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Abstract: Analytical performance specifications (APS)
based on outcomes refer to how ‘good’ the analytical per-
formance of a test needs to be to do more good than harm to
the patient. Analytical performance of a measurand affects
its clinical performance. Without first setting clinical per-
formance requirements, it is difficult to define how good
analytically the test needs to be to meet medical needs. As
testing is indirectly linked to health outcomes through
clinical decisions on patient management, often
simulation-based studies are used to assess the impact of
analytical performance on the probability of clinical out-
comes which is then translated to Model 1b APS according
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to the Milan consensus. This paper discusses the related key
definitions, concepts and considerations that should assist
in finding the most appropriate methods for deriving Model
1b APS. We review the advantages and limitations of pub-
lished methods and discuss the criteria for transferability
of Model 1b APS to different settings. We consider that the
definition of the clinically acceptable misclassification rate
is central to Model 1b APS. We provide some examples and
guidance on a more systematic approach for first defining
the clinical performance requirements for tests and we also
highlight a few ideas to tackle the future challenges asso-
ciated with providing outcome-based APS for laboratory
testing.
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Introduction

In 2014 in Milan, the 1st Strategic Conference of the European
Federation of Clinical Chemistry and Laboratory Medicine
(EFLM) was dedicated to a single topic on how analytical
performance specifications (APS) should be defined to guide
various stakeholders involved in the delivery of laboratory
service. As a result of the meeting three non-hierarchical
models were proposed to replace the Stockholm criteria
released in 1999: Model 1 APS based on outcomes, Model 2
APS based on biological variation and Model 3 APS based on
the state of the art [1]. The Milan consensus group has also
recognised the importance of the pre- and postanalytical
phases of testing and encouraged users to expand quality
specifications to the total testing process [1].

In this paper we focus on Model 1 APS and the related key
definitions, concepts and considerations that should assist in
finding the most appropriate methods for deriving APS which
contribute to improved laboratory service that delivers pa-
tient benefit. We also review published methods for Model 1
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APS and discuss the current status and future challenges of
defining outcome-based APS for laboratory tests.

Key definitions and concepts

According to the Milan consensus, “APS are criteria that
specify (in numerical terms) the quality required for
analytical performance in order to deliver laboratory test
information that would satisfy clinical needs for improving
health outcomes” [1].

To satisfy clinical needs and improve health outcomes
through laboratory testing, laboratory professionals gener-
ally tend to believe that tests that perform better analytically
may lead to better patient outcomes. However, this is only
true, if the better performing tests 1/improve the clinical
performance of the test: ie., they increase the rate of
appropriate diagnoses and decrease the rate of missed di-
agnoses; and 2/this improves the clinical effectiveness of
management decisions: i.e., they support appropriate treat-
ment selection [2—4]. In the context of the above definition of
APS, the primary focus is clinical performance to satisfy
clinical needs; other health care related organisational or
economic outcomes such as test safety, accessibility, conve-
nience, turn-around time and costs may be important me-
diators for health outcomes but are not primary
considerations and can be assessed separately [4].

To further dissect the actual meaning of the Milan
definition, APS refer to how ‘good’ the analytical perfor-
mance of a test needs to be to do more good than harm to the
patient. For answering this question, a few more key con-
cepts need clarification. How can we determine what ‘good’
analytical performance is? At this point it is important to
highlight the difference between analytical performance
goals and analytical performance requirements. The former
is more aspirational in terms of the quality we ideally would
like to achieve if we had better and more advanced tech-
nology; whilst analytical performance requirement is more
of a pragmatic term to describe the analytical quality we
must/should and can realistically achieve with existing
technology. In the literature these two types of ‘good’ are
often used interchangeably under the umbrella term of APS
and that can lead to confusion by end users.

The other key concept or question is to whom ‘good’ is
good enough. Analytical performance specifications are
used by many stakeholders, including the IVD industry, the
regulator, the health care purchaser, accrediting bodies, the
external quality assurance (EQA) provider, the medical
laboratory, the clinical staff including clinical guideline
groups, and ultimately and indirectly the patient. The pur-
pose of the APS for each stakeholder might be somewhat

Horvath et al.: Outcome-based analytical performance specifications —— 1475

different and currently they all use different methods or
criteria for defining what ‘good’ analytical performance
means to them.

