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Abstract: Analytical performance specifications (APS) are
usually compared to the intermediate reproducibility uncer-
tainty of measuring a particular measurand using a single
in vitro diagnostic medical device (IVD MD). Healthcare sys-
tems assembling multiple laboratories that include several IVD
MDs and cater to patients suffering from long-term disease
conditions mean that samples from a patient are analyzed
using a few IVD MDs, sometimes from different manufacturers,
but rarely all IVD MDs in the healthcare system. The repro-
ducibility uncertainty for results of a measurand measured
within a healthcare system and the components of this mea-
surement uncertainty is useful in strategies to minimize bias
and overall measurement uncertainty within the healthcare
system. The root mean squares deviation (RMSD) calculated as
the sample standard deviation (SD) and relative SD includes
both imprecision and bias and is appropriate for expressing
such uncertainties. Results from commutable stabilized inter-
nal and external control samples, from measuring split natural
patient samples or using big-data techniques, are essential in
monitoring bias and measurement uncertainties in healthcare
systems. Variance component analysis (VCA) can be employed
to quantify the relative contributions of the most influential
factors causing measurement uncertainty. Such results repre-
sent invaluable information for minimizing measurement
uncertainty in the interest of the healthcare system’s patients.
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Analytical performance
specifications

The fitness-for-intended-use is the degree to which measure-
ment results meet the users’ needs. In analytical chemistry,
it is usually expressed as the combination of sampling un-
certainty, the uncertainty of the traceability to higher-order
references, and the appropriate type of measurement
uncertainty. In clinical chemistry, the fitness-for-intended-use
is patient-focused and called analytical performance specifi-
cations (APS), translating patient-related quality measures
into clinically meaningful criteria [1]. It includes primarily
biological variation and the effect of measurement results on
clinical outcomes (Figure 1).

APS have been discussed since the dawn of the current
practice of laboratory medicine [2, 3]. The 1976 Aspen [4]
and 1978 London [5] conferences and a Nordkem project [6]
represent early concerted attempts that continued with
more recent conferences in Stockholm in 1999 [7, 8] and in
Milan in 2014 [9]. From the outset, APS has been expressed
as statistical measures of precision (type A uncertainty)
[10], such as imprecision CV%, total error [11], and later as
uncertainties in the vein of the International Vocabulary of
Measurement (VIM) [12] and Guide to the Expression of
Uncertainty (GUM) [10]. The fulfillment of the APS has
traditionally been tested using results from the internal
quality control and/or proficiency testing [13-16]. Guide-
lines from The Clinical and Laboratory Standards Institute
(CLSI) C54-A-IR Verification of Comparability of Patient
Results Within One Health Care System [17] and EP31-A-IR
Verification of Comparability of Patient Results Within
One Health Care System [18] elucidate designs, criteria,
control materials and statistical methods for verifying the
equivalence of measurement results in healthcare systems
[19] essential for fulfilling APS. APS may also include
uncertainty that cannot be dealt with using statistical
methods (type B uncertainty) [20], including measures of
diagnostic properties investigated in clinical studies [7, 9]
and may eventually also include matrix effects, selectivity
(VIM 3, 2.45 [12]) of the measurement procedure [21-24] as
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Figure 1: The three polygons on the left with increasing heights quantify (as relative SD=CV%) several factors causing measurement uncertainty
encountered in medical laboratories from repeatability uncertainty, via intermediate reproducibility uncertainty that manufacturers can estimate, up to
the reproducibility uncertainty encountered in healthcare systems with several laboratories, which only the end-users can estimate.

well as pre-and post-analytical uncertainties (Figure 1)
[25, 26].

Measurement precision is the