Lenka Kujovská Krčmová\*, Lenka Javorská, Kateřina Matoušová, Petr Šmahel, Mikuláš Skála, Michal Kopecký, Chaweewan Suwanvecho, Nikola Přívratská, Dorota Turoňová and Bohuslav Melichar

# Evaluation of inflammatory biomarkers and vitamins in hospitalized patients with SARS-CoV-2 infection and post-COVID syndrome

https://doi.org/10.1515/cclm-2023-1297 Received November 15, 2023; accepted February 6, 2024; published online February 21, 2024

#### Abstract

**Objectives:** Concentrations of neopterin, kynurenine and kynurenine/tryptophan ratios predict prognosis and the need for oxygen therapy in patients hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aims of the present study were to evaluate the changes of these biomarkers early in the course of infection, the association with the prior coronavirus disease (COVID-19) vaccination and therapeutic administration of Anti-SARS-CoV-2 monoclonal antibodies, investigation of other potential biomarkers including neuropilin, 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine in patients hospitalized with SARS-CoV-2 infection and an assessment of these biomarkers and vitamins A, E and D in patients with post-COVID syndrome.

**Methods:** Urine and blood samples were obtained on the 1st to the 4th day and 4th to 7th day from 108 patients

hospitalized with COVID-19. Chromatography tandem mass spectrometry methods were used to analyse neopterin, kynurenine, tryptophan, liposoluble vitamins, and DNA damage biomarkers.

**Results:** A statistically significant decrease of neopterin, kynurenine and kynurenine/tryptophan ratios was observed on after 4th to 7th day of hospitalization, and concentrations of these biomarkers were increased in patients with poor prognosis and subsequent post-COVID syndrome. The concentrations of remaining biomarker and vitamins were not associated with outcomes, although markedly decreased concentrations of vitamin A, E and D were noted.

**Conclusions:** The concentrations of neopterin, kynurenine and kynurenine/tryptophan ratios decrease during the course of infection SARS-CoV-2 and are associated with the post-COVID syndrome. No other prognostic biomarkers were identified.

**Keywords:** COVID-19; neopterin; kynurenine; tryptophan; vitamins; post-COVID

# \*Corresponding author: Assoc. prof. RNDr. Lenka Kujovská Krčmová, PhD, Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; and Department of Clinical Biochemistry and Diagnostics, University Hospital, Sokolská 581, 500 05 Hradec Králové, Czech Republic, Phone: +420 49 5833372, Fax: +420 49 5834841, E-mail: KRCML1AA@faf.cuni.cz

#### Lenka Javorská, Kateřina Matoušová and Dorota Turoňová,

Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic. https://orcid.org/0000-0001-8283-5770 (K. Matoušová)

**Petr Šmahel**, Deparment of Infectious Diseases, University Hospital Hradec Králové, Hradec Králové, Czech Republic

Mikuláš Skála and Michal Kopecký, Department of Pneumology, University Hospital Hradec Králové, Hradec Králové, Czech Republic

**Chaweewan Suwanvecho and Nikola Přívratská**, Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic; and Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic

**Bohuslav Melichar,** Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic

#### Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can activate innate and adaptive immune responses and result in a massive inflammatory reaction later in the course of the disease. This uncontrolled inflammatory response may lead to local and systemic tissue damage [1]. The majority of individuals with coronavirus disease (COVID-19) fully recover. Based on the latest available evidence, approximately 10–20 % of people experience various mid- and long-term complaints after recovery from the initial illness [2].

Most published studies to date on post-COVID symptoms found that 50–70 % of hospitalized patients exhibit several chronic symptoms up to 3 months after hospital discharge. The British Medical Association defines a syndrome "as a set of medical signs and symptoms which are correlated with each other and associated with a particular disease" [3].

Neopterin is a well-established immune activation biomarker whose concentration is elevated in the early phase of disorders associated with inflammatory response [4, 5]. Immune system activation may lead to elevated levels of neopterin and degradation of tryptophan to kynurenine production via indoleamine 2, 3-dioxygenase, and thus, kynurenine/tryptophan ratio increase. Recent studies of COVID-19 pneumonia show a positive correlation of these analytes with other inflammatory biomarkers, e.g. C-reactive protein or interleukin-6, and with the disease severity [6-9]. In 2005, it was reported that neopterin levels in patients with severe acute respiratory syndrome (SARS) are elevated earlier than commonly used inflammatory biomarkers, such as C-reactive protein [10]. Thus, the exploration of neopterin and kynurenine/tryptophan ratio use as reliable inflammatory biomarkers, which could give similar or superior information as commonly used biomarkers remains in the forefront if research [7, 11]. Other analytes investigated include urinary 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine, which have been established as essential biomarkers of DNA/RNA damage due to the hydroxyl radical attack of the nucleobase guanine or its nucleosideguanosine [12, 13]. 8-Hydroxy-2-deoxyguanosine and 8-hydroxyguanosine levels were studied not only as important biomarkers of DNA/RNA damage during carcinogenesis, aging, or degenerative diseases but also in viral infections and pulmonary diseases [14, 15].

Vitamins are another class of substances studied with regard COVID-19. Some vitamins have been found to decrease the expression of the indoleamine 2, 3-dioxygenase gene (alpha-tocopherol), and the aryl hydrocarbon receptors gene (calcitriol-active vitamin D metabolite). Aryl hydrocarbon receptors are activated after coronavirus entry into cells and are involved in several pathological conditions [16].

Tocopherol and retinol are important antioxidants with multiple immunomodulatory effects such as lymphocyte proliferation [4]. Insufficient tocopherol intake may contribute to increased susceptibility to COVID-19 infection and may promote the severity of this disease.

Neuropilin is a co-receptor that promotes the entry of SARS-CoV-2 into the cell [17–19]. The neuropilins are presented as neuropilin-1 and neuropilin-2. Neuropilin-1 has been associated with cell proliferation, immunity, and physiological as well as pathological angiogenesis. It has also been reported that this protein plays an essential role in axon and neuronal development [20] and it may be involved in the pathogenesis of SARS-CoV-2 [21]. In the previous study, we have demonstrated that serum and urinary neopterin, kynurenine and kynurenine/tryptophan ratios predict prognosis and the need for oxygen therapy in patients hospitalized for SARS-CoV-2 infection [9].

Using laboratory data from longitudinal follow up of the same cohort of patients the aim of the present study was to evaluate the changes in inflammatory biomarkers during the hospital stay, analysis of the relation of these biomarkers with the status of COVID-19 vaccination and therapeutic administration of anti-SARS-CoV-2 monoclonal antibodies. Another aim of the study was investigation of other potential prognostic biomarkers including neuropilin, 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine in patients hospitalized with SARS-CoV-2 infection and an assessment of the above mentioned biomarkers and vitamins A, E and D in post-COVID syndrome.

#### **Materials and methods**

Samples were obtained from consecutive patients aged 18 years or older hospitalized at University Hospital Hradec Králové, Czech Republic, between November 2021 and April 2022 with COVID-19 (omicron and delta variant). The data on prognostic significance of serum and urinary neopterin, kynurenine and kynurenine/tryptophan ratio in this cohort have been reported earlier [9]. The patient characteristics are shown in Table 1. The study protocol was approved by the Institutional Ethics Committees (No 202011P04), and all patients signed informed consent.