The relationship between the analytical and clinical
performance of tests is reciprocally interdependent. By
clinical performance/clinical validity we mean the ability of
a test to provide information for its intended use about a
health condition or state of interest in the relevant popula-
tion [5]. This includes diagnostic accuracy (ability to
correctly identify whether or not a condition is present; e.g.
sensitivity, specificity, negative and positive predictive
values) and prognostic accuracy (ability to predict whether
or not an event will occur in the future; e.g. risk classifica-
tion, concordance or c-statistic). Analytical performance of a
measurand affects its clinical performance. However,
without first setting the clinical performance requirements,
it is difficult to define how good analytically the test needs to
be to achieve the desired clinical performance. The clinical
performance requirements may vary for the same test
depending on how and where it is used and how its decision
limit is established; e.g. for a triage test to rule out a condi-
tion, the test needs to have a cut-off that offers the highest
possible diagnostic sensitivity; for diagnosis the test needs to
have a cut-off that offers high specificity; or for prognosis a
cut-off value can be set at a clinically significant or critical
risk limit at which more intensive treatment or change in
managing the condition is required.

According to the cyclical test evaluation framework
proposed by our group in an earlier publication [6] there is
an interplay between how good analytically a test is and how
it can screen, diagnose, prognose or monitor a condition in a
certain population. In other words, how good its clinical
performance is to achieve the best outcome for patients.
Crucial to all this interplay is the clinical pathway, i.e. how a
test is used in making decisions about the management of
the patient, which then more directly influences the patient’s
health outcome. Thus, the link between testing and health
outcomes is almost always indirect [7] and is dictated by the
clinical pathway, and the purpose and role and the signifi-
cance of the test in clinical decision making [6].

Due to this indirect link, high quality analytical perfor-
mance potentially leading to higher clinical performance by
itself does not lead to better clinical action or patient
compliance or more effective treatment and improved
health outcomes. For example, if a test with better analytical
quality and better clinical performance is applied to the
wrong patient or clinical scenario, or at the wrong time in
the course of treatment, then there will not be higher ther-
apeutic success or better health outcomes. On the other
hand, analytically less well performing tests that play a small
part in a complex clinical pathway may not necessarily lead
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to adverse or unfavourable outcomes [4]. Sometimes tests
with relatively inferior analytical or clinical performance,
but that are accessible in a rural or remote or under-
resourced setting may achieve better health outcomes than
better performing tests only offered in a central laboratory
far removed from patient care. Point of care tests are an
example, where less stringent APS are used [8]. Timely
(albeit poorer quality) results may avoid irreversible patient
harm due to delayed treatment, or loss to follow-up. This
complexity makes setting universal APS that meet every
stakeholder’s medical needs particularly hard and compli-
cated, if not impossible, or even counterproductive [4]. This
again highlights the importance of understanding how a test
is used in practice and what the consequences of testing are
to the patient.

How can analytical performance
specifications be developed
according to Milan Model 1?

Model 1a APS can be addressed by clinical studies, ideally
diagnostic randomised controlled trials (RCTs), that directly
look at the impact of differing analytical performance on
clinical outcomes. These types of RCTs are as yet unavailable
and aspirational, so most people turn to Model 1b indirect
(simulation-based) approaches that assess the impact of
analytical performance on the probability of clinical out-
comes by investigating the impact on medical decisions for
patient management (see details below; [9]) as intermediates
to patient health outcomes [2].

Most Model 1b studies use simulation modelling of the
impact of analytical imprecision and bias on patient classi-
fication, or how medical decisions on, for example drug
dosing [10], or treatment selection or advice could be
impacted. Smith et al. have systematically reviewed the
literature for these indirect approaches by investigating how
they assessed the impact of test measurement uncertainty
(by their definition and in frequency order it included
random, systematic and total analytical error) on down-
stream clinical performance, and operational, and economic
outcomes [11]. Fifty four percent of published studies
investigated tests that were used for monitoring, 42 % for
diagnosis or screening, and 9 % for prognosis across 4 clin-
ical topics of diabetes mellitus, cardiovascular disease, can-
cer, and metabolic or endocrine disorders. They found
various indirect, mostly statistical approaches in the litera-
ture; e.g. for HbAlc that used distributional analysis [12]
or regression analysis [13]; for glucose, an error model
simulation [14] and decision analytic models [15]; for

