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Abstract: The most common way to analyse heart rhythm is 

to calculate the RR-interval and the heart rate variability. For 

further evaluation, descriptive statistics are often used. Here 

we introduce a new and more natural heart rhythm analysis 

tool that is based on circular statistics and vector strength. 

Vector strength is a tool to measure the periodicity or lack of 

periodicity of a signal. We divide the signal into non-

overlapping window segments and project the detected R-

waves around the unit circle using the complex exponential 

function and the median RR-interval. In addition, we 

calculate the vector strength and apply circular statistics as 

wells as an angular histogram on the R-wave vectors. This 

approach enables an intuitive visualization and analysis of 

rhythmicity. Our results show that ECG-waves and rhythms 

can be easily visualized, analysed and classified by circular 

statistics and vector strength. 
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1 Introduction 

The heart rate variability (HRV) has become an important 

indicator for the relationship between the autonomic nervous 

system and the cardiac system. Many methods in time 

domain as well as in frequency domain and even non-linear 

methods have been introduced to describe the HRV [1]. 

Those methods often result in difficult to read diagrams and 

statistics. 

Rhythmicity or periodicity is often better described on a 

circle than on a linear timeline. Consequently, we must 

replace linear statistics with circular statistics. We also try to 

make use of the von Mises vector strength (VS) [2] that 

measures the periodicity or lack of periodicity of a signal. 

Furthermore, we want to show how the angular 

representation of R-Waves can be used to classify different 

ECG segments. 

2 Methods 

2.1 Data preparation 

To analyse the rhythmicity of the recorded ECG signal, we 

divided the signal into  non-overlapping, sliding windows 

segment, thus reducing the influence of slow heart frequency 

rate changes. We applied Sedghamiz’s complete 

implementation of the Pan-Tompkins algorithm [3] in order 

to detect the R-waves. Furthermore, we stored the related 

points in time , where  denotes the index of the R-wave 

in the nth window. In addition, we calculated the RR-

intervals for each window. 

2.2 Vector strength 

Assuming that the majority of the heartbeats are regular, we 

calculate the median RR-interval  for each window, thus 

eliminating irregular outliers. The next step is to project the 

R-wave time points around the unit circle using the complex 

exponential function: 

 

.  (1) 

One rotation around the unit circle represents a regular 

heartbeat and therefore all regular heart beats point in the 

same direction (see Figure 1). 

The von Mises VS for the nth window is defined as 

following [2]: 
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   (2) 

where  is the total number of  found in window . 

Consequently, a vector strength of one is for perfect 

rhythmicity and zero for total irregular heartbeats. 

The first appearance of an R-wave changes from window 

to window. This is reflected in different phases of  for each 

window. Consequently, we normalize each window by 

subtracting the direction of the vector strength from the 

direction of : 

 

.  (3) 

Hence, a normalized heartbeat vector should point in the 0° 

direction. Longer and shorter RR-Intervals lead to small 

positive and respective negative deviations from the mean 

direction (see Figure 1). Thus, the R-wave vectors from all 

windows can now be used to calculate the total VS : 

 

.  (4) 

2.3 Circular visualisation and statistics 

We obtain the circular distribution of the R-wave time points 

by splitting the unit circle into  circle sections of equal size 

and then counting the R-wave vectors in each section. For 

symmetric reasons, we recommend choosing  as a multiple 

of four. However, the radius of each section in the angular 

histogram is proportional to the number of R-waves. 

Therefore, smaller sections appear more important than they 

actually are. Instead, we multiply the radius of every section 

with a correction factor: 

 

  (5) 

with  and denoting the number of circle 

sections. As a result, the number of R-waves is proportional 

to the area of the section and therefore represents the accurate 

distribution of R-wave vectors (see Figure 1). 

Because the data is not represented on a linear axis we 

cannot use linear statistics, instead we must use circular 

statistics. The Matlab Toolbox CircStat [4] was used to 

calculate the statistics. 

The mean resultant length  and the mean direction  

are defined similarly to the VS [5]: 

 

   (6) 

Figure 1: A) Circular distribution of R-wave vectors; the radius of 
each section is proportional to the number of elements. The 
section pointing in the 0° direction and therefore containing 
regular R-waves, is marked red. B) Circular distribution of the 
same R-wave vectors; the area of each section is proportional to 
the number of elements in each section. C) A window containing 
the R-waves, corresponding to the circular distribution shown on 
the top. Note that the red markers indicate R-waves in the 0° 
section and the fourth and irregular R-wave translates into a 
vector pointing away from the 0° direction. 