Serum and urine samples were obtained on the 1st to the 4th day (sample 1) and 4th to 7th day (sample 2) after hospital admission, and in post-COVID patients' group we continued the sampling 3rd, 6th and 9th month after positive PCR SARS-CoV-2 test. Ultra-high performance liquid chromatography tandem fluourescence, photodiode array and mass spectrometry detection ((U)HPLC-FLD-PDA-MS/MS) methods were used to measure serum neopterin, kynurenine, tryptophan, retinol, alpha-tocopherol and 25-OH D<sub>3</sub> vitamin and urinary 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, neopterin, kynurenine, tryptophan and urinary creatinine to correct for urine dilution. Serum and urine samples were protected from light and transported to the laboratory immediately after collection. Serum neopterin, kynurenine, and tryptophan concentrations were obtained using HPLC-FLD/PDA method [22], and urinary neopterin, kynurenine, tryptophan and creatinine levels were determined using HPLC-FLD/PDA [23] and UHPLC-MS/MS method (Stationary phase Kinetex Polar C18 100  $\times$  4.6 mm, 2.6  $\mu$ m protected with security guard column Kinetex EVO C18 3 mm ID. The mobile phase was composed of 5 mmol/L ammonium formate buffer and methanol with 0.2 % formic acid (at a ratio of 65/35) with a flow rate 0.6 mL/min). Urinary 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine were measured by UHPLC-MS/MS [24]. Briefly, to urine samples the internal standard was added, and then they were filtered via 96-well filter plates, which represents a slight modification in the sample preparation procedure in comparison with above mentioned published article. Vitamins A, E, and D were analysed by HPLC-PDA and UHPLC-MS/MS method [25,26].

Neuropilin was determined by ELISA immunoassay by Biomedica Medizinprodukte GmbH (Vienna, Austria).

The values in patients who survived or died during hospitalization were compared. None of the patients was discharged with the fatal infection (i.e. all patients with terminal COVID-19 treated with palliative intent died in the hospital). The vaccinated group was classified as patients with minimally 2 doses of vaccine.

Table 1: Patients characteristics.

|                                         | Vaccinated | Not        |
|-----------------------------------------|------------|------------|
|                                         |            | vaccinated |
| n                                       | 55         | 53         |
| Male/female                             | 31/24      | 34/19      |
| BMI (median), kg/m <sup>2</sup>         | 29.30      | 27.10      |
| Age, years                              |            |            |
| Median                                  | 75         | 68         |
| Range                                   | 34-93      | 19-88      |
| Delta/omicron variant (not known)       | 27/20 (8)  | 32/18 (3)  |
| Dead, n                                 | 17         | 13         |
| Delta variant                           | 9          | 8          |
| Omicron variant                         | 5          | 5          |
| Oxygen therapy (no/yes)                 | 20/35      | 19/34      |
| Diabetes mellitus                       | 26         | 15         |
| Arterial hypertension                   | 43         | 30         |
| Cancer                                  | 17         | 8          |
| Renal insufficiency                     | 13         | 12         |
| Hepatopathy                             | 5          | 5          |
| Pulmonary disease                       | 8          | 13         |
| Cardiovascular disease                  | 27         | 19         |
| Neurological disease                    | 6          | 4          |
| Remdesivir                              | 28         | 31         |
| Administration of anti-SARS-CoV-2 mono- | 17         | 23         |
| clonal antibodies                       |            |            |
| Dexamethasone                           | 32         | 36         |
| Budesonide                              | 10         | 24         |
| Vitamin A/E/D <sup>a</sup>              | 4/4/22     | 6/8/22     |

<sup>&</sup>lt;sup>a</sup>Number of patients supplemented by vitamins during hospitalization. BMI, body mass index.

From the cohort of 108 hospitalized patients, 22 patients were followed for 3, 6, and 9 months. The patients were divided into 2 subgroups according to the presence or absence of the post-COVID syndrome defined as subjective complaints or objective findings related to the COVID-19 disease [27]. Both subgroups are characterised in Table 2.

The examination included a structured interview with a physician and a complete physical examination, and the patients underwent a complete pulmonary function test, including measurement of pulmonary diffusion, a 6-min walking test (6-MWT), and lung imaging (X-ray/ computed tomography).

Vitamin D levels were evaluated as 250H D metabolites [28-30] and results were divided into 5 subgroups:

Levels below 25 nmol/L were defined as severe deficiency, 25-49 nmol/L as deficiency, 50-74 as nmol/L mild deficiency 75-150 nmol/L as physiological range, and values above 500 nmol/L as intoxication risk.

Healthy volunteers (n=56), 31 males and 25 females, median age 44 years served to establish normal range.

#### Statistical analysis

Data were processed by NCSS (Kaysville, UT, USA) statistical software for the correlation analysis, nonparametric Mann-Whitney test, and Wilcoxon test for paired analysis were used. A p-value of 0.05 or lower was generally considered statistically significant.

Table 2: Characteristics of patients without and with post-COVID syndrome.

|                                   | No<br>post-COVID | Post-COVID |
|-----------------------------------|------------------|------------|
| n                                 | 8                | 14         |
| Age, years (median)               | 64               | 65.5       |
| Male/female                       | 5/3              | 7/7        |
| CFS (median)                      | 3                | 3          |
| BMI, kg/m <sup>2</sup> (median)   | 27               | 31         |
| Variant (delta/omicron/not known) | 4/1/3            | 10/3/1     |
| Hospitalization duration days     | 6                | 19.5       |
| (median)                          |                  |            |
| Comorbidities                     |                  |            |
| Diabetes mellitus                 | 2                | 2          |
| Arterial hypertension             | 3                | 6          |
| Cancer                            | 1                | 2          |
| Hepatopathy                       | 1                | 1          |
| Pulmonary disease                 | 2                | 3          |
| Cardiovascular disease            | 0                | 5          |
| Vaccination                       |                  |            |
| Yes/no                            | 2/6              | 7/7        |
| Therapy (during hospitalization)  |                  |            |
| Remdesivir                        | 2                | 11         |
| Anti-SARS-CoV-2                   | 2                | 7          |
| Dexamethasone                     | 4                | 11         |
| Budesonide                        | 3                | 4          |
| Oxygen therapy (yes/no)           | 3/5              | 11/3       |

CFS, clinical frailty scale; BMI, body mass index; Anti-SARS-CoV-2, anti-SARS-CoV-2 monoclonal antibodies.

#### Results

### Acute changes in inflammatory biomarkers during the hospital stay

During the course of hospitalization initial sampling on 1st to 4th day of hospitalization and subsequent sampling on the 4th to 7th day of hospitalization a statistically significant decrease of serum and urinary biomarkers (neopterin and kynurenine and kynurenine/tryptophan ratio) during the hospitalization and an increased serum tryptophan levels were observed in the whole patient cohort.

This trend was evident among survivors. In patients who died only urinary kynurenine/tryptophan ratio, serum neopterin and kynurenine/tryptophan ratio decreased, and urinary tryptophan/creatinine ratio and serum tryptophan increased significantly (Tables 3 and 4).

Studied biomarkers were also compared in the samples obtained 4th to 7th day of hospitalization in the group of survivors and patients who died, and statistically significantly high levels were observed in non-survivors in the serum (neopterin p<0.0001, kynurenine p<0.0001, and kynurenine/tryptophan p<0.0001) and in urine (neopterin p<0.0001, and kynurenine/tryptophan p<0.0168).