DE GRUYTER

aminoglycoside antibiotics, error grid/contour plots [10]; and
for calcium, cost curve analysis [16]. Another approach, most
commonly used in health technology assessment, is the so-
called linked evidence approach that uses systematically
reviewed evidence on diagnostic accuracy of a medical test
and investigates its impact on clinical decision making and
on the effectiveness of consequent treatment options [2, 17,
18]. Several studies linked the impact of improved impreci-
sion to downstream outcomes, via a Markov cost-
effectiveness model estimating, for example, the impact of
glycaemic rates on cardiac events, and subsequent mortality
and quality-adjusted life-year [19].

The review of methods by Smith et al. [11] has also
identified a common analytical framework underpinning
the various methods. It consisted of 3 key steps: (a) assign-
ment of “true” test values; (b) calculation of measured test
values (incorporating uncertainty due to bias and impreci-
sion); and (c) calculation of the impact of discrepancies be-
tween the true and measured value on specified outcomes.
Most studies suffered from defining the ‘true’ values of a
measurand from empirical data (that includes bhias and
imprecision) or simulated data (which are not from any real-
life source). Assessing bias would be most ideal using
commutable (quality assurance) materials against a target
that was set by a fully traceable reference measurement
procedure. However, assessing the real impact of deviation
from the ‘true’ value that can lead to misclassification in real
life should be done against the actual method, including its
analytical and preanalytical conditions, that was used to
establish the clinical decision limit around which modelling
of misclassification is investigated. Therefore, appropriately
conducted correlation studies on patient samples against a
carefully chosen reference are more suited for such
modelling as these give a more realistic assessment on the
impact of bias and imprecision on classification rates around
guideline driven decision limits. Another problem with data
sources used in modelling studies is that due to method
changes and lot-to-lot variations the modelled analytical
errors also vary over time and some methods that were used
when certain decision limits were established are no longer
available with the advancement of technology. Therefore,
local transferability of data coming from such modelling
studies should be critically assessed.

The majority of these simulation models have no direct
evidence on the true impact of the modelled misclassifica-
tion on medical decisions and consequent patient health
outcomes. The clinician always interprets the result in the
context of other specific clinical and diagnostic information
and weights the strength of the abnormality found.
Borderline results are not considered as strongly as marked
abnormalities and in the absence of borderline zones, or
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comments that grade the abnormality, many of the simula-
tion studies are naive imitations of the more complex clinical
decision making. Given that clinicians often use laboratory
tests as adjuncts in their decision making, simulation models
most probably overestimate the real-life impact of tests on
patient well-being. For realistic Model 1b APS, the assump-
tions coming out of modelling therefore need to be tested in
new studies using risk assessment or clinical audit or other
forms of outcome assessment that can provide clinical evi-
dence about the true consequences to patients.

To illustrate the complexity of deriving Model 1 APS, we
have looked at the example of HbAlc [20] as one of the
measurands that was allocated to Model 1 of the Milan
consensus [21]. HbAlc plays an important role in and has
well-defined decision limits for screening and diagnosing
diabetes as well as for monitoring the progression and
response of patients to treatment. We have reviewed pub-
lications that investigated how good the HbA1c test needs to
be to meet medical needs [20]. We extracted the APS from 18
papers that used various Milan models. Eight of these papers
used a Model 1b study of which 5 used simulation modelling,
2 statistical derivation and one used an international clini-
cian survey that investigated at what level of change in
HbA1c result clinicians would alter their management de-
cision, and translated that to an APS. Three of the 8 Model 1b
studies provided no numerical APS and the rest provided
APS for analytical coefficient of variation (CVa) that ranged
from 2 to 9 per cent [20]. Most papers that used statistical
approaches or simulation models came up with an analytical
performance specification for CVa between 2 and 5 per cent
or simply provided the magnitude of misclassification rates
at various levels of imprecision and bias or assumed that
bias was zero. The one international physician survey from 6
countries used a case scenario to assess at what change in the
HbAlc result general practitioners would change their clin-
ical management when diagnosing or monitoring diabetes
mellitus. Using their responses as the clinically significant
difference the authors calculated CVa using the reference
change value (RCV) concept [22] and came up with much
higher APS for CVa of up to 9 per cent at 95 % probability and
even a higher figure of CVa of 25 per cent at 80 % probability
than the earlier mentioned approaches [9]. In that study it
was also interesting to see that clinicians tolerated far less
analytical error when HbA1lc results were increasing, i.e. the
patient was deteriorating, than when the HbAlc was
decreasing, and patient was improving [9]. Given these
published figures, it is truly hard for any stakeholder to
decide which analytical performance is good enough for
successful management of diabetic patients. Nevertheless,
these findings also indicate that in some scenarios clinicians
may tolerate more analytical error than what comes out of
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statistical models. An important recent contribution to this
type of analysis comes from assessing the contribution of
non-glucose effects on HbAlc, e.g. such as average red cell
life-span [23]. This approach recognises the additional
complexity of unknown variation in the relationship be-
tween the measured result and the clinical classification.
This raises the importance of understanding the patho-
physiology of the measurands and the potential to over-
emphasise analytical performance when there are other
unaccounted factors for variation in the results.

