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Abstract

Objectives: Laboratories are required to routinely verify
reported reference intervals (RIs), but common verification
methods like the CLSI-EP28-A3c binomial test are often
impractical due to sample collection requirements. Indirect
verification methods like equivalence limits (ELs) use
routine data from patient care but lack systematic evalua-
tion. This study aimed to develop and evaluate a novel in-
direct verification method: verification of reference
intervals based on the uncertainty of sampling (VeRUS).
Methods: VeRUS compares the to-be-verified candidate RI
to an RI estimated from local routine data. Acceptable dif-
ferences are based on the sampling uncertainty intrinsic to
the nonparametric method for establishing RIs with n=120
samples. The three verificationmethods were systematically
compared with simulated test sets resembling 10 differently
distributed biomarkers and a wide range of plausible
candidate RIs.
Results: The binomial test is inherently unable to reject too
wide RIs; e.g. the 99.8 %-interval, for which ELs and VeRUS
showed high rejection rates (mean 89.2 %, SD 31.5 % and
mean 95.8 %, SD 2.3 %, respectively). Moreover, the binomial
test incorrectly accepts 29.3 % of “too narrow” 80%-intervals,
whereas the false acceptance rates of ELs and VeRUS were

lower (mean 21.7 %, SD 40.9 % and mean 7.2 %, SD 4.7 %,
respectively). Overall, both indirect verification methods
demonstrated increased statistical power, while ELs were
least consistent among different biomarker distributions.
Conclusions: Its robust performance without the need for
sample collection makes VeRUS an attractive tool for RI
verification. By enabling routine verification of previously
practically unverifiable RIs (e.g., in pediatrics), VeRUS may
enhance clinical decision-making and improve patient care.

Keywords: comparison of reference limits; laboratory
methods and tools; real-world data; reference interval; sta-
tistics; verification

Introduction

Clinical decisions, including diagnosis and treatment, are
frequently guided by numerical laboratory test results [1, 2].
A commonly used tool for interpreting these results is the
reference interval (RI) [3, 4], which usually describes the
central 95 % of values observed in a reference population
consisting of apparently healthy subjects [5]. Inclusion of RIs
in laboratory reports is mandated to facilitate the interpre-
tation of biomarker measurements [6]. Currently, most
laboratories provide RIs in their reports that were estab-
lished externally, such as RIs taken from manufacturers’
package inserts, expert panel recommendations, guidelines,
or publications [4, 7]. To ensure that the RIs used in labora-
tory reports describe the local population adequately, reg-
ulatory bodies require laboratories to regularly verify their
RIs. However, the exact procedures to comply with these
standards are not defined [6].

The Clinical Laboratory Standards Institute (CLSI) EP28-
A3c guideline recommends using a binomial test for the
verification of RIs [5]. Briefly, the CLSI binomial test evalu-
ates a RI by determining the proportion of reference samples
falling outside its limits. The RI is verified if this proportion
is ≤10 %. If this proportion is between 10 and 20 % it is rec-
ommended to repeat the test once [5]. This binomial test can
be conducted with 20–120 reference samples [5]. However,
due to the substantial effort involved in sample collection, a
number at the lower end of this range is usually chosen [7].
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Notwithstanding its utility, the binomial test has several
known limitations, primarily the practical challenges asso-
ciatedwith collecting reference samples [8]. The collection of
samples for the purpose of verifying pediatric RIs is a
particularly challenging endeavor, primarily due to the
ethical considerations involved [9, 10]. These challenges are
amplified when verifying RIs partitioned by categories such
as age and sex, which require separate sample cohorts for
each category. Furthermore, and clinically important, the
test is inherently unable to detect too wide RIs [5], even
though too wide RIs expose patients to the risk of inadequate
clinical decisions.