Table 3: Levels of neopterin, kynurenine and tryptophan in serum during hospitalization. Wilcoxon test for paired analysis was used.

|                  | Serum<br>sample, n | Neopterin, nm       | Kynurenine | , μmol/L               | Tryptophan, | , μmol/L               | Kynurenine/tryptophan<br>ratio, µmol/mmol |                        |          |
|------------------|--------------------|---------------------|------------|------------------------|-------------|------------------------|-------------------------------------------|------------------------|----------|
| Entire<br>cohort | 1st (92)           | Median/mean (range) | p<0.0001   | Median/mean<br>(range) | p=0.0002    | Median/mean<br>(range) | p=0.0019                                  | Median/mean<br>(range) | p<0.0001 |
|                  |                    | 44.46/              |            | 4.54/5.01              |             | 42.26/42.71            |                                           | 106.44/146.95          |          |
|                  |                    | 78.46 (7.45-735.14) |            | (1.68–15.47)           |             | (6.52-76.54)           |                                           | (30.23-692.77)         |          |
|                  | 2nd (92)           | Median/mean (range) |            | Median/mean            |             | Median/mean            |                                           | Median/mean            |          |
|                  |                    |                     |            | (range)                |             | (range)                |                                           | (range)                |          |
|                  |                    | 22.50/50.49         |            | 3.71/4.41              |             | 48.59/49.36            |                                           | 75.83/105.31           |          |
|                  |                    | (5.70-797.21)       |            | (1.71–20.37)           |             | (16.78–134.62)         |                                           | (31.46-535.71)         |          |
| Survived         | 1st (70)           | Median/mean (range) | p<0.0001   | Median/mean            | p<0.0001    | Median/mean            | p<0.0001                                  | Median/mean            | p<0.0001 |
|                  |                    |                     |            | (range)                |             | (range)                |                                           | (range)                |          |
|                  |                    | 34.00/58.18         |            | 4.05/4.65              |             | 44.29/43.01            |                                           | 97.88/127.55           |          |
|                  |                    | (7.45–735.14)       |            | (1.68–13.48)           |             | (15.91–76.54)          |                                           | (30.23-689.27)         |          |
|                  | 2nd (70)           | Median/mean (range) |            | Median/mean            |             | Median/mean            |                                           | Median/mean            |          |
|                  |                    |                     |            | (range)                |             | (range)                |                                           | (range)                |          |
|                  |                    | 18.84/31.26         |            | 3.35/3.87              |             | 51.20/50.26            |                                           | 62.33/86.14            |          |
|                  |                    | (5.70-544.01)       |            | (1.71–12.83)           |             | (19.75–96.56)          |                                           | (31.46-407.54)         |          |
| Died             | 1st (22)           | Median/mean (range) | p=0.0030   | Median/mean            | p=0.9133    | Median/mean            | p=0.0024                                  | Median/mean            | p=0.0475 |
|                  |                    |                     |            | (range)                |             | (range)                |                                           | (range)                |          |
|                  |                    | 107.23/142.98       |            | 6.46/6.32              |             | 36.37/35.43            |                                           | 190.55/217.99          |          |
|                  |                    | (15.36–640.04)      |            | (2.43–15.47)           |             | (6.52–54.66)           |                                           | (76.18–692.77)         |          |
|                  | 2nd (22)           | Median/mean (range) |            | Median/mean            |             | Median/mean            |                                           | Median/mean            |          |
|                  |                    |                     |            | (range)                |             | (range)                |                                           | (range)                |          |
|                  |                    | 60.13/111.67        |            | 5.98/6.37              |             | 44.70/46.49            |                                           | 120.74/175.56          |          |
|                  |                    | (12.81–797.21)      |            | (3.61–20.37)           |             | (16.78–134.62)         |                                           | (42.51–535.71)         |          |

1st to 4th day of hospitalization – 1st sample; 4th to 7th day of hospitalization – 2nd sample; the entire cohort are patients with positive SARS-CoV-2 PCR test with omicron, delta, and not defined variant. Bold value means statistically significant result (p≤0.05).

When evaluating neopterin kynurenine and tryptophan in relation to prior COVID-19 vaccination and therapeutic administration of anti-SARS-CoV-2 monoclonal antibodies no statistically significant difference was observed in the concentrations of neopterin, kynurenine and tryptophan between the vaccinated and unvaccinated patients (data not shown). The only biomarker with a statistically significantly lower level in the vaccinated group was urinary neopterin (p=0.031). As shown in Table 1, number of patients among vaccinated and not vaccinated and patients with or without oxygen therapy was comparable.

Similar comparison was made in the subgroup of patients, who were treated with anti-SARS-CoV-2 monoclonal antibodies early in the course of infection (patients only with delta virus variant), and no statistically significant differences in concentrations of neopterin, kynurenine and tryptophan at admission and during hospitalization were evident between the patients treated with anti-SARS-CoV-2 monoclonal antibodies and those who did not receive this therapy.

# **Evaluation of neuropilin and 8-hydroxy-**2-deoxyguanosine and 8-hydroxyguanosine in patients hospitalized with SARS-CoV-2 infection

Neuropilin concentrations were not statistically different between patients who died and survivors and also no difference was evident between patients with or without subsequent oxygen therapy. The median and range of serum neuropilin in the whole patient cohort were 2.075 and 0.750–5.440 nmol/L, respectively. There were no differences also in the cohort with followed post-COVID syndrome.

8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine as biomarkers of DNA and RNA damage were evaluated in urine. The concentrations were significantly increased in patients hospitalized with COVID-19 compared to control group (Table 5). No differences were observed in urinary 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine between survivors and patients who died (data not shown).

Table 4: Concentrations of neopterin, kynurenine and tryptophan in urine during hospitalization.