Clinically significant change approach

Clinically significant difference in the test result corresponds
to a change in disease risk, prognosis, or response to treat-
ment that would mandate a change in the patient’s man-
agement. The most frequently cited APS for HbAlc are based
on the clinically significant difference between consecutive
HbAlc results. This approach uses the reference change
value (RCV) calculation that describes the statistical likeli-
hood of significant differences in serial test results from an
individual [22]. The current recommendation, based on cli-
nicians’ opinion and studies that evaluated the effectiveness
of new treatments in terms of the degree of HbAlc change, is
that a 0.5 % (NGSP unit) or 5 mmol/mol (IFCC unit) change of
HbA1c is clinically significant both at the 6.5 % or 48 mmol/
mol diagnostic threshold and at the therapeutic decision
threshold of 7 % or 53 mmol/mol [24]. This RCV target at 95 %
probability can be accurately achieved if the intra-
laboratory CVa of the HbAlc method is 2 % [24].

Another recently published study also used a statistical
approach based on guideline driven critical difference be-
tween consecutive HbAlc results, combined with consider-
ations given to intraindividual biological variation (CVi) and
common preanalytical errors, to arrive at a ‘clinically
acceptable analytical performance specification’(CAAPS)
[25]. They provided CAAPS for both diagnostic (4.3 % in IFCC
units and 2.6 % in NGSP units) and monitoring purposes
(2.4 % in IFCC units and 1.6 % in NGSP units) at the above
clinically relevant decision limits of HbAlc. Out of the two
sets of criteria they recommended using the stricter moni-
toring criteria as a generic CAAPS for HbAlc. To achieve this
CAAPS the authors recommended repeated sampling for
HbA1c measurements for the diagnosis of diabetes mellitus
[25].

Similar approach was used by Kilpatrick et al. to
establish pragmatic APS for beta-hydroxybutyrate for the
diagnosis and monitoring of diabetic ketoacidosis [26].
They defined two clinical performance requirements for
the beta-hydroxybutyrate test, and that the analytical
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performance of the assay should be good enough to reliably
distinguish 1/four predefined diagnostic categories based
on beta-hydroxybutyrate concentrations, and 2/a beta-
hydroxybutyrate RCV of 0.5 mmol/L in response to therapy.
In their study, similarly to Rotgers et al. [25], they also
defined a significantly higher allowable CVa of <21.5 % (at
bias assumed to be zero) for diagnostic discrimination be-
tween the 4 diagnostic categories at >99 % certainty than
for meeting the above specified RCV criterion in the
monitoring scenario. According to this study, to reliably
detect a 0.5 mmol/L fall in beta-hydroxybutyrate concen-
tration from a high value of 3 mmol/L the CVa of the assay
needs to be 5, 7 and 9% at 99-95-90% probability,
respectively [26].

