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Deep convolutional neural network approach 

for forehead tissue thickness estimation

Abstract: In this paper, we presented a deep convolutional 

neural network (CNN) approach for forehead tissue thickness 

estimation. We use down sampled NIR laser backscattering 

images acquired from a novel marker-less near-infrared laser-

based head tracking system, combined with the beam’s 

incident angle parameter. These two-channel augmented 

images were constructed for the CNN input, while a single 

node output layer represents the estimated value of the 

forehead tissue thickness. The models were – separately for 

each subject – trained and tested on datasets acquired from 

30 subjects (high resolution MRI data is used as ground 

truth). To speed up training, we used a pre-trained network 

from the first subject to bootstrap training for each of the 

other subjects. We could show a clear improvement for the 

tissue thickness estimation (mean RMSE of 0.096 mm). This 

proposed CNN model outperformed previous support vector 

regression (mean RMSE of 0.155 mm) or Gaussian processes 

learning approaches (mean RMSE of 0.114 mm) and 

eliminated their restrictions for future research. 
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1 Introduction 

Patient head motion during treatment is a critical issue in 

cranial radiotherapy. As the fact that inaccurate delivery of a 

prescribed radiation dose to the target volume may decrease 

the efficacy of the treatments and cause unwanted side effect, 

immobilisation devices such as thermoplastic masks were 

introduced to overcome the problem. However, these 

methods are not yet the optimum solution due to many 

restrictions and drawbacks, e.g., complicated setup, patient 

discomfort, lack of reusability and inaccuracies when used 

over multiple treatment fractions [1].  

Instead of prohibiting the patient from moving, we have 

proposed a novel marker-less near-infrared laser base system 

to tack the patient’s head [2]. This tracking system utilises an 

850nm laser beam to obtain the 3D forehead geometry, and 

uses a machine learning algorithm to estimate the underlying 

tissue thickness (see Figure ). The radiotherapy system then 

can adjust the beam trajectory and compensate for the 

patient’s motion. Nevertheless, the performance of this 

tracking system critically depends on the accuracy of the 

forehead tissue thickness estimation. 

______ 

*Corresponding author: Jirapong Manit: Institute for Robotics 

and Cognitive Systems, Graduate School for Computing in 

Medicine and Life Sciences, University of Lübeck, Germany,       

e-mail: manit@rob.uni-luebeck.de 

Achim Schweikard, Floris Ernst: Institute for Robotics and 

Cognitive Systems, University of Lübeck, Germany, e-mail: 

schweikard@rob.uni-luebeck.de, ernst@rob.uni-luebeck.de  

Figure 1: Components and configuration of the NIR laser-based 
head tracking system. The 850nm laser is projected onto the 
subject’s forehead through the x-y scanning mirrors. The 
triangulation camera is used to estimate the laser spot in 3D 
space, while the HDR-camera captures backscatter from the NIR 
laser. 
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Our previous research showed that with support vector 

machine regression (SVR) or Gaussian processes (GP) 

estimation by using combined features (image data, incident 

angle and neighbourhood features), it is possible to determine 

tissue thickness with RMSE of 0.217 mm and 0.1140 mm, 

respectively [3]. These previous learning methods, however, 

require the user, to manually define the learning features 

[3,4], which may not be good enough for this application. 

Although the GP algorithm has shown good performance, its 

complexity of       limited the training on training sets with 

a large size. 

Recently, a powerful artificial intelligent algorithm 

called deep learning has been introduced for solving 

computer vision problems. The main advantage of this 

algorithm compared to classical approaches is the ability to 

automatically learn how to extract image features. In 2014, 

Simonyan, et al. proposed a simple, and yet effective 

convolutional neural network (CNN) named VGGnet [5]. It 

could perform image classification task with 84.0% accuracy. 

Hence, if we could apply this CNN model to create an 

optimal feature extractor, the tissue thickness estimation 

accuracy should also be improved 

In this paper, we study the feasibility of employing a 

deep learning approach for tissue thickness estimation by 

using the full backscatter image as the model input, and 

comparing the training results with our previous algorithms. 

2 Deep learning architecture 

Many different deep learning architectures were proposed so 

far to solve various types of problems (both supervised and 

unsupervised learning). Most of them are designed for the 

applications of image classification, object recognition, and 

natural language processing, where the output layer consists 

of several nodes representing the probability of each label. 

The output of our problem is, in contrast, only one floating 

point number denoting the estimated tissue thickness in 

millimetre. Therefore, we chose to study the feasibility of 

employing deep learning to solve a regression problem by 

using a simple and straightforward model such as VGGnet. 

The architecture of the CNN model used in this study is 

shown in Figure 2. The model was slightly modified from 

the concept of VGGnet to receive input images with a 

dimension of          . It consists of six convolutional 

layers working as feature extractors. The kernel sizes of the 

first and the second convolutional layers are       

and    , respectively, while the size from the third layer on 

is set to    . Each layer is followed by a     

subsampling layer. The dimension of the output image from 

these layers is         , then converted into        

for feedforwarding to the next regression input layer.  

The regression layers are three fully-connected layers 

with 4096 hidden nodes, and they use      as their activation 

function. Since the output of this model represents the 

estimated thickness value in millimetre, the final output layer 

is only a single node without any activation function. 

During the training phase, dropout regulation was 

applied for the regression layers to prevent overfitting and 

enhanced training speed (      for the first layer and 

      for the second and third layers). 