|          | Urine<br>sample, n | Neopterin/creatinine<br>nmol/mmol | Kynurenine/cr<br>ratio, µmol/ |              | Tryptophan/o<br>ratio, µmo |              | Kynurenine/tryptophan<br>ratio, μmol/mmol |                   |          |
|----------|--------------------|-----------------------------------|-------------------------------|--------------|----------------------------|--------------|-------------------------------------------|-------------------|----------|
| Entire   | 1st (92)           | Median/mean (range)               | p<0.0001                      | Median/mean  | p=0.0736                   | Median/mean  | p<0.0001                                  | Median/mean       | p<0.0001 |
| cohort   |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 914.93/                           |                               | 2.57/4.63    |                            | 5.63/7.21    |                                           | 534.32/778.83     |          |
|          |                    | 1,089.41(167.19-6,333.00)         |                               | (0.08-43.96) |                            | (0.68-45.13) |                                           | (21.81-6,690.54)  |          |
|          | 2nd (92)           | Median/mean (range)               |                               | Median/mean  |                            | Median/mean  |                                           | Median/mean       |          |
|          |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 493.18/760.11                     |                               | 2.30/4.80    |                            | 9.67/10.86   |                                           | 256.61/534.74     |          |
|          |                    | (161.34-4,069.41)                 |                               | (0.14-54.19) |                            | (0.51-65.16) |                                           | (31.81-9,627.30)  |          |
| Survived | 1st (70)           | Median/mean (range)               | p<0.0001                      | Median/mean  | p=0.0429                   | Median/mean  | p=0.0001                                  | Median/mean       | p<0.0001 |
|          |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 840.16/918.07                     |                               | 1.78/4.16    |                            | 5.71/7.03    |                                           | 370.15/703.31     |          |
|          |                    | (167.19-2,871.32)                 |                               | (0.08-14.54) |                            | (0.83-29.22) |                                           | (21.81-6,690.54)  |          |
|          | 2nd (70)           | Median/mean (range)               |                               | Median/mean  |                            | Median/mean  |                                           | Median/mean       |          |
|          |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 440.21/558.82                     |                               | 1.84/4.39    |                            | 9.10/10.73   |                                           | 216.60/521.50     |          |
|          |                    | (161.34-2,110.09)                 |                               | (0.14-7.04)  |                            | (0.51-23.69) |                                           | (31.81-2,791.54)  |          |
| Died     | 1st (22)           | Median/mean (range)               | p=0.2234                      | Median/mean  | p=0.8710                   | Median/mean  | p=0.0090                                  | Median/mean       | p=0.0008 |
|          |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 1,257.49/1,626.81                 |                               | 5.41/6.12    |                            | 4.05/7.79    |                                           | 787.89/1,019.14   |          |
|          |                    | (306.93-6,333.00)                 |                               | (0.13-43.96) |                            | (0.67-45.13) |                                           | (93.30-4,206.21)  |          |
|          | 2nd (22)           | Median/mean (range)               |                               | Median/mean  |                            | Median/mean  |                                           | Median/mean       |          |
|          |                    |                                   |                               | (range)      |                            | (range)      |                                           | (range)           |          |
|          |                    | 1,120.53/1,391.45                 |                               | 3.46/6.08    |                            | 10.26/11.25  |                                           | 305.95/442.26     |          |
|          |                    | (267.99-4,069.41)                 |                               | (0.24-38.36) |                            | (1.05-29.05) |                                           | (114.36-2,267.44) |          |

1st to 4th day of hospitalization – 1st sample; 4th to 7th day of hospitalization – 2nd sample; the entire cohort are patients with positive SARS-CoV-2 PCR test with omicron, delta, and not defined variant. For data comparison Wilcoxon test for paired test was used. Bold value means statistically significant result (p≤0.05).

In patients followed for post-COVID syndrome, we compared levels of neopterin, kynurenine, and kynurenine/ tryptophan ratio at admission and after 3, 6, and 9 months after positive PCR SARS-CoV-2 test. The results were compared with patients from the initial cohort without known post-COVID syndrome. All subgroups are characterized in Table 2.

We observed a statistically significantly increased concentrations of neopterin, kynurenine, and kynurenine/ tryptophan ratio and decreased tryptophan concentration in serum at admission in the patients who subsequently developed post-COVID syndrome compared with patients who did not developed post-COVID syndrome during subsequent follow up.

In contrast in the second sample obtained during the hospitalization only urinary neopterin was increased in patients with subsequent post-COVID syndrome. No differences between patients with or without post-COVID syndrome were observed during subsequent follow up. Results are shown in Supplementary Material, Figures S1 and S2. Levels of the biomarkers in all samplings during 9 months are shown in Tables 6 and 7.

Compares with controls concentrations of serum and urinary neopterin, serum kynurenine, kynurenine/tryptophan ratio were significantly increased during the course of follow up in patients with or without post-COVID syndrome (Tables 8 and 9).

# Levels of vitamins in hospitalized COVID patients and patients with post-COVID syndrome

Initial concentrations of vitamins A, D, and E were not different between survivors and patients who died (data not shown). We compared the levels with controls healthy volunteers measured in our laboratory in the same year period (vitamin D) and reports in the literature (A and E) [31, 33]. Levels of vitamins at admission were lower than in controls (Table 5).

The levels of vitamin D in hospitalized patients were classified as insufficient in most cases (vitamin D deficiency; Figure 1).

**Table 5:** Concentration levels of vitamin A, E, D, 8-OH-2-deoxyguanosine, 8-OH-guanosine and neuropilin in COVID patients during hospitalization vs. controls.

|                                                                        | 1st sampling (1st – 3rd day of<br>hospitalization) n – 108 | 2nd sampling (4st – 7th day of<br>hospitalization) n – 92 | Control group n-56   |
|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------|
| Serum vitamin A, µmol/L median (range)                                 | 0.71 (0.16–3.75)                                           | 1.19 (0.22–5.29)                                          | 1.71 <sup>a</sup> NA |
| Serum vitamin E, µmol/L median (range)                                 | 18.13 (9.65–37.07)                                         | 17.76 (7.95–40.59)                                        | 27.8ª NA             |
| Serum vitamin D, nmol/L (25-OH-vitamin D <sub>3</sub> ) median (range) | 33.49 (0.75–142.50)                                        | 41.54 (1.10–121.39)                                       | 52.35 (14.32–122.75) |
| Urine 8-OH-2-deoxyguanosine/creatinine, ng/mg median (range)           | 6.80 (0.80–49.20)                                          | 6.86 (1.81–27.76)                                         | 3.13 (1.76–7.39)     |
| Urine 8-OH-guanosine/creatinine, ng/mg median (range)                  | 7.56 (1.73–53.06)                                          | 9.80 (0.49–131.00)                                        | 3.03 (1.88-7.22)     |
| Neuropilin, nmol/L median (range)                                      | 2.075 (0.750-5.440)                                        | xxx                                                       | 2 <sup>b</sup>       |

Concentration levels are expressed as medians and ranges are given in the brackets. <sup>a</sup>[31], <sup>b</sup>[32].

Vitamin D in post-COVID syndrome patients was not significantly decreased at admission and in the second sampling in comparison to the controls. There were no differences in the vitamin D levels between patients with or without post-COVID syndrome p=0.41277 (Table 10).

#### **Discussion**

In the present study, we demonstrate a decrease in urinary and serum concentrations of neopterin, kynurenine and kynurenine/tryptophan ratio in patients hospitalized for SARS-CoV-2 infection [9]. This expands the results of a prior study on the same cohort of patients that demonstrated an association of these biomarkers with short-term prognosis and the need for oxygen therapy. In this prior report neopterin, kynurenine and kynurenine/tryptophan ratio were markedly elevated in patients who died during the hospital stay and in patients who subsequently needed oxygen therapy. Interestingly, in the present analysis the levels of these biomarkers either remained unchanged or decreased to a lesser extent in patients who died.

**Table 6:** Concentration levels of measured biomarkers neopterin, kynurenine, tryptophan, 8-OH-2-deoxyguanosine, 8-OH-guanosine in patients without post-COVID syndrome.