The strength of the approaches using clinically signifi-
cant difference as a clinical performance specification,
compared to some other statistical methods, is that it is
pragmatic and more realistically reflects on what clinicians
would do if they followed guidelines. This approach often
combines Model 1 and 2 by taking into account other
inherent variations such as CVi and common preanalytical
variations that are rarely considered in most APS published
so far. The weakness of this approach is that the critical
difference that sets the overall error budget from which the
CVa is derived after subtracting variation components such
as CVi or preanalytical variation is often based on clinical
consensus or opinion of experts that is already influenced by
the state-of-the art analytical performance of the measur-
and. This is, however, the case for all model 1b approaches
since experts usually decide what an acceptable rate of
misclassification is or how much difference between results
is clinically significant for them to take action, and such
judgment is always influenced by current standard of
practice and current experience with test performance. This
also implies that measures such as CAAPS, in fact, combine
information from all 3 Milan models.

APS based on review of the literature

Several papers have been published recently that provide
desirable and minimum standard measurement uncertainty
(MU) figures as a measure of APS for a large number of
common laboratory tests [27, 28]. For HbAlc the authors
recommend using a desirable MU of 3 % that would lead to
2 % misclassification of diabetes and a minimum MU of 3.7 %
that would lead to 3.7 % misclassification based on a paper
by Nielsen et al. [29]. The limitation of such recommendation
is that selection of one particular study for the APS may lead
to selection bias as various modelling approaches have
already come up with variable misclassification rates for the
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same measurand, and it is also unclear what misclassifica-
tion rate is acceptable to various users of the APS.

Limitations of indirect approaches
for Model 1b APS

For the moment we do not yet have accepted methodology
for deriving Model 1b APS and published studies provide
heterogeneous data that are difficult to synthesize. To assess
the quality of such studies, we do not have a critical appraisal
and meta-analysis tool that could be used to generate esti-
mates for APS from papers using indirect approaches. The
APS provided in most papers assume that long-term bias of a
method is incorporated in the MU estimate and that any bias
in test results has been controlled and preferably eliminated.
This assumption does not realistically reflect routine labo-
ratory services and already known biases between methods.

An important limitation of selecting APS from indirect
studies is that they model misclassification in a certain
population that may not be transferable to another popula-
tion or setting (see further discussion of the impact a disease
prevalence and spectrum later). Furthermore, the true
impact of misclassification rates presented in various
modelling studies has not been assessed in practice or in a
clinical setting that differs from the study population and
whether the APS derived from a certain study are clinically
suitable or required. Therefore, most published Model 1b
APS are based on untested assumptions, and some could be
too stringent, others potentially too loose.

Hyohdoh et al. conducted a study that aimed to more
realistically assess when physicians action a test result in
real life using a statistical approach to analyse 65 million
laboratory test data from 99,000 patients and ordering pat-
terns in medical records [30]. Using repeat test intervals as
indications for considering a test result abnormal enough to
warrant further monitoring or actions and linking labora-
tory results to therapeutic decisions of initiating the pre-
scription of specific medications, they derived so-called ‘real-
world clinical decision intervals’ [30]. These ‘real-life’ deci-
sion intervals could also be translated to clinically accept-
able deviations of laboratory results from reference
intervals or decision limits — in other words values that
could be used similarly to the clinically significant difference
mentioned above, but that triggered action in real life, rather
than being based on a few experts’ opinion. This approach is
linked to the concept of the clinical importance of misclas-
sification. For example, wrongly classifying a patient with an
HbA1c of 6.6 % as not having diabetes is not as important as
to do so for a patient with a value of 7.2 %, where treatment
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benefit is more likely. Clinical outcome studies also have
uncertainties about the decision points, and “staged”
misclassification rates (e.g. likely minor, moderate, major
clinical effects) may be more relevant than a total number or
proportion of patients misclassified.

Irrespective of the approaches used so far, the current
status of Model 1b APS is that most assess the theoretical
impact of imprecision and bias (or sometimes bias is
assumed to be zero) on clinical classification. Often the
published models do not directly translate to APS; they
simply inform about potential classification errors at a
certain degree of imprecision and bias in a certain modelled,
often hypothetical population which may not always be
comparable to the local population in which the APS is
supposed to be used. Therefore, two key questions remain:
1/How much analytical error is tolerable without severely
affecting disease classification, management decisions and
health outcomes? 2/How transferable these estimates are to
various patient populations and settings with prevalence of
disease or disease spectrum that differs from the studies
which modelled the impact?

