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Abstract: Automated image processing methods enable
objective, reproducible and high quality analysis of flu-
orescent cell images in a reasonable amount of time.
Therefore, we propose the application of image processing
pipelines based on established segmentation algorithms
which can handle massive amounts of whole slide imaging
data of multiple fluorescent labeled cells. After automated
parameter adaption the segmentation pipelines provide
high quality cell delineations revealing significant differ-
ences in the spreading of B cells: LPS-activated B cells
spread significantly less on anti CD19 mAb than on anti
BCR mAb and both processes could be inhibited by the
F-actin destabilizing drug Cytochalasin D. Moreover, anti
CD19 mAb induce a more symmetrical spreading than anti
BCR mAb as reflected by the higher cell circularity.
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1 Introduction

In the life sciences, various light microscopy techniques
are currently employed for the visual assessment, obser-
vation and quantification of changes in cell morphology
during cell spreading experiments. Typically, such experi-
ments include the acquisition of images at different points
in time (time lapse experiments) or the analysis and com-
parison of different experiment.

For such high-throughput analysis experiments, the
whole slide scanning technologies enable experimental-
ists to acquire massive amounts of multiple-stainded flu-
orescence images with a high quality. Manual assessment
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of these amounts of micrographs is a tedious and time
consuming task. Therefore, the application of automated
image processing and analysis algorithms is strongly re-
quired to solve tasks like cell detection and and nuclei and
plasma segmentation in adequate amount of time. It si-
multaneously increases quality, objectiveness and repro-
ducibility of these experiments.

We combine fluorescence, whole slide imaging with
automated image analysis to investigate B cell spreading
during the interaction with antigen presenting cells (APC).
B cells are lymphocytes of the adaptive immune system.

In the past, various methods for cells and nuclei seg-
mentation in fluorescence microscopy images have been
proposed. Most commonly, these methods incorporate
thresholding methods for figure-ground separation as well
as the watershed transform [12] for object spitting [1, 11, 13].
Alternative approaches apply level sets [2] or are based on
the graph cut algorithm [8].

Nevertheless, for each new image analysis application
anew set of methods and an adequate processing pipeline
has to be established and the corresponding parameters of
each part of the pipeline have to be fine-tuned and adapted
to the experiments. In contrast to a manual parameter tun-
ing, we adjust parameters with an automated adatpion
scheme, which is based on small but representative set of
manually labeled cells [7].

2 Materials and methods

Our line of action consists of three steps. First step is the
preparation of the B cells on a well slide (cf. Section 2.1).
The slides are then captured with a fluorescence whole
slide scanner (cf. Section 2.2). Finally, the acquired fluo-
rescence micrographs are automatically analyzed with ad-
equate image processing methods (cf. Section 2.3).
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Figure 1: Different cell spreading behavior of LPS activated B cells
treated with (right) or without (left) Cytochalasin D on immobilized
antibodies aBCR or @CD19.)). Immunofluorescent staining was
performed for F-Actin (Phalloidin-Rhodamin) and DNA (DAPI).

2.1 Samples

Naive murine B cells from C57Bl/6 mice were isolated
from the spleen by negative selection and activated with
lipopolysaccharide (LPS, 10 pg/ml) for 72h in RPMI1640
medium supplemented with fetal calf serum (FCS)(10%),
L-glutamine (2 mM), Pyruvate (1 mM), Penicillin (50 U/ml),
Streptomycin (50 ug/ml) and B-Mercaptoethanol (50 uM).
Teflon-coated microscope slides with 8 wells each and a
thickness of 6 mm were prepared for coating with aBCR
(10pg/ml rat anti BCR monoclonal) [3] or aCD19 (rat anti
CD19 monoclonal) [10]. Per well, 2x10* B cells (in 25 ul vol-
ume) were seeded on the coated slides and incubated for
45min in a humidified incubator (5% CO2 atmosphere in
RPMI1640 supplemented as described above but without
FCS). As a control, B cells were treated with Cytochalasin
D [5], a mycotoxin that inhibits actin polymerization. Cell
spreading was stopped by fixating the cells in phosphate
buffered saline (PBS) containing 4% para-formaldehyde.
Fixed cells were washed and permeabilized in PBS with
0.1% Triton X-100. F-actin was specifically stained intracel-
lularly with Phalloidin-Rhodamin (Molecular Probes) and
nuclei were stained with DAPI (Roth). Slides were mounted
in MOWIOL(Roth).