|                                                                     | 1st sampling (1st – 3rd<br>day of hospitalization) | 2nd sampling (4th – 7th<br>day of hospitalization) | 3rd sampling<br>(3 months) | 4th sampling<br>(6 months) | 5th sampling<br>(9 months) |
|---------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Serum neopterin, nmol/L                                             | 25.66 (9.66–31.80)                                 | 14.78 (5.78–16.30)                                 | 10.66                      | 12.06 (6.87–20.09)         | 10.63 (5.68–20.07)         |
| median (range)                                                      |                                                    |                                                    | (7.47-22.38)               |                            |                            |
| Serum kynurenine, µmol/L<br>median (range)                          | 2.48 (2.20–6.30)                                   | 2.69 (1.86–3.48)                                   | 2.71 (1.58–5.04)           | 2.65 (2.04–4.28)           | 3.01 (1.99–5.05)           |
| Serum tryptophan, µmol/L                                            | 48.49 (37.67-76.54)                                | 56.21 (42.19-58.78)                                | 63.11                      | 68.56                      | 69.96                      |
| median (range)                                                      |                                                    |                                                    | (59.08-72.99)              | (59.50-75.76)              | (46.13-86.06)              |
| Serum kynurenine/tryptophan,                                        | 55.39 (32.06-127.35)                               | 54.44 (32.43-59.48)                                | 41.55                      | 36.13                      | 43.13                      |
| µmol/mmol median (range)                                            |                                                    |                                                    | (25.06-76.54)              | (26.89-62.01)              | (28.66-71.17)              |
| Urine neopterin/creatinine,                                         | 591.39 (167.19-1,031.25)                           | 215.28 (161.34-353.05)                             | 189.00                     | 196.18                     | 224.00                     |
| nmol/mmol median (range)                                            |                                                    |                                                    | (91.92-295.25)             | (130.00-468.00)            | (167.00-282.00)            |
| Urine kynurenine/creatinine,<br>µmol/mmol median (range)            | 1.24 (0.20–3.14)                                   | 0.87 (0.14–1.42)                                   | 0.34 (0.19-0.79)           | 0.31 (0.13–0.75)           | 0.26 (0.06–0.89)           |
| Urine tryptophan/creatinine,<br>µmol/mmol median (range)            | 7.12 (2.31–12.82)                                  | 6.94 (3.24–8.60)                                   | 4.78 (4.47–5.80)           | 5.05 (2.70-6.89)           | 4.56 (2.30-9.55)           |
| Urine kynurenine/tryptophan,                                        | 191.19 (52.60-336.95)                              | 121.52 (42.16-199.05)                              | 58.68                      | 68.23                      | 57.53                      |
| µmol/mmol median (range)                                            |                                                    |                                                    | (33.68-171.30)             | (26.56-157.33)             | (26.89-149.46)             |
| Urine 8-OH-2-deoxyguanosine/<br>creatinine, ng/mg median<br>(range) | 6.28 (2.80–12.62)                                  | 5.97 (2.91–12.11)                                  | 3.79 (2.31–6.19)           | 4.04 (2.08–12.15)          | 5.66 (3.31–13.22)          |
| Urine 8-OH-guanosine/creati-<br>nine, ng/mg median (range)          | 6.03 (1.89–13.37)                                  | 4.87 (3.06–9.82)                                   | 4.08 (2.35–5.30)           | 3.19 (1.15–5.10)           | 3.10 (2.07–5.54)           |

Concentration levels are expressed as medians and ranges are given in the brackets.

Table 7: Concentration levels of measured biomarkers neopterin, kynurenine, tryptophan, 8-OH-2-deoxyguanosine, 8-OH-quanosine in patients with post-COVID syndrome.

|                                                                  | 1st sampling (1st – 3rd<br>day of hospitalization) | 2nd sampling (4th – 7th<br>day of hospitalization) | 3rd sampling<br>(3 months) | 4th sampling<br>(6 months) | 5th sampling<br>(9 months) |
|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Serum neopterin, nmol/L median                                   | 34.16                                              | 18.66                                              | 10.81                      | 12.31                      | 10.35                      |
| (range)                                                          | (10.50-95.12)                                      | (6.65-63.41)                                       | (5.42-19.21)               | (6.40-52.49)               | (7.33-26.81)               |
| Serum kynurenine,                                                | 4.31                                               | 3.55                                               | 2.80                       | 2.91                       | 2.84                       |
| µmol/L median (range)                                            | (2.63-8.07)                                        | (1.72-9.68)                                        | (1.75-3.92)                | (1.89-4.90)                | (2.09-4.55)                |
| Serum tryptophan, µmol/L                                         | 37.36                                              | 41.83                                              | 57.18                      | 57.31                      | 65.32                      |
|                                                                  | (20.04-60.74)                                      | (25.88-73.50)                                      | (36.24-104.12)             | (47.76-91.88)              | (46.83-97.45)              |
| Serum kynurenine/tryptophan,                                     | 101.92                                             | 75.87                                              | 47.05                      | 46.85                      | 48.78                      |
| µmol/mmol median (range)                                         | (64.04-313.78)                                     | (31.46-374.11)                                     | (30.15-75.28)              | (36.07-84.08)              | (30.21-77.68)              |
| Urine neopterin/creatinine, nmol/                                | 1,046.31                                           | 513.92                                             | 239.39                     | 262.50                     | 250.50                     |
| mmol median (range)                                              | (316.46-2,547.45)                                  | (274.89-2,213.11)                                  | (131.45-411.00)            | (183.15-662.02)            | (137.00-660.00)            |
| Urine kynurenine/creatinine,<br>µmol/mmol                        | 1.68 (0.47–10.05)                                  | 2.33 (0.22–54.19)                                  | 0.29 (0.06–0.98)           | 0.28 (0.06–0.91)           | 0.27 (0.09–0.69)           |
| Urine tryptophan/creatinine,<br>µmol/mmol median (range)         | 6.13 (1.42–29.22)                                  | 10.68 (4.22–65.16)                                 | 4.44 (1.78–7.65)           | 3.33 (1.33–8.19)           | 4.11 (1.58–7.75)           |
| Urine kynurenine/tryptophan,                                     | 376.57 (73.05-2,017.14)                            | 186.42 (53.23-3,026.76)                            | 71.49                      | 81.80                      | 73.50                      |
| µmol/mmol median (range)                                         |                                                    |                                                    | (31.13-151.48)             | (30.35-270.99)             | (28.40-249.74)             |
| Urine 8-OH-2-deoxyguanosine/<br>creatinine, ng/mg median (range) | 7.68 (3.47–18.38)                                  | 6.48 (2.77–16.88)                                  | 2.81 (1.68–10.96)          | 4.22 (1.63–16.76)          | 4.89 (2.26–15.52)          |
| Urine 8-OH-guanosine/creatinine, ng/mg                           | 8.00 (3.56–21.74)                                  | 9.99 (2.34–31.16)                                  | 4.79 (2.04–8.71)           | 3.47 (2.21–7.86)           | 4.50 (1.72–5.85)           |

Concentration levels are expressed as medians and ranges are given in the brackets.

Table 8: Comparison of inflammatory biomarkers neopterin, kynurenine and tryptophan in serum in patients with post-COVID syndrome, without post-COVID syndrome, and control group.