Defining minimum acceptable
clinical performance

What can be considered a clinically acceptable misclassifi-
cation rate is the central component of Model 1b APS. To
answer this question, we need clinical consensus and, even
more importantly, we need to understand how good a test
needs to be in terms of clinical performance before we can
decide how good it needs to be analytically to meet those
clinical performance expectations.

Target product profiles (TPPs) for medical tests would
be one good example of how clinical performance re-
quirements could be set a priori which is more often done for
new biomarkers. Clinical performance specifications are a
set of criteria that quantify the clinical performance a new
test must attain to allow better health outcomes than current
practice [5]. These describe the necessary properties of a
new test to address an unmet clinical need. They often start
with considering the end, i.e. the health outcome of testing.
They are usually produced by regulators or health care
purchasers or public health institutions to guide manufac-
turers in the development of ‘fit for purpose’ tests [31].

Most TPPs for diagnostic tests were developed for in-
fectious diseases. For example, in the UK the Medical and
Healthcare products Regulatory Agency (MHRA) set TPPs for
point of care tests for the detection of acute SARS-CoV-2
infection in people with or without symptoms. The published
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TPP was based on the consensus of what is ‘minimally
acceptable’ in the opinion of the IVD industry, healthcare
professionals and medical device regulators in the UK. They
have set desirable and acceptable clinical performance
criteria for diagnostic sensitivity at 295 and >80 % for ruling
in the infection, respectively; and for diagnostic specificity
at 299 and 295 % for ruling out the infection, respectively.
For more details the reader is referred to Target Product
Profile: Point of Care SARS-CoV-2 detection tests — GOV.UK
(www.gov.uk). One may argue that these TPPs also suffer
from subjectivity of expert opinion and lack of agreed and
transparent methodology for setting clinical performance
specifications. Often, the clinical performance specification
is set arbitrarily by statistical ‘convention’ around 80, 90, 95
and 99 % statistical probability or confidence.

The paper by Lord et al. provides further guidance on a
more systematic approach for defining test performance
that meets clinical need [5]. Using decision analytic princi-
ples, this paper provides a 5-step practical guide for devel-
oping minimum clinical performance requirements that
consider the trade-off between the benefits and harms of a
test and use net benefit as a measure [32]. Unquestionably,
the trade-off between benefit and harm is a value judgement
and therefore it also requires expert consensus. This judg-
ment may also vary between health-care settings due to
economic and organisational considerations. As pointed out
earlier, for meaningful estimates of clinical performance,
diagnostic accuracy of a test and the consequences of true
positive and false positive or true negative and false negative
tests need to be assessed in a population and in a well-
defined clinical pathway that closely reflects how the test is
intended to be used in practice [5]. One classic and widely
known example for such value judgment has been described
by Than et al. [33]. Emergency medicine physicians from the
US, Canada, Australia and New Zealand were surveyed at
various professional conferences and internally for the
acceptable risk of false negative Troponin results when pa-
tients present with symptoms of chest pain in the emergency
department. The consequence of a false negative Troponin
result was defined as a missed major adverse cardiac event
(MACE) within 30days after discharge. One thousand
twenty-nine clinicians responded to the survey and 40 %
accepted 1% or higher false negative result. Fifty five
percent accepted 0.5 % or higher miss rate. The investigators
used these data to conclude “clinicians may expect diag-
nostic strategies for the assessment of suspected ACS to
achieve a sensitivity of 99 % or higher for AMI or other
MACE.”[33].

This leads to the next key question: How transferable
these estimates are to different patient populations and
settings with prevalence of disease or disease spectrum that
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differs from the studies which modelled the impact of
analytical performance on classification rates? This is an
often-overlooked aspect of modelling studies, even though
we have clear evidence from multiple studies that disease
misclassification rates depend on the prevalence/pretest
probability of the condition. In addition to the impact of
prevalence on the positive and negative predictive value of a
test, sensitivity and specificity may also vary. For example,
with increasing prevalence, lower specificity and higher
sensitivity have been observed due to differences in disease
spectrum in studies [34-36]. From the above it follows that
APS apply to the actual population and the diagnostic
pathway in which the clinical performance requirements
were derived, and the comparability of the local and pub-
lished population and clinical pathway need to be assessed
before using the APS.