2.2 Imaging

Each well was automatically recorded with around 25 vi-
sual fields and two fluorescent dyes with an Axio Scan.Z1
whole slide scanning fluorescence microscope (Zeiss). The
DAPI stained nuclei were used to generate the focus map
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for each individual well. Then all images were acquired
with two fluorescent channels, namely in DAPI for the cell
nuclei and Phalloidin-Rhodamin for the cell F-Actin cy-
toskeleton. Each micrograph has a spatial resolution of
1388 pixels x 1040 pixels, where the physical pixel size is
0.163 pm x 0.163 pum. Wells with exceedingly high cell den-
sity were neglected and excluded for further analysis. In
total, we acquired 7 slides and used 48 wells and 2418 im-
ages for further analysis. Fig. 1 shows exemplary parts of
recorded images from different conditions.

2.3 Image analysis

The key issue during an automated cell image analysis
is an appropriate segmentation of the cell regions. Usu-
ally this includes preprocessing the image (preprocess-
ing), separating foreground pixels from background pixels
(figure-ground separation), and, if necessary, separating
cells from each other (cell splitting). An additional mea-
surement step for e.g. the assessment of cell area or cell
circularity follows cell segmentation. Segmentation and
measurements are integrated in the experimental analy-
sis tool (CaeT). CaeT allows to combine various methods
with each other to design cell image processing pipelines
of arbitrary length. This is a similar approach like in the
CellProfiler [4].

In this study, we have applied a combination of var-
ious algorithms to nuclei and to cell segmentation. Fig.
2 depicts the segmentation pipeline for nuclei segmenta-
tion. Gaussian smoothing filters an image with a Gaus-
sian kernel with the standard deviation o, and produces
a smoothed version of the original image (preprocessing).
The smoothed image is used for figure-ground separa-
tion with a method that is based on k-means clustering
with one parameter ky, the number of clusters [7]. Nuclei
splitting is performed with a watershed approach. After
smoothing the distance transformed result of the figure-
ground separation with Gaussian smoothing with stan-
dard deviation 0,4, it applies the watershed transfrom and
neglects segments with areas smaller than ay to prevent
oversegmentation.

Fig. 3 shows the image processing pipeline for cell seg-
mentation. Preprocessing is performed with a Difference of
Gaussians filter (DoG). This filter generates two smoothed
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Figure 2: Image processing pipeline for nuclei segmentation.
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Figure 3: Image processing pipeline for cell segmentation.

versions of the original image with the Gaussian filter with
the standard deviations o. and o,. The foreground of the
micrograph is estimated by subtracting these smoothed
images from each other. Figure-ground separation is per-
formed with k-means clustering with the number of clus-
ters k¢ on the result of the DoG. Now, the seeded watershed
algorithm is used for cell splitting and uses the previously
detected nuclei regions as starting point for the watershed
transform. Parameters are o4 for smoothing the distance
transformed image and a. determining the minimum cell
size.

In order to obtain the best result fro the image analy-
sis challenge, all parameters p=(0n, kn, Opg, dn, Oc, O, K,
0.4, dc) of all methods applied within the image process-
ing pipeline have to be adapted to the experimental image
data. For human experts, this is an elaborate and time-
consuming task. Held et al. [9] have presented a method
to automatically optimize parameters of a three-step im-
age processing pipeline with respect to a small set of hand
labeled reference image data. In this contribution this ap-
proach has been extended to adapt the parameters of im-
age processing pipelines with arbitrary length. The opti-
mization algorithm makes use of coordinate descend ap-
proach in order to find the best fitting parameter set p* us-
ing the combined Jaccard metric presented in [9] as opti-
mization measure. To provide the ground truth data for the
parameter optimization, a subset of 15 representative im-
ages with 149 cells and 165 nuclei, respectively, were man-
ually labeled by an human expert using a Wacom Board
[6]. Incomplete cells and nuclei witch contact to image tile
borders were excluded.