Alternatively, several studies suggest that RIs can be
verified by comparing them to RIs estimated using indirect
methods, which infer the reference distribution a posteriori
from routine data, employing a variety of different ap-
proaches. These approaches include the subjective compar-
ison of numeric reference limits [11, 12], distribution
medians, or flagging rates [4, 8]. Another approach involves
assessing whether the CIs of indirectly established RIs
overlap with those of the candidate RI or encompass its
limits [13, 14]. Since indirect methods typically use large
datasets, these indirectly estimated RIs often have compar-
atively narrow CIs. These narrow CIsmay lead to rejection of
candidate RIs even when differences lack clinical signifi-
cance [15]. Therefore, RI verification should be based on
more objective acceptance criteria that are independent of
the size of the input data set.

One such approach utilizes adapted equivalence limits
(ELs) as acceptance criterion, which estimate the permis-
sible analytical standard deviations at each reference limit.
These ELs are calculated with a simple algorithm that

necessitates several assumptions, including the assumption
that all biomarkers are lognormally distributed [16]. This
approach is integrated into multiple applications [17, 18].
However, to our knowledge, there exists no systematic
comparison of the characteristics of the binomial test and
ELs, which would allow an objective assessment of each
method.

Here, we propose a novel approach for the verification
of RIs based on indirect methods: “Verification of Reference
Intervals based on the Uncertainty of Sampling”, short
VeRUS. VeRUS combines the practicality of indirect methods
with acceptance criteria based on the uncertainty associated
with the nonparametric direct method of establishing RIs as
recommended by the CLSI EP28-A3c guideline [5]. We
implemented VeRUS as part of the open-source R-package
refineR version 2.0.0 available on CRAN (CRAN.R-project.org/
package=refineR). Guidance on how to apply the VeRUS al-
gorithm can be found in the ‘verification’ vignette of this
R-package. Additionally, we present the first systematic
comparison of these RI verification methods, namely the
binomial test recommended by the CLSI EP28-A3c guideline,
ELs, and VeRUS, using simulated datasets from RIbench [19]
to evaluate strengths and weaknesses of each approach.

Materials and methods

Description of VeRUS

The fundamental concept of VeRUS is the comparison of the
candidate RI with an RI estimated from local routine data
(local RI) by assessing the numerical differences between the

Figure 1: Schematic overview of VeRUS for the verification of a candidate reference interval (RI). (1) The local RI is derived after modelling the non-
pathological fraction of routine data with mean (μ1), standard deviation (σ1), power (λ1), and shift (δ1) parameters. (2) Assuming similar distributional
shapes (λ1=λ2 and δ1=δ2), mean (μ2) and standard deviation (σ2) of the reference distribution underlying the candidate RI are inferred from its limits. (3)
Uncertainty margins (UMs) for both RIs are calculated based on the uncertainty of the nonparametric direct method (n=120). (4) Verification requires
overlap of all corresponding UMs.
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individual reference limits. The criteria when the differ-
ences are considered acceptable are derived from the sta-
tistical sampling uncertainty of the nonparametric direct
approach for establishing RIs. A schematic representation of
the VeRUS methodology is shown in Figure 1.

The first step of VeRUS is modeling the distribution of
the local reference population from readily available routine
data, i.e., test results obtained during patient care, using the
refineR algorithm [20]. With this model, the local RI is esti-
mated (Step 1). As VeRUS relies on accurate RI estimation,
assessment of the routine data and critical evaluation of the
resulting refineR model is strongly recommended [13, 20].
Subsequently, the underlying distribution of the candidate
RI’s reference population is modeled. If the reference values
are available, this may be done as described in [21]. In the
more common case where no distributional information is
available, VeRUS operates on the assumption that if two
populations are comparable enough to consider RI transfer
(as per CLSI EP28-A3c guidelines regarding, e.g., age, sex,
geographic location [5, 8]), their underlying distribution
shape is likely to also be comparable. This is implemented by
transferring the shape parameters, power (λ) and shift (δ),
from the local refineR model to characterize the candidate
distribution. The location (μ) and scale (σ) parameters of the
candidate distribution are then estimated based on the
candidate’s reported upper and lower reference limits, as
they are directly susceptible to inter-laboratory variation
such as imprecision or bias (Step 2). With these estimated
distribution parameters uncertainty margins (UMs) are
calculated for each reference limit of both the local RI and
the candidate RI (Step 3). Specifically, the UMs are obtained
by first approximating the confidence intervals (CIs) for the
percentiles defining these RIs (usually the 2.5th and 97.5th
percentiles) of the standard normal distribution applying a
formula published by Serfling [22]. To obtain the UMs, these
CI approximations are then transformed to the appropriate
scale, using the distribution parameters determined in steps
1 and 2. The resulting UMs can be interpreted as the minimal
width of the CIs for reference limits, as sources of uncer-
tainty other than those caused by random sampling, such as
measurement imprecision or bias, are not taken into ac-
count [15, 22]. The candidate RI is verified if the UMs of each
corresponding reference limit of the candidate RI and the
local RI overlap (Step 4). A more detailed description of each
step and an evaluation of the Serfling formula for approxi-
mating the CI of percentiles (Supplementary Figure 1) is
provided in the Supplementary Material.