Analytical performance
specification is a moving target

The various aspects mentioned above should be carefully
considered before adopting any APS based on Model 1b
studies. As already emphasised, APS should respond to clin-
ical needs, but the clinical performance requirements are also
highly dependent on patient population, disease spectrum
and prevalence and existing practice in addition to many
other pragmatic organisational, geographical, economic and
sometimes societal considerations that often influence med-
icallaboratory practice. Therefore, APS cannot always be fully
harmonised or rigidly applied without taking into account the
priorities and preferences of the local health care system.
Analytical performance specifications also have constantly
moving targets not only because of rapid technological de-
velopments in the laboratory field but also due to changes in
the ways conditions are managed and treated with newer
medications which alter the needs and expectations of clini-
cians and patients. One good example to illustrate this point is
the APS for LDL-cholesterol that is still the recommended pri-
mary target of lipid lowering therapy [37]. According to the
European Society of Cardiology (ESC) and European Athero-
sclerosis Society (EAS), the treatment goals for patients at very
high risk and high risk of atherosclerotic cardiovascular dis-
ease are <1.4 mmol/L (<55 mg/dL) and <1.8 mmol/L (<70 mg/dL),
respectively [38]. The last APS of CVa <4 %, bias <4 % and total
error <12 % were developed by expert consensus of the Na-
tional Cholesterol Education Program (NCEP) for higher
LDL-cholesterol decision limits that guided on-treatment goals
and initiation of treatment at 2.6 mmol/L (100 mg/dL) and
49 mmol/L. (190 mg/dL), respectively [39]. Cole et al. have
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recently demonstrated by modelling that using the NCEP APS
for risk stratification based on calculated LDL-C, up to 10 % of
cases would be misclassified into a different risk group,
potentially leading to mismanagement. These risk groups
ranged from LDL-cholesterol of <1.8 mmol/L (<70 mg/dL) to
>4.9 mmol/L (>190 mg/dL). To reduce the rate of inappropriate
risk stratification, authors proposed the adoption of tighter APS
by reducing the NCEP allowable bias to <3 % and the impre-
cision to CVa <3 %, which, according to the state-of-the-art, are
currently achievable by most lipid methods [40, 41]. They
modelled the misclassification rate after lowering the APS and
found a modest reduction by up to 10 % and, unsurprisingly,
that reduction in proportional bias had a larger impact than
reduction in imprecision on the number of cases misclassified.
Again, stricter APS seem to be justified if the true misclassifi-
cation rate is high, but it would be good to have firmer evidence
from clinical practice whether improved analytical perfor-
mance would truly lead to better patient management and
outcomes.

Future challenges

Given all the complexities and shortcomings of existing
methods we need to recognise that we still have significant
gaps in our knowledge and lack the tools for better defining
Model 1b APS that are universally implementable. Quoting
Wytze Oosterhuis [42]: “The practice of the clinical labora-
tory is such, that it is impossible to describe performance
specifications in a mathematically perfect model, and all
models will be based on assumptions and can only approach
complex reality. The challenge is to reach consensus on a
model that is both useful and as less flawed as possible.”
How should we fill the gap until we have better studies,
least flawed methodologies and consensus that tell us how
good we need to be? The below is mostly personal opinion
and we raise these points to generate more discussion and
broader international collaboration of key stakeholders, and
facilitate further research in this area. As Model 1b APS
should respond to clinical needs, one of the first steps is that
we as laboratory professionals start translating our analyt-
ical performance to clinical performance metrics and apply
risk-based approaches [43] in order to quantify the impact of
potential misclassification in our local population. Such an
activity should include the assessment of the combined
impact of analytical, biological and preanalytical variations,
by defining and reporting a grey zone around discrete de-
cision thresholds, and facilitate repeat testing, when neces-
sary, before a diagnostic or treatment decision is made.
Currently we already have a few published and freely
available but as yet unvalidated statistical and interactive
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tools [44-46] and a large amount of real-life laboratory data
that could help us inform our clinicians, guideline de-
velopers and the IVD industry about the impact of analytical
performance on test accuracy and clinical decisions. These
first steps would also offer an opportunity for more patient
focused conversations between laboratorians, clinicians and
the IVD industry and for a more concerted and globally
better coordinated effort to improve the safety and quality of
laboratory service in a way that better meets patients’
medical needs.
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