| Serum                               | 3rd m                         | onth           |          | 6th me                        | 6th month      |          |                               | 9th month      |          |  |
|-------------------------------------|-------------------------------|----------------|----------|-------------------------------|----------------|----------|-------------------------------|----------------|----------|--|
| Neopterin, nmol/L                   | Nonpost-COVID<br>median       | 10.66          | p=0.0016 | Nonpost-COVID<br>median       | 12.06          | p=0.0016 | Nonpost-COVID<br>median       | 10.63          | p=0.0019 |  |
|                                     | Controls Post-COVID median    | 6.90<br>10.53  | p=0.0002 | Controls Post-COVID median    | 6.90<br>11.22  | p=0.0001 | Controls Post-COVID median    | 6.90<br>10.05  | p<0.0001 |  |
| Kynurenine, µmol/L                  | Nonpost-COVID<br>median       | 2.71           | p=0.1730 | Nonpost-COVID<br>median       |                | p=0.0021 |                               | 3.01           | p=0.0013 |  |
|                                     | Controls<br>Post-COVID median | 2.19<br>2.78   | p=0.0045 | Controls<br>Post-COVID median | 2.19<br>2.91   | p=0.0004 | Controls Post-COVID median    | 2.19<br>2.76   | p<0.0001 |  |
| Tryptophan, µmol/L                  | Nonpost-COVID<br>median       | 63.11          | p=0.4165 | Nonpost-COVID<br>median       | 68.56          | p=0.3180 | Nonpost-COVID<br>median       | 69.96          | p=0.5823 |  |
|                                     | Controls<br>Post-COVID median | 66.20<br>57.56 | p=0.0127 | Controls Post-COVID median    | 66.20<br>57.43 | p=0.0437 | Controls Post-COVID median    | 66.20<br>66.36 | p=0.4109 |  |
| Kynurenine/tryptophan,<br>µmol/mmol | Nonpost-COVID<br>median       | 41.55          | p=0.0516 | Nonpost-COVID<br>median       | 36.13          | p=0.0316 | Nonpost-COVID<br>median       | 43.13          | p=0.0026 |  |
|                                     | Controls<br>Post-COVID median | 33.19<br>46.43 | p<0.0001 | Controls<br>Post-COVID median |                | p<0.0001 | Controls<br>Post-COVID median | 33.19<br>48.30 | p<0.0001 |  |

Bold value means statistically significant result (p≤0.05).

The decrease in the levels of these biomarkers indicates that patients the inflammation was suppressed due to the treatment or natural evolution in the course of the disease. No differences in baseline concentrations of neopterin, kynurenine, and kynurenine/tryptophan ratio were observed in patients previously vaccinated or unvaccinated. However, it should be kept in mind, that

vaccination markedly reduces the risk of hospital admission [34] and hospitalized patients with prior vaccinations were a selected subgroup that is probably not representative of vaccinated patients with subsequent infection.

Gustine et al. [35] reported that elevated inflammatory markers can relate to the cytokine storm in which the immune system is activated, but does not function properly,

**Table 9:** Comparison of inflammatory biomarkers neopterin, kynurenine and tryptophan in urine in patients with post-COVID syndrome, without post-COVID syndrome, and control group.

| Urine                               | 3rd month                        |                  |          | 6th                              | 6th month        |          |                                  | month            |          |
|-------------------------------------|----------------------------------|------------------|----------|----------------------------------|------------------|----------|----------------------------------|------------------|----------|
| Neopterin/creatinine, nmol/mmol     | Nonpost-COVID<br>median          | 188.32           | p=0.0777 | Nonpost-COVID<br>median          | 185.00           | p=0.1557 | Nonpost-COVID<br>median          | 224.00           | p=0.0067 |
|                                     | Controls<br>Post-COVID<br>median | 166.00<br>234.52 | p=0.0078 | Controls<br>Post-COVID<br>median | 166.00<br>257.00 | p<0.0001 | Controls<br>Post-COVID<br>median | 166.00<br>249.00 | p=0.0002 |
| Kynurenine/creatinine, µmol/mmol    | Nonpost-COVID<br>median          | 0.34             | p=0.1832 | Nonpost-COVID<br>median          | 0.20             | p=0.4912 | Nonpost-COVID<br>median          | 0.26             | p=0.7960 |
|                                     | Controls<br>Post-COVID<br>median | 0.23<br>0.26     | p=0.6965 | Controls<br>Post-COVID<br>median | 0.23<br>0.21     | p=0.6557 | Controls<br>Post-COVID<br>median | 0.23<br>0.25     | p=0.3057 |
| Tryptophan/creatinine,<br>μmol/mmol | Nonpost-COVID<br>median          | 4.82             | p=0.4079 | Nonpost-COVID<br>median          | 4.76             | p=0.8518 | Nonpost-COVID<br>median          | 4.56             | p=0.8508 |
|                                     | Controls<br>Post-COVID<br>median | 4.41<br>4.29     | p=0.3043 | Controls<br>Post-COVID<br>median | 4.41<br>3.59     | p=0.0192 | Controls<br>Post-COVID<br>median | 4.41<br>3.61     | p=0.1168 |
| Kynurenine/tryptophan,<br>µmol/mmol | Nonpost-COVID<br>median          | 58.68            | p=0.2430 | Nonpost-COVID<br>median          | 68.23            | p=0.1803 | Nonpost-COVID<br>median          | 57.53            | p=0.7161 |
|                                     | Controls<br>Post-COVID<br>median | 54.53<br>71.49   | p=0.1290 | Controls<br>Post-COVID<br>median | 54.53<br>81.80   | p=0.0061 | Controls<br>Post-COVID<br>median | 54.53<br>73.50   | p=0.0058 |

Bold value means statistically significant result (p $\le$ 0.05).

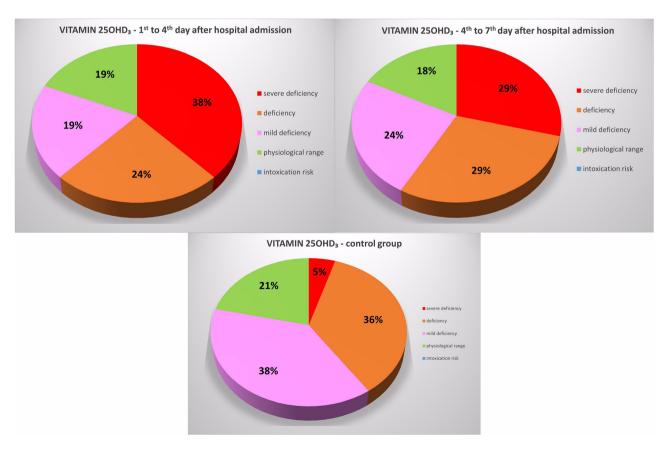



Figure 1: Levels of vitamin 25OHD<sub>3</sub> in studied and control group.

| Table 10: | Levels of vitamins A    | F | D | in   | natients without | and wit | h post-COVID syndrome.     |
|-----------|-------------------------|---|---|------|------------------|---------|----------------------------|
| Table IV. | reacts of Alfallillis V |   |   | 1111 | Datients Without | anu wit | II DOSE-COVID SVIIGIOITIE. |

|                                                               |                                   | 1st sampling<br>(1st – 3rd day of<br>hospitalization) | 2nd sampling<br>(4th – 7th day of<br>hospitalization) | 3rd sampling<br>(3 months) | 4th sampling<br>(6 months) | 5th sampling<br>(9 months) |
|---------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Serum vitamin A,<br>µmol/L median<br>(range)                  | Without<br>post-COVID<br>syndrome | 1.01 (0.70–1.81)                                      | 1.95 (1.04–2.70)                                      | 1.76 (0.99–2.20)           | 1.75 (1.24–2.20)           | 1.83 (1.08–2.27)           |
|                                                               | Post-COVID syndrome               | 0.47 (0.29–1.83)                                      | 1.00 (0.51–2.84)                                      | 1.30 (1.08–2.56)           | 1.55 (0.97–2.34)           | 1.77 (0.74–2.74)           |
| Serum vitamin E,<br>µmol/L median<br>(range)                  | Without<br>post-COVID<br>syndrome | 15.42 (10.34–19.78)                                   | 18.17 (14.43–23.64)                                   | 17.37 (11.31–24.58)        | 14.07 (11.16–21.10)        | 13.54 (11.66–21.55)        |
|                                                               | Post-COVID syndrome               | 17.64 (11.91–26.44)                                   | 21.12 (10.48–36.58)                                   | 20.53 (13.21–31.99)        | 15.89 (13.10–26.02)        | 16.80 (12.28–30.08)        |
| Serum vitamin D<br>(25-OH-vitamin<br>D <sub>3</sub> ), nmol/L | Without<br>post-COVID<br>syndrome | 61.77 (32.40–142.50)                                  | 65.82 (40.34–94.58)                                   | 54.20 (25.15–105.05)       | 82.17 (21.35–100.42)       | 82.02 (20.55–150.71)       |
| median (range)                                                | Post-COVID<br>syndrome            | 38.98 (10.03–127.83)                                  | 50.72 (15.79–117.65)                                  | 61.77 (10.43–132.16)       | 74.98 (23.51–148.99)       | 73.99 (10.02–134.84)       |

and this may explain the negative prognostic significance of increase inflammatory biomarkers in acute infection.