By default, VeRUS requires a two-sided candidateRI, and a
set of routine data. However, some adjustments enable the
comparison of one-sided RIs, two numerical RIs and the direct
comparison of two indirectly estimatedRIs. These adjustments

and assumptions are described in the Supplementary
Material.

Establishing RIs for heavily right-skewed biomarkers
with limited sample sizes (e.g., 120) results in extensively
large CIs of the upper reference limit [15], while the lower CI
can converge towards a width of zero. This effect is a
direct consequence of the skewed shape of the biomarker
distribution, which is also reflected in the width of UMs.
Extensively narrow UMs at the lower limit may cause
acceptable candidate RIs to be rejected. To address this issue,
we implemented a correction in the form of an artificial shift
applied to the inverse Box–Cox transformation when
calculating UMs. This asymmetry correction is only applied
if the upper UM width is greater than 75 % of the RI width,
i.e., in the case of extremely skewed distributions. This
correction broadens the lower UM, while the upper UM
width is limited to a maximum of 75 % of the RI width.

Evaluation of the verification approaches

We conducted a systematic assessment of the binomial test
currently recommended by the CLSI [5], ELs [16] and VeRUS
using the RIbench benchmarking suite [19], which contains
simulated test sets mimicking real biomarker distributions
with added pathological data. RIbench includes test sets of 10
common biomarkers: hemoglobin (Hb), calcium (Ca), free
thyroxine (FT4), aspartate transaminase (AST), lactate
(LACT), γ-glutamyltransferase (GGT), thyroid-stimulating
hormone (TSH), immunoglobulin E (IgE), c-reactive protein
(CRP), lactate dehydrogenase (LDH). The simulated test sets
of each biomarker differ in total sample size, fraction of
pathological samples, and the degree of overlap between
pathological and non-pathological distributions [19]. We did
not include CRP in our analysis as typically a clinical decision
limit is defined for CRP instead of a RI.

To directly compare the extent of ELs or UMs around
reference limits, we calculated those for the simulated
nonpathological distributions. For UMs we used default
settings corresponding to the sampling uncertainty expected
for RI estimation with 120 samples and a more strict setting
reflecting RI estimation with 1,000 samples as suggested for
highly skewed – e.g., log-normal – distributions [23]. To
evaluate the different verification approaches, a compre-
hensive set of candidate RIs was generated for each
biomarker by combining plausible lower and upper limits
derived from the lower and upper quartile of the theoretical
biomarker distribution in equidistant steps. Specifically, the
lower limits were located between the 0.001st and 25th
percentiles and the upper limits covered the range between
the 75th and 99.999th percentiles. The ground truth of the
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local RI was modeled as the two-sided, central 95 % interval
(2.5th to 97.5th percentile) of each distribution.

The probability of verifying each of these candidate RIs
with the binomial test was determined directly from the
cumulative distribution function. We modeled the binomial
test as described by the CLSI EP28-A3c guideline with n=20
samples and with the repetition of the test if three or four
samples are outside the RI [5].