3 Methodology 

3.1 Data acquisition 

To evaluate and compare the tissue thickness estimation 

accuracy of this CNN model, the dataset we used in this 

experiment was the same dataset that was acquired from the 

experiment in [3]. This dataset was collected by the laser-

based head tracking system from 30 healthy subjects; 16 

Figure 2: Proposed CNN architecture: it consists of six convolution layers and three fully connected layers for regression. The value 
from the output node represents the estimated tissue thickness in millimetre. 



males and 14 females, aged from 24 to 65 years. The 

information of each subject consisted of: 

1. A 3D point cloud represented the scanning points where 

the laser projected onto the subject’s forehead. 

2. The corresponding         pixel NIR laser 

backscattering images captured from the HDR-camera. 

3. The corresponding incident angles between the laser 

direction and the normal vector of the forehead surface 

at the projected location. 

4. The thickness of the underlying tissue extracted from 

their MRI ground truth (acquired with a resolution of 0.1 

mm) 

3.2 Data pre-processing 

An important property of the NIR backscattering image is 

that the intensity values of the region around the laser spot 

centre could go up to 65,535, while the area around the spot 

will contain values ranged from 100 to 1,000. The results of 

simulations in [4] showed that the values in the region 

surrounding the spot also have a significant relation to the 

tissue thickness. Hence, this extreme difference in magnitude 

of the pixel values could degrade the quality of the 

information during the network training phase.  

To prevent this dominating phenomenon, the intensity 

values of the input images were subjected to rescaling by 

applying an operator           , where   is the original 

intensity value. With this transformation, the intensity 

dynamic range was shortened, emphasising the details lying 

around the central specular reflection (see Figure 3).  

The transformed images were then downscaled to the 

desired dimension by using bicubic interpolation, and finally 

an additional layer was inserted, which contains the 

corresponding laser incident angle, forming the augmented 

input image (          pixels). 

3.3 Model training and validation 

The performance of the proposed CNN model was tested by 

using leave-one-out validation. The number of elements in 

the training set for each fold was set to 80% of the total data 

by randomly selecting based on the uniform distribution. The 

remaining part was then labelled as the validation set. Due to 

some corrupted images during acquisition, the total number 

of laser point images for each subject was not identical. The 

estimation error was evaluated by the differences between the 

CNN output value and the thickness provided from the MRI 

ground truth. 

It is well known that training deep learning models may 

take a long time before converging. Our experiment aimed to 

train 900 CNN models, which would take exceedingly long. 

Hence, we used a pre-training model to speed up the training. 

We manually selected the CNN model from the first fold of 

Subject5 as the pre-training network for the other subjects’ 

training, while every testing on Subject5 was done using an 

untrained network. 

The training parameters in this experiment were learning 

rate = 0.001, momentum = 0.05 and weight decay = 0.001. It 

was set to run for at least 100 epochs, then continued until 

either of the two termination criteria was met: 1) 800
th
 epoch 

was reached or 2) The validation error was less than or equal 

to 0.090 mm. 

The CNN model was implemented using the Torch 

library on a PC with an NVIDIA GTX 980 GPU and an 

Intel
®
 Core

TM
 i5 CPU (3.40 GHz), running Ubuntu 14.04. 

4 Results and discussion 

The results from the entire testing models is illustrated in the 

two bar plots of training error and validation error, as shown 

in Figure 4. The mean training and validation RMSE of the 

entire testing was 0.096 0.028 and 0.077 0.012, 

respectively. Comparing this accuracy with the previous 

results in Table 1, the CNN model clearly outperformed both 

SVM and GP learning with All features. When considering 

only the learning from image and angle features (no 

neighbourhood data), we can gain an improvement by 

48.78%. 

The examples of the training progress on the untrained 

and pre-training network are shown in Figure 5. We saw that 

the validating error of the pre-trained networks (Subject5), 

started from a lower value (0.211 mm) than the untrained 

network’s initial point (1.893 mm). Then the errors of both 

networks continuously decreased and reached the termination 

condition at the point where the validation errors went below 

Figure 3: A comparison between (a) an original 900x900 pixels 
image and (b) its logarithmically rescaled result (256x256 pixels). 
The transformed image emphasises the details lying on the area 
directly around the NIR laser spot centre. 
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0.090 mm. However, their validation errors still tended to be 

slightly decrease when training continued. The fastest 

learning on the pre-training model was likely to take less then 

350 epochs to reach the terminate condition, while the 

untrained model needed more than 500 epochs. These results 

confirmed that using a pre-training model for a dataset from a 

different subject to enhance the model convergence is 

possible. 

Overfitting models also still occurred in the learning of 

22 subjects, and they were 19.26% of the total testing. The 

graph of the Subject#8’s 5
th
 fold training in Figure 5 

demonstrates this overfitting situation. At the early training 

epochs, both errors descended in the same manner, but then 

the validation error began to stop improving after the 200
th
 

epoch, although the training error slowly moved to below 0.1 

mm.  

 

Table 1: RMSE in millimetre of the estimation produced by the 
proposed SVM, GP and CNN. The learning features are: region-
of-interest (ROI), incident Angles and neighbourhood data (NBH). 

SVM GP CNN 

ROI ROI NBH ROI Angle NBH  

0.225 0.217 0.155 0.207 0.196 0.119 0.096  

5 Conclusion 

We have applied the convolutional neural network for 

forehead tissue thickness estimation by using the full NIR 

laser backscattering images. The intra-subject validation 

results show clear improvements when compared to all 

previously used learning approaches. While employing the 

pre-training network can also bootstrap the training, 

overfitting is still present in several cases. The results of this 

experiment also demonstrate that CNN can solve regression 

problems as well as recognition and classification.  

In the future, we will enhance the CNN model to be able 

to consider the laser point neighbourhood relations, and 

investigate ways to eliminate overfitting.  
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