Utilization of urine as sample matrix is of advantage as it allows for repeated measurements without the inconvenience to the patient that is associated with the need for venepuncture. Another advantage is that the concentrations of neopterin, kynurenine and tryptophan in the urine are expressed as ratios of urinary creatinine, correcting for a fluctuation of renal function in patients with critical state.

In contrast to neopterin, kynurenine, and kynurenine/ tryptophan ratio, parameters of DNA and RNA damage and neuropilin, the receptor for viral antigen, were not associated with the outcomes.

Changes in neopterin, kynurenine, and tryptophan levels in serum and urine at admission were also observed in patients with post-COVID syndrome who were followed up for 9 months. In patients with subsequent post-COVID syndrome initial neopterin, kynurenine, and kynurenine/ tryptophan levels were significantly higher compared to patients with subsequent follow up who did not develope post-COVID syndrome but, the differences were no longer evident later during the course of follow up, but both groups of patients had elevated levels compared to the control group of healthy subjects even after 9 months. One possibility may be the lower age of the control group as neopterin levels increase with age. Kynurenine concentration was reported to be age-independent; however, it may be elevated in the elderly due to comorbidities (Supplementary Table S1).

In the whole entire cohort of hospitalized patients and patients with post-COVID syndrome, we also evaluated vitamins, especially vitamin D, which is related to this disease [36, 37]. Vitamins A and E are important antioxidants and are related to the expression of the arvl hydrocarbon receptor gene [16]. Vitamins levels have not been shown to be potential predictors of disease severity or prognosis. However, during the treatment, the levels have not reached those of the healthy population. Therefore, supplementation may be considered in clinical practice. Of particular interest is the vitamin D, which despite supplementation did not reach satisfactory concentrations in most patients. Present data are in agreement with the results of the studies of Saldmann et al. [38] and Orchard et al. [39]. These data are of interest because of the discussion of potential of vitamin supplementation in the management of SARS-CoV-2 infection [40, 41]. It would still be interesting to investigate the severity of the disease and its prognosis with higher supplementation to reach physiological levels in hospitalized patients.

In conclusion, we demonstrate a decrease in urinary and serum concentrations of neopterin, kynurenine and kynurenine/tryptophan ratio in patients hospitalized for SARS-CoV-2 infection. The initial concentrations of these biomarkers were higher in patients who subsequently developed the post-COVID syndrome. In contrast, initial concentrations of neuropilin and 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanosine were not associated with prognosis. Low vitamin A, E and D concentrations were detected in patients hospitalized for SARS-CoV-2 infection.

Acknowledgments: Thank you to Filip Hátle for data processing. LKK in the memory of Vladimír Pešek.

Research ethics: The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013).

**Informed consent:** Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

**Competing interests:** The authors state no conflict of interest. **Research funding:** This work was supported by the Ministry of Health of the Czech Republic, grant nr. NU22-A-108. Moreover, the research was supported by the University Hospital Hradec Kralove MH CZ-DRO (UHHK, 'Q6 00179906). **Data availability:** The raw data can be obtained on request from the corresponding author.

#### References

- 1. Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al. Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2020;93:e12998.
- 2. World Health Organization. Coronavirus disease (COVID-19): Post COVID-19 condition (who.int). https://www.who.int/news-room/guestionsand-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition [Accessed: 13 November 2023].
- 3. Fernández-de-las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Cuadrado ML, Florencio LL. Defining post-COVID symptoms (Post-Acute COVID, long COVID, persistent post-COVID): an integrative classification. Int J Environ Res Publ Health 2021;18:2621.
- 4. Melichar B, Spisarova M, Bartouskova M, Kujovska Krcmova L, Javorska L, Studentova H. Neopterin as a biomarker of immune response in cancer patients. Ann Transl Med 2017;5:280.
- 5. Neopterin. Neopterin English. http://www.neopterin.net/neopterin\_ e.pdf [Accessed 13 Nov 2023].
- 6. Plebani M. Why C-reactive protein is one of the most requested tests in clinical laboratories? Clin Chem Lab Med 2023;61:1540-5.
- 7. Robertson J, Gostner JM, Nilsson S, Andersson LM, Fuchs D, Gisslen M. Serum neopterin levels in relation to mild and severe COVID-19. BMC Infect Dis 2020;20:942.
- 8. Hailemichael W, Kiros M, Akelew Y, Getu S, Andualem H. Neopterin: a promising candidate biomarker for severe COVID-19. J Inflamm Res 2021;14:245-51.
- 9. Kujovska Krcmova L, Matousova K, Javorska L, Smahel P, Skala M, Koblizek V, et al. Neopterin and kynurenice in serum and urine as prognostic biomarkers in hospitalized patients with delta and omicron variant SARS-CoV-2 infection. Clin Chem Lab Med 2023;61:2053-64.
- 10. Zheng B, Cao KY, Chan CPY, Choi JWY, Leung W, Leung M, et al. Serum neopterin for early assessment of severity of severe acute respiratory syndrome. Clin Immunol 2005;116:18-26.
- 11. Ozger HS, Dizbay M, Corbacioglu SK, Aysert P, Demirbas Z, Tunccan OG, et al. The prognostic role of neopterin in COVID-19 patients. J Med Virol 2021;93:1520-5.