ELs and VeRUS are based on indirect methods, which
may provide imperfect estimations of the distribution of the
local reference population. To assess how these possibly
imperfect estimations impact the verification with ELs and
VeRUS, we applied refineR to simulated test sets from
RIbench. The test sets were restricted to those with up to
20 % pathological samples to emulate realistic scenarios
resulting in 288 unique test sets per biomarker. Each plau-
sible candidate RI was compared to all RIs estimated from
the simulated test sets by ELs and VeRUS. The fraction of test
sets for which each candidate RI was verified was deter-
mined for both methods as a proxy for the probability of
verifying the candidate RI. Using refineR, a reference dis-
tribution was modeled from each test set. The default one-
parameter (λ) Box–Cox transformation was used for all bio-
markers except LDH, which requires a two-parameter (λ, δ)
transformation to adequately capture its distribution [19]. These
estimated distribution parameters were subsequently used in
the VeRUS verification process. ELs were essentially calculated
as described by Haeckel et al. [16], except that we used full-
precision standard normal quantiles rather than the rounded
values reported in the original publication. The candidate RI
was considered verified if the ELs of the corresponding limits of
both RIs overlap as Haeckel et al. described [24].

The same analysis was conducted with candidate RIs
derived at equidistant steps on the linear concentration scale
instead of the percentile scale (Supplementary Figures 2, 3),
and with the assumption of perfect model estimation of
refineR (Supplementary Figures 4–7).

Results

Comparing the extent of ELs or UMs around reference limits
shows that ELs and the UMs of VeRUS at default settings are
essentially identical for normally distributed biomarkers
(Table 1). For skewed distributions, ELs aligned more closely
with VeRUS UMs computed with n=1,000 at the upper limit,
whereas at the lower limit ELs were closer to VeRUS UMs at
default settings. Overall, VeRUS at default settings was the
most permissible method, followed by ELs, and VeRUS with
n=1,000 resulted in the smallest margins around the refer-
ence limits.

In our systematic assessment of the three verification
methods, we compared the fraction of test cases verified by
each approach for a wide range of plausible, to-be-verified
candidate RIs using graphical representations (Figures 2 and
3; Supplementary Figures 2–7). On the universal percentile
scale, the CLSI binomial test results in the same pattern
across all assessed biomarkers (Figures 2 and 3; Supple-
mentary Figures 4, 5).

Similar to the CLSI binomial test, the plots generated
with VeRUS are comparable for all biomarkers (Figures 2
and 3; Supplementary Figures 2–7). Slightly different shapes
of the acceptance areas can be observed at TSH and IgE,
biomarkers categorized as heavily skewed (Figure 3; Sup-
plementary Figures 3, 5, 7). ELs were considerably less
consistent in verifying candidate RIs of different biomarkers
than the other two methods. This is evident as the highest
degree of variation in the sizes of acceptance regions,
ranging from the smallest for TSH to the largest for Ca, is
observed for ELs. The transition from highest to lowest
probability of verifying the candidate RI was most gradual
for the binomial test, whereas it was relatively sharp for ELs
and VeRUS. The most gradual transitions for ELs and VeRUS
occurred with skewed biomarkers, e.g., GGT, TSH, IgE.

Verification rates for candidate RIs representing ‘too
narrow’ (central 80%), “correct/true” (central 95%), and ‘too
wide’ (central 99.8%) intervals are presented in Table 2. All
three methods verified the ‘correct/true’ candidate RIs
consistently athigh rates. TheCLSI binomial test is designed to
accept RIs which encompass 95% of a distribution (“correct/
true” RIs) with 99.2 % probability [5], while ELs and VeRUS
dependon the accuracyof parameter estimationwith refineR.
Despite this dependency, ELs verified true RIs in 85.4–100%of
cases (mean 94.3 %, SD 6.0 %), and VeRUS achieved verifica-
tion rates between 96.2 and 100% (mean 98.2 %, SD 1.2 %).

The CLSI binomial test incorrectly verifies the 80 % “too
narrow” candidate RI in 29.3 % of cases. Using IgE as an
example, this indicates a 29.3 % probability of accepting a
candidate RI of [5.2 × 103, 80.5 × 103 IU/L] when the true RI is
[1.5 × 103, 114.0 × 103 IU/L]. ELs verify these “too narrow”
candidate RIs generally at lower rates between 0.0 and
99.7 % of cases (mean 21.7 %, SD 40.9 %). However, ELs
hardly rejected the “too narrow” intervals for Ca and Hb
with verification rates of 99.7 and 87.5 %, respectively. For
the other biomarkers, the “too narrow” RI was verified be-
tween 0.00 and 0.4 %. In comparison, VeRUS verified the “too
narrow” candidate RIs more consistently at low rates be-
tween 3.1 and 18.4 % (mean 7.2 %; SD 4.7 %).