Figure 2: A) Angular histogram with a corrected r-
axis sorting all R-wave vectors into 12 sections of 
30°. B) Detailed view of the same angular 
histogram limiting the r-axis to 100 and therefore 
cropping the 0° section. 



.   (7) 

Pewesy [6] has defined the skewness  and kurtosis  of 

a sample distribution as following: 

 

   (8) 

.   (9) 

3 Results 

For this analysis, the 303
rd

 recording from the MIT-BIH ST 

Change Database was used. The dataset has been recorded 

with a sample rate of , during an exercise stress test 

and exhibits transient ST depression [7-8]. We applied no 

additional filtering to the signal and divided it into 339 

windows, 6 seconds in length. The Pan-Tompkins algorithm 

found 3007 R-waves in total. 

3.1 Circular statistics and heart rate 

variability 

Figure 2 displays the angular histogram of all R-wave vectors 

with a section width of 30°. Almost 3000 R-wave vectors 

point in the 0° direction and therefore, represent regular 

heartbeats (see Figure 2A). Both neighbouring sections 

contain about forty R-wave vectors each. This results in a 

very strong VS of 0.9856. The deviation of the mean 

direction from the 0° direction is almost non-existent. In 

contrast, the remaining sections contain only up to ten R-

wave vectors each (see Figure 2B). 

The kurtosis is very close to one and therefore indicating 

a very strong and peaked distribution of R-wave vectors 

around the mean direction. Additionally, the skewness of the 

sample distribution is very close to zero. Therefore, the 

number of positive deviations from the mean direction, is 

similar to the number of negative deviations. 

3.2 Classification of ECG-waves 

The angular histogram sorts the R-wave vectors based on the 

RR-interval for each window. Regular heartbeats point in the 

0° direction and were thus assigned to the 0° bin. In contrast, 

irregular heartbeats that did not match the median RR-

interval were not assigned the 0° section, but instead, to the 

sections between 195° and 315° (see Figure 2B). 

Figure 3 displays an overlay of the QRS complexes 

corresponding to the R-wave vectors found in the 0°, 210°, 

and 240° section. Note the strongly different time courses, 

indicating different heart states. 

4 Discussion and conclusion 

We introduced a new method to analyse the HRV and 

rhythmicity of R-waves. Due to the phase normalisation of 

the VS in relation to the mean RR-interval in each window, 

we were able to lock the VS of each window to a relative 

heart frequency rate. Consequently, the combined VS is 

highly adaptive to low frequency heart rate changes. 

When analysing the HRV in the frequency domain, low 

frequency changes of the heart rate can smear the amplitude 

spectrum. In contrast, the angular distribution of the R-wave 

vectors shows a very high concentration around the VS. A 

challenge for this method lies in finding good parameters 

describing the concentration of R-wave vectors around the 

VS and thus the HRV. Future research might consider 

finding a suitable angular probability model i.e. the Fisher or 

the von Mises distribution. 

Figure 3: Ensemble of all QRS complexes assigned to a specific 
section. A) 0° Section: Ensemble of 2896 regular QRS-Segments, 
several segments polluted with noise or DC component. B) 210° 
Section: Ensemble of four irregular heartbeats with transient ST 
depression C) 240° Section: Ensemble of two irregular heartbeats 
with transient ST depression. 
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The analysis of arrhythmic ECG recordings shows that a 

large number of irregular heartbeats respond to a uniform 

distribution of R-Wave vectors around the unit circle, and 

therefore the VS is close to zero. Nevertheless, the collapsing 

of the VS does not conclude a failure of our method at all, 

instead it denotes the lack of rhythmicity of the ECG 

recording. 

A weak point of this method is the influence of different 

window lengths on the VS. Extended simulations and 

analysis with different window lengths would be necessary to 

explore their relationship. 

We tested this method using several data files from the 

MIT-BIH ST Change Database, as well as the MIT-BIH 

Arrhythmia Database, and ECG recordings from the authors. 

In conclusion, this method allows for a detection, 

separation, and classification of ECG waves. We were able to 

separate regular heartbeats from irregular heartbeats with 

transient ST depression. Further investigations might test if 

the separation works for other ECG aberrations as well. 
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