- 12. Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2'-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2009;27: 120 - 39
- 13. Çalışkan-Can E, Fırat H, Ardıç S, Şimşek B, Torun M, Yardim-Akaydin S. Increased levels of 8-hydroxydeoxyguanosine and its relationship with lipid peroxidation and antioxidant vitamins in lung cancer. Clin Chem Lab Med 2008:46:107-12.
- 14. Lorente L, Martin MM, Gonzalez-Rivero AF, Perez-Cejas A, Caceres JJ, Perez A, et al. DNA and RNA oxidative damage and mortality of patients with COVID-19. Am J Med Sci 2021;361:585-90.
- 15. Liu X, Deng K, Chen S, Zhang Y, Yao J, Weng X, et al. 8-Hydroxy-2'-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk | Med Sci 2019:49:93-100.
- 16. Turski WA, Wnorowski A, Turski GN, Turski CA, Turski L. AhR and Ido1 in pathogenesis of COVID-19 and the "systemic AhR activation syndrome" translational review and therapeutic perspectives. Restor Neurol Neurosci 2020;38:343-54.
- 17. Kielian M. Enhancing host cell infection by SARS-CoV-2. Science 2020; 370:765-6.
- 18. Kyrou I, Randeva HS, Spandidos DA, Karteris E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Targeted Ther 2021;6:21.
- 19. Katopodis P, Kerslake R, Davies J, Randeva HS, Chatha K, Hall M, et al. COVID-19 and SARS-CoV-2 host cell entry mediators: expression profiling of TMRSS4 in health and disease. Int J Mol Med 2021:47:64.
- 20. Wild JRL, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012;93:81-103.
- 21. Gudowska-Sawczuk M, Mroczko B. The role of neuropilin-1 (NRP-1) in SARS-CoV-2 infection: review. J Clin Med 2021;10:2772.
- 22. Krcmova L, Solichova D, Melichar B, Kasparova M, Plisek J, Sobotka L, et al. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high througut HPLC. Talanta 2011;85: 1466-71.
- 23. Cermanova M, Melichar B, Solichova D, Blaha M, Blaha V, Blazek M, et al. Urinary neopterin and microalbuminuria in patients treated by low-density lipoprotein apheresis. Pteridines 2005;16:174-83.
- 24. Cervinkova B, Kujovska Krcmova L, Sestakova V, Solichova D, Solich P. A fully validated bioanalytical method using an UHPLC-MS/MS system for quantification of DNA and RNA oxidative stress biomarkers. Anal Bioanal Chem 2017;409:3611-21.
- 25. Urbanek L, Solichova D, Melichar B, Dvorak J, Svobodova I, Solich P. Optimization and validation of a high performance liquid chromatography method for the simultaneous determination of vitamins A and E in human serum using monolithic column and diodearray detection. Anal Chim Acta 2006;573-74:267-72.
- 26. Plisek J, Kujovska Krcmova L, Aufartova J, Morales TV, Esponda SM, Oros R, et al. New approach for the clinical monitoring of 25-hydroxyvitamin D3and 25-hydroxyvitamin D2by ultra high performance liquid chromatography with MS/MS based on the standard reference material 972. J Separ Sci 2013;36:3702-8.
- 27. Skala M, Svoboda M, Kopecky M, Kocova E, Hyrsl M, Homolac M, et al. Heterogeneity of post-COVID impairment: interim analysis of a prospective study from Czechia. Virol J 2021;18:73.
- 28. Pikner R. Jaká má být hladina vitaminu D a doporučené dávkování? Postudium. https://postudium.cz/mod/data/view.php?d=13& mode=single&page=263&rid=178&filter=1 [Accessed 13 Nov 2023].

- 29. Perez-Lopez FR, Brincat M, Erel CT, Tremollieres F, Gambacciani M, Lambrinoudaki I, et al. EMAS position statement: vitamin D and postmenopausal health. Maturitas 2012;71:83-8.
- 30. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911-30.
- 31. Stuetz W, Weber D, Dolla M, Jansen E, Grubeck-Loebenstein B, Fiegl S, et al. Plasma carotenoids, tocopherols, and retinol in the age-stratified (35-74 years) general population: a cross-sectional study in six European countries. Nutrients 2016;8:614.
- 32. Biomedica Medizinprodukte GmbH. Values of apparently healthy individuals - English. https://www.bmgrp.com/wp-content/uploads/ 2019/02/BI-20409-total-soluble-Neuropilin-ELISA-190108.pdf [Accessed 13 Nov 2023].
- 33. Albahrani A, Greaves RF, Ward G, Fitzpatrick M, Harrower T. Vitamin A and E gender and age stratification in adults. Clin Chem Lab Med 2019; 58:e79-82.
- 34. Tenforde MW, Self WH, Adams K, Gaglani M, Ginde AA, McNeal T, et al. Association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA 2021;326:2043-54.
- 35. Gustine JN, Jones D. Immunopathology of hyperinflammation in COVID-19. Am J Pathol 2021;191:14-17.
- 36. Mohan M, Cherian JJ, Sharma A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog 2020;16:e1008874.
- 37. Nielsen NM, Junker TG, Boelt SG, Cohen AS, Munger KL, Stenager E, et al. Vitamin D status and severity of COVID-19. Sci Rep 2022;12:19823.
- 38. Saldmann A, Stoclin A, Hamada SR, Cholley B, Houillier P, Baron S, et al. 25-Hydroxyvitamin D concentrations in COVID-19 patients hospitalized in intensive care unit during the first wave and the second wave of the pandemic. Clin Chem Lab Med 2021;59:e255-8.
- 39. Orchard L, Baldry M, Nasim-Mohi M, Monck C, Saeed K, Grocott MPW, et al. Vitamin-D levels and intensive care unit outcomes of a cohort of critically ill COVID-19 patients. Clin Chem Lab Med 2021;59:1155-63.
- 40. Carvalho MC, Silbiger VN, Ribeiro KD, Araujo JK. Vitamin A and vitamin E in SARS-CoV-2 Infection: a systematic review. 2022:1-13. https://doi. org/10.21203/rs.3.rs-2139276/v1.
- 41. Toledano JM, Moreno-Fernandez J, Puche-Juarez M, Ochoa JJ, Diaz-Castro J. Implications of vitamins in COVID-19 prevention and

- treatment through immunomodulatory and anti-oxidative mechanisms. Antioxidants 2021;11:5.
- 42. Caruso R, De Chiara B, Campolo J, Verde A, Musca F, Belli O, et al. Neopterin levels are independently associated with cardiac remodeling in patients with chronic heart failure. Clin Biochem 2013; 46:94-8.
- 43. Solichova D, Melichar B, Klejna M, Juraskova B, Kralovska L, Blaha V, et al. Fluorimetric determination of the levels of urinary neopterin and serum thiobarbituric acid reactive substances in the nonagenarians. Talanta 2003:60:459-65.
- 44. Shepheard SR, Karnaros V, Benyamin B, Schultz DW, Dubowsky M, Wuu J, et al. Urinary neopterin: a novel biomarker of disease progression in amyotrophic lateral sclerosis. Eur J Neurol 2022;29:990-9.
- 45. Halim AA, Adawy Z, Sayed M. Role of neopterin among COPD patients. Egypt I Chest Dis Tuberc 2016:65:23-7.
- 46. Reibnegger G, Huber LA, Jürgens G, Schönitzer D, Werner ER, Wachter H, et al. Approach to define "normal aging" in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech Ageing Dev 1988;46:67-82.
- 47. Oh JS, Seo HS, Kim KH, Pyo H, Chung BC, Lee J. Urinary profiling of tryptophan and its related metabolites in patients with metabolic syndrome by liquid chromatography-electrospray ionization/mass spectrometry. Anal Bioanal Chem 2017;409:5501-12.
- 48. Sousa A, Ribeiro C, Gonçalves VMF, Barbosa J, Peixoto B, Andrade A, et al. Development and validation of a liquid chromatography method using UV/fluorescence detection for the quantitative determination of metabolites of the kynurenine pathway in human urine: application to patients with heart failure. J Pharm Biomed Anal 2021:198:113997.
- 49. Valdiglesias V, Marcos-Pérez D, Lorenzi M, Onder G, Gostner JM, Strasser B, et al. Immunological alterations in frail older adults: a cross sectional study. Exp Gerontol 2018;112:119-26.
- 50. Zinellu A, Sotgia S, Deiana L, Talanas G, Terrosu P, Carru C. Simultaneous analysis of kynurenine and tryptophan in human plasma by capillary electrophoresis with UV detection. | Separ Sci 2012;35:1146-51.

Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/cclm-2023-1297).