The 99.8 %, “toowide” RIwas falsely verified by the CLSI
binomial test with a probability of 100 %. Unlike the bino-
mial test, ELs and VeRUS are designed to reject too wide RIs.
The successful rejection of candidate RIs with low lower
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limits and high upper limits can be observed in most bio-
markers (Figures 2 and 3). Indeed, the “too wide” candidate
RIs were verified at lower rates by ELs between 0.0 and
94.8 % (mean 10.8, SD 31.5 %), and by VeRUS between 0.0 and
6.6 % (mean 4.2, SD 2.3 %).

Discussion

We have developed a novel method for the “Verification of
Reference Intervals based on the Uncertainty of Sampling”,
short VeRUS. Our systematic comparison of VeRUS to the
current de facto standard, the CLSI binomial test [5], and to
ELs [16] demonstrates that VeRUS is a robust and consistent
method for the verification of RIs.

Our results (Figures 2 and 3; Supplementary Figures 2–7)
show that VeRUS and the binomial test verify fairly consis-
tent ranges of candidate RIs on percentile scale, whereas ELs
yield varying outcomes depending on the specific biomarker

distribution. This difference likely arises because ELs as-
sume log-normal distributions [16], while VeRUS utilizes
estimated distribution parameters provided by refineR
which better reflect the biomarker specific distribution.

Deviations from the generally consistently shaped
acceptance ranges are observed when verifying the highly
skewed biomarkers TSH and IgE (Figures 2 and 3; Supple-
mentary Figures 2–7) with VeRUS. These deviations are a
direct consequence of the integrated asymmetry correction.
The asymmetry correction is a crucial feature, as perfectly
consistent acceptance areas on highly skewed biomarkers
translate into unrealistically narrow UMs of the lower refer-
ence limits, thereby reducing practical utility. Therefore, the
asymmetry correction ensures more applicable UMs in these
scenarios. Additionally, VeRUS generally verified the “correct/
true” RI at higher rates than ELs (Table 2).

VeRUS and ELs both overcome the main disadvantages
of the binomial test. Neither requires the collection of
dedicated reference samples when combined with indirect

Table : Uncertainty margins (UMs) and equivalence limits (ELs) for simulated reference limits. Point estimates of the reference limits (.th and .th
percentiles) were derived from biomarker distributions from RIbench. UMs were calculated using both default (n=, % CI) and stricter (n=,,
% CI) parameters. For each reference limit, the columns ‘Lower lim.’ and ‘Upper lim.’ show the lower and upper bounds of the respective UM or EL.

Biomarker (distribution type) Method Lower reference limit Upper reference limit

Lower lim. Point estimate Upper lim. Lower lim. Point estimate Upper lim.

Hb (normal) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

Ca (normal) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

FT (normal) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

AST (skewed) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

LACT (skewed) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

GGT (skewed) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

TSH (heavily skewed) Equivalence limits . . . . . .
VeRUS (default) . . . . . .
VeRUS (n=,, % CIs) . . . . . .

IgE (heavily skewed) Equivalence limits . . . .  

VeRUS (default) . . . .  

VeRUS (n=,, % CIs) . . . .  

LDH (skewed and shifted) Equivalence limits      

VeRUS (default)      

VeRUS (n=,, % CIs)      
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Figure 2: Comparison of RI verification methods: CLSI binomial test, equivalence limits (EL), and VeRUS. Each point represents a candidate RI consisting
of a lower (Y-axis) and upper (X-axis) limit. Axes are scaled linearly to the percentile values of the simulated distribution. Colors indicate the probability of
RI verification (binomial test) or the fraction of verified RIs estimated from simulated test sets (ELs, VeRUS). Red lines mark the ‘true’ reference limits.
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methods like refineR and both are capable of rejecting
inappropriately wide candidate RIs [5, 8]. Furthermore, the
binomial test with n=20 has a particularly gradual transition
from high rates of verification to effectively 100 % rejection.
This indicates a high probability of accepting RIs as verified
that almost certainly should not be considered equivalent.
However, by increasing the sample size the transition gets

substantially less gradual (Supplementary Figure 10). In
comparison, the gradual transitions observed in ELs and
VeRUS caused by imperfect model estimation were minor. If
the refineR model would always correspond to the ground
truth, i.e., eliminating errors occurring in the estimation
step, it would result in perfectly sharp transitions (Supple-
mentary Figures 4–7).

