car body placed inside a dark, isolated room. The dis-

played driving scene was a country road at night, without any 

road intersections or other cars present. The driving was thus 

reduced to a simple lane- and speed-holding task, which was 

designed to induce a high level of monotony and drowsiness. 

Before the experiment, subjects had slept for a minimum 

of seven hours at night. They were instructed to get up not 

later than 09.00 and to spend the rest of the day without naps. 
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Subjects arrived at the laboratory at 23.00 and were fitted for 

a polygraphic recording, including EEG, EOG and ECG (one 

bipolar channel, 512 s
-1

). The experiment protocol began at 

01.00 and consisted of seven repeated blocks of one hour 

length. In each block, the subject performed the driving task 

for 40 minutes. Every five minutes, the subject was prompted 

to rate his sleepiness on the Karolinska sleepiness scale 

(KSS, nine levels ranging between 1: extremly alert and 9: 

very sleepy, fighting sleep). Right after, two observers outside 

the simulator room submitted their rating of the subject’s 

sleepiness as well. After 40 minutes, the subject left the 

simulator and performed a series of psychomotor tests, which 

took no more than 15 minutes total. The next block began at 

the following hour, and so on. The experiment ended at 

08.00. 

At the start of the experiment at 01.00, a subject had 

been awake for at least 16 hours, which corresponds to the 

waking portion of a normal day. The experiment procedure 

itself prevented sleep. The combination of extended wakeful-

ness, partial sleep deprivation and task monotony was de-

signed to provoke high sleepiness and microsleep during 

driving. Subjects were constantly monitored via IR-cameras; 

any occuring microsleeps, manifested as prolonged eye lid 

closure, rolling eye movements, head nods, etc., were logged 

by the observers. Reviews of microsleep annotations and 

other analyses are still in progress. Therefore, EEG and EOG 

data, the psychomotor tests and mircosleeps are not presented 

in this paper. 

3 Methods 

3.1 R and QT annotation 

The ECG recording of each 40-min driving period was di-

vided into eight 5-min segments. R-peaks in the ECG were 

automatically annotated using a method described in [2]. 

False-positive or missed peaks R-peak were manually cor-

rected, and unprocessible noisy signal portions were flagged. 

RR-interval time series were then established from succes-

sive R-peaks. To detect the beginning of Q- and the end of T-

waves (abbreviated as Q and T from here on) and hence to 

determine QT intervals of the ECG, we considered two anno-

tation methods: (A) a toolchain that locates waveforms by 

generating and matching templates of each waveform, which 

was developed at the Karlsruhe Institute of Technology [1], 

and (B) a method that was awarded in the Physionet QT-

interval-measurement challenge in 2006 [3], which consecu-

tively applies continuous and discrete wavelet transform in 

order to separate P- and T-waves, QRS-complexes, and noise 

[4]. To assess the reliability of both methods, we tested them 

against Physionet’s QT database [5], which consists of 105 

records with 15 min of a two-channel ECG (250 s
-1

). In each 

record, averagely 34 heartbeats were fully annotated by ex-

perts. Only fully annotated and normal heartbeats
1
 were 

considered for comparing both methods. 

 As a first result, method B detected Q and T more pre-

cisely, but less sensitively than method A. Curiously, though, 

the QT intervals determined by method A deviated from the 

true (expert) QT intervals with a smaller error than those 

determined by method B. It appeared that the respective 

locations of Q and T determined by method B tended to 

deviate from their true locations in opposite directions, which 

added up to a higher QT-interval error in average. For im-

provement, we averaged each Q and T location between the 

two methods. As a result, error and sensitivity of Q, T, and 

QT detection were improved by the combined method, in 

comparison to the single methods (see table 1). Finally, QT-

interval time series were constructed from matching Q and T; 

QT-intervals were corrected for heart rate with Bazett’s for-

mula           . 

3.2 Feature extraction 

We estimated power spectral densities (PSD) of both RR- 

and QTc-interval series for each 5-min segment. The Fourier 

transform, which is mostly used for PSD estimation, assumes 

that a time series    has been sampled at equidistant times   . 

Fourier transforms of data sampled at unequally spaced times 

usually introduces low-frequency noise into the spectral 

estimate and diminishes the amplitude of true spectral peaks. 

Data such as RR-interval series are unequally spaced by natu-

re, therefore interpolation and equidistant resampling is often 

applied to them. This, however, may produce false spectral 

peaks [6] and also makes the spectral estimation dependent 

1 A total of 2559 heartbeats met this criteria. 

Table 1: Root mean squared error (RMS), median of 
absolute deviations (MAD), and sensitivity (Sen) of Q, 
T, and QT detection for methods A, B, and both 
methods combined. 

methods A B A&B 

Q 

RMS 23,3 ms 20,4 ms 15,9 ms 

MAD 17,1 ms 11,8 ms 10,4 ms 

Sen 99,8 % 99,0 % 100 % 

T 

RMS 67,4 ms 57,5 ms 49,6 ms 

MAD 51,4 ms 26,6 ms 31,2 ms 

Sen 96,2 % 86,5 % 98,3 % 

QT 
RMS 62,9 ms 68,3 ms 51,3 ms 

MAD 46,4 ms 30,3 ms 31,6 ms 



on the choice of the interpolation method. Least-squares 

spectral estimation methods like the Lomb-Scargle periodo-

gram [7,8] overcome this problem and can be applied directly 

to unequally spaced time series   : 

      
 

 
 
                

 

             

 
                

 

             

   

where   is a time delay and is defined by 

  
 

  
      

           

           

   

The maximum of    occurs at period   where the sum of 

squares of a sinusoidal fit to    becomes minimal. Time delay 

  is chosen such that the sinusoids are mutually orthogonal at 

sample times   , it thus adjusts for phase shifts that may be 

caused by unequally spaced   . In case of equidistantly sam-

pled data,    has the same statistical distribution as the Fou-

rier transform periodogram [8]. 