3 Results

In order to process the described whole slide image data,
an appropriate parameter set p° has to be found for
each image processing pipelines. These parameters are
separately adapted for the nuclei segmentation pipeline
(see fig. 2) and for the F-actin cytoskeleton segmentation
pipeline (see fig. 3) with respect to the hand labeled ref-
erence image data. As segmented nuclei regions are input
into the F-actin cytoskeleton pipeline, the parameter set
for the nuclei segmentation is the first to be adapted. For
nuclei, the performance measured with two-fold cross val-
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Figure 4: Exemplary segmentation result for nuclei: part of original
DAPI image (left); segmentation result (right); scale bar corresponds
to 20 pm.

Figure 5: Exemplary segmentation result for F-actin cytoskeleton:
brightness adapted part of original Phalloidin-Rhodamin image
(left); segmentation result (right); scale bar corresponds to 20 pum.

idation and the combined Jaccard metric is pn=0.73 with a
hit quality of hn=0.91. Fig. 4 shows an exemplary segmen-
tation result. For F-actin cytoskeleton, the performance
was pc=0.64 with a hit quality h.=0.84. Fig. 5 depicts an
exemplary segmentation.

The quality measures based on the combined Jaccard
index are affected by differences between human labeling
and automated image processing. The automated process
uses the DAPI channel as a reference channel and tries to
delineate exactly one cell region for each detected nucleus
region. In contrast, a human expert’s decision depends
more on the channel currently depected. This means if the
staining works fine in the DAPI channel the human expert
might have delineated a nucleus although there is not a
visible cell in the F-actin cytoskeleton channel and vice
versa. Also, the human experts were able to recognize di-
viding nuclei based on the F-actin cytoskeleton channel,
and have labeled the nucleus as a single one. However,
the algorithm separates the nucleus into two entities if the
division process is sufficiently advanced and two distinct
nuclei ca be detected. There also exist differences in the
handling of debris and dirt in the micrograph. Human ex-
perts are able to distinguish between dirt, debris and cells
based on morphology and texture, while the algorithm is
only able to sort out too small regions.

With the parameters obtained during the optimiza-
tion process the complete experimental image data was
processed. This resulted in a total number of 16.715 de-
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Figure 6: Measurements depict highly significant results in cell area
and circularity between B cells spreading on immobilized aBCR or
aCD19 antibodies. Significance according to Mann-Whitney-U test
(*** p=0.0001- 0.001). Red line represents the mean.

tected and segmented cells and nuclei, respectively. Based
on the segmented cell regions, the cell area and the cell
circularity were calculated to describe the morphology of
each cell. The results are visualized in fig. 6. The analy-
sis shows that LPS-activated primary murine B cells, at-
tached on glass slides coated either with anti BCR mAb, or
coated with antibodies against the BCR co-receptor CD19,
in the absence (-) or in the presence of the F-actin desta-
bilizing drug Cytochalasin D, spread significantly less on
anti CD19 mAb than on anti BCR mAb. The F-Actin depen-
dency of both processes could be shown via specific inhi-
bition by Cytochalasin D. Furthermore, anti CD19 mAb in-
duce a more symmetrical spreading of B lymphocytes than
anti BCR mAb as reflected by the significant higher cell cir-
cularity.

4 Conclusion

In summary, we have established a protocol and an al-
gorithm that allows the quantification of large numbers
of fluorescent labeled and fixed B cells attached to glass
slides. This method allows rapid screening of cytoskeletal
effector molecules and of mouse mutants suspected to ef-
fect cytoskeletal rearrangement.
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