Figure 3: Comparison of RI verification methods: CLSI binomial test, equivalence limits (EL), and VeRUS. Each point represents a candidate RI consisting
of a lower (Y-axis) and upper (X-axis) limit. Axes are scaled linearly to the percentile values of the simulated distribution. Colors indicate the probability of
RI verification (binomial test) or the fraction of verified RIs estimated from simulated test sets (ELs, VeRUS). Red lines mark the ‘true’ reference limits.
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However, there is no universally accepted definition to
what degree RIs are allowed to differ to be considered
equivalent. Like any statistical test, the verification process
is ultimately a compromise between acceptable false posi-
tive and false negative rates. As RIs are guiding clinical de-
cisions, the ideal verification method would maximize the
rejection of RIs supporting adverse decisions with respect to
clinical outcome and accept RIs that, while differing from the
theoretical optimum, maintain clinical utility. These con-
siderations require biomarker-specific rules depending on
the clinical significance of each biomarker, which is beyond
the scope of this paper.

In contrast, the methods for RI verification compared in
this study apply generic rules for acceptance independent of
the biomarker to be evaluated. The CLSI binomial test is
defined purely statistically. ELs are derived from the concept
of permissible imprecision [16], while VeRUS relies on UMs

that are based on the uncertainty of sampling generally
accepted for establishing RIs with the nonparametric direct
approach [5].

As UMs are conceptually derived from CIs, it should be
noted that while non-overlapping CIs indicate a statistically
significant difference, overlapping CIs do not imply equiva-
lence with the same strength as a formal hypothesis test.
Achieving this level of significance may require that the UM
for each reference limit includes the point estimate of the
corresponding reference limit [25]. This more stringent
acceptance criterion results in a much narrower range of
verified candidate RIs compared to the CLSI binomial test
(Supplementary Figures 8, 9). Conversely, the acceptance
criterion of overlapping UMs yields a similar range of veri-
fied upper and lower limits as the CLSI binomial test, while
also rejecting RIs that are too wide (Figure 2; Supplementary
Figures 2, 4, 6). These findings suggest that VeRUS, at its
default settings, serves as a reasonable tool for verifying RIs.

In the common case that only the limits of the candidate
RI are available but no additional distributional informa-
tion, VeRUS assumes a shared distributional shape (λ and δ)
of the candidate and local reference distributions. It is
advisable to assess whether this modeling choice is appro-
priatewithin the respective context. The underlying premise
is that a biomarker’s fundamental distribution shape is
likely primarily governed by physiological factors, which
should be conserved between the comparable populations
required for RI transfer [5]. In contrast, inter-laboratory
variations in analytical methods and preanalytical pro-
cesses, e.g., specimen collection, transportation, and
handling,manifestmore directly as changes in µ and σ. Thus,
this data-driven approach of inferring the shape from the
local data may be more plausible than the common practice
of assuming a Gaussian or log-normal distribution for all
biomarkers when no additional information is available [16,
17, 23].

The universal acceptance criteria compared in this
study might not be the perfect choice for every biomarker.
For example, the defaults of VeRUS are based on the
approximation of the 90 % CIs of the nonparametric method
of establishing RIs, using 120 samples. However, this sample
size is recognized as potentially inadequate for establishing
RIs for highly skewed – e.g., log-normal – distributions, often
yielding excessively wide upper CIs [5, 15]. This inherent
distributional property is also mirrored by VeRUS that
directly applies the n=120 nonparametric uncertainty via
UMs resulting in the aforementioned impractically narrow
UMs around the lower reference limit and extensively wide
UMs around the upper limits (Supplementary Figures 3, 7).
Hence, the default n=120 assumption itself might be subop-
timal for verifying certain highly skewed biomarkers

Table : Fraction of test cases in which a candidate RI is verified. Lower
percentages are better for categories “too wide” and “too narrow”,
higher values are better for category “correct/true”.