The maximum frequencies for PSD estimation were re-

stricted to 0.4 Hz for RR- and to 0.22 Hz for QTc-interval 

series, respectively. In heart rate variability analysis, the PSD 

of RR intervals conventionally is integrated into the three 

bands very-low frequency (0–0.04 Hz), low frequency (0.04–

0.15 Hz) and high frequency (0.15–0.4 Hz). In previous 

investigations, however, we found that finer grained RR-PSD 

bands yield better results when they are used as features for 

discrimination [9]. Therefore, we integrated the PSD of RR 

and QTc intervals in every segment into 0.02-Hz wide bands 

between 0 Hz and maximum frequency. We also estimated 

the 5
th
, 15

th
, …, and 95

th
 percentile over the empirical distrib-

tion of RR and QTc intervals in every segment in order to 

characterize the intervals’ probabilities. 

3.3 Classification and validation 

A class label was assigned to each segment that was deter-

mined by the average of the subject’s and the observers’ KSS 

ratings within it. The 40
th
 and 60

th
 percentile of the distribu-

tion of all mean KSS values was 7.0 (corresponds to sleepy, 

but no difficulty to remain awake) and 8.0 (sleepy, some 

effort to keep alert), respectively, so every segment with 

mean KSS ≤ 7.0 or ≥ 8.0 was labelled not drowsy (c+) or 

drowsy (c–), respectively. 650 and 571 segments were la-

belled with c+ and c–, respectively, while 207 others had 

mean KSS > 7.0 and < 8.0, and were therefore discarded. 

We used support vector machines (SVM) [10] to dis-

criminate the features of each segment according to their 

class membership. A SVM separates a labelled input data set 

                  by finding a hyperplane           

with a maximal margin between the classes. This optimal 

hyperplane is solely determined by the support vectors    

and    (with       and      , respectively), that is, 

those input vectors of different classes with minimal distance 

to each other. If the training data cannot be separated without 

error, then a penalty term    
 
   , with slack variables      

keeping track of the number of errors, has to be used. This 

term restricts the range of the Lagrange multipliers    that are 

needed to solve the hyperplane optimazation problem: 

                In order to support nonlinear separa-

tion functions, the SVM can be extended by kernel functions 

       that map inputs   to vectors   into a higher-

dimensional space. We used a radial-basis kernel function 

                     . The regularization parameter 

  and the kernel width   are free parameters that have to be 

determined empirically by minimizing the classification error 

in a cross-validation scheme. In order to estimate the classifi-

cation error or, conversely, the accuracy, we multiple random 

sub-sam¬pling: input data was randomly partitioned into a 

90-% training set and a 10-% test set, which was repeated 50 

times. The small test size, which come at the prize of more 

repetitions, is motivated by keeping the estimation bias small. 

4 Results 

As described above, we considered PSD and percentiles of 

RR and QTc intervals, respectively, within 5-min segments 

for classification. We preliminarly tested all 15 possible 

combinations of those four feature sets. QTc-PSD yielded the 

worst test set accuracy. It also impaired any combination it 

was part of, and was therefore excluded from further analy-

sis. Table 2 shows the training and test set accuracies from 

the final SVM-classification for the four best combinations, 

with RR-PSD + RR- + QTc-percentiles yielding the best test 

accuracy. Figures 1 and 2 compare the features’ manifesta-

tions between classes. They show that RR-PSD and QTc 

percentiles are generally higher for the not drowsy condition. 

Table 2: Regularization parameter C, kernel width γ, training 
and test set accuracy for the discrimination of four feature set 
combinations. 

Feature sets C γ Training Test 

1: QTc perc. 1.4 -1.5 81.5 ± 0.0 % 79.3 ± 0.3 % 

2: RR-PSD 0 -1.5 89.4 ± 0.0 % 82.7 ± 0.5 % 

3: 1 + 2 0.6 -1.5 98.7 ± 0.0 % 86.7 ± 0.5 % 

4: 3 + RR perc. 0.3 -1.5 98.7 ± 0.0 % 88.3 ± 0.2 % 
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5 Discussion 

This work followed up on an investigation of the same study 

[11]. There, KSS-rated drowsiness was similarly classified 

using different combinations of spectral and nonlinear RR-

interval features; the best test set accuracy amounted to 79.7 

± 0.2 %. By including information derived from QTc inter-

vals into a comparable analysis, we could improve on these 

results by about eight percent. This improvement cannot be 

attributed to a mere increase of feature space dimensionality: 

in both investigations, there were combinations with less 

features than the winning combinations that yielded inferior 

results. 

Others have examined the statistical characteristics of 

various ECG intervals in the vicinity of microsleep events, 

which were recorded in an older, but similar study conducted 

in our driving simulator [1]. They found that epochs centered 

around microsleeps had significantly prolonged QTc inter-

vals, in comparsion to epochs without microsleeps. Along 

this line, our work indicates as well that QT elongation might 

be caused by extreme drowsiness. It was noteworthy that 

spectral features of QTc-interval series provided no discrimi-

native information for the problem at hand. Only time-

invariant attributes like distribution quantiles contributed to 

an improved result. This might be an indication that time-

dependent QT variability analysis is generally not useful.  

To our knowledge, the best driver drowsiness detection 

is provided by EEG and EOG data annotated with microsleep 

events; after proper training and optimization, a SVM can 

detect microsleeps in an unknown subject with an accuracy  

 

97.3 ± 0.1 % [12]. ECG-based discrimination of KSS-rated 

drowsiness remains clearly behind such capabilities.  
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