Biomarker Candidate RI
[Percentiles]

Category Percentage of verified
test cases

Binomial
test

ELs VeRUS

AST [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .

Ca [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .

FT [., .] Too narrow . . .
[., .] Correct/true .  

[., .] Too wide  . .
GGT [., .] Too narrow . . .

[., .] Correct/true . . .
[., .] Too wide  . .

Hb [., .] Too narrow . . .
[., .] Correct/true .  .
[., .] Too wide  . .

IgE [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .

LACT [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .

LDH [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .

TSH [., .] Too narrow . . .
[., .] Correct/true . . .
[., .] Too wide  . .
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depending on clinical considerations, although VeRUS’s asym-
metry correction mitigates the most extreme effects. Recog-
nizing the issue of excessively wide upper CIs in the context of
RI establishment, larger sample sizes are recommended for
biomarkers with skewed distributions [5, 15]. Importantly,
VeRUS is a flexible approach allowing users to adjust the pa-
rameters used for UM calculation including the underlying
sample size or the width of the approximated CIs (see Table 1).
This flexibility of VeRUS allows for adaptation of the verifica-
tion stringency to better suit specific biomarker characteristics
or differing levels of required clinical certainty.

Building upon its flexibility, VeRUS can be extended to
quantify the similarity between two RIs. The UMs are defined
as the approximate CIs of the population quantiles for a given
sample size. Consequently, larger sample sizes lead to smaller
UMs and vice versa. The degree of similarity between the two
RIs can be quantified by the maximum sample size for which
all corresponding UMs of the two RIs overlap.

Limitations

Although VeRUS and ELs can be applied with RIs, deter-
mined directly or indirectly, they serve only as a practical
alternative to the binomial test when used in conjunction
with indirect methods. Consequently, the practicality of
VeRUS and ELs depends on the accurate estimation of dis-
tribution parameters, which is fundamentally linked to the
quality of the input data [13, 20]. In our analysis we used test
sets from RIbench to simulate a wide range of real-world
scenarios. However, simulated data sets can never account
for all possible scenarios. For example, the non-
pathological distributions are modeled as Box–Cox trans-
formed normal distributions, which may not accurately
represent all biomarkers [19].

Additionally, in practice it is often ambiguous whether
the distribution of a biomarker is most accurately repre-
sented by a model of a one or two-parameter Box–Cox
transformed normal distribution, which may add uncer-
tainty to the estimation of model parameters. Furthermore,
we restricted the RIbench test sets to those including a
maximum fraction of 20 %pathological data and aminimum
of 1,000 samples. This level of quality and quantity of input
data may not be achievable in all real-world scenarios.
Nevertheless, we believe a sufficient amount of data can be
realistically acquired in most situations where the binomial
test is currently applied. In most cases, the appropriate
quality of data can be ensured, and an appropriate model
can be selected by following the practical suggestions pro-
posed by Ammer et al. [13]. While our simulations may not
encompass all real-world complexities, they provide

valuable comparative insights into the characteristics of
VeRUS, the CLSI binomial test, and ELs, which is only
possible with a simulation-based evaluation.

Conclusions

In this study, we introduced VeRUS, a novel method for
verifying RIs, and compared it to the CLSI binomial test
and ELs. Since VeRUS and ELs make use of already avail-
able routine data, they are substantially less resource
intensive than the binomial test. As no collection of
reference samples is required, these methods enable the
verification of RIs in scenarios where RI verification is
often restricted, such as in resource-limited settings, for
highly partitioned RIs or in pediatrics. Our analysis
revealed that VeRUS exhibited robust statistical properties
while verifying fairly consistent ranges of candidate RIs.
Removing the need for sample collection, its consistency
and flexibility make VeRUS a valuable tool for regular RI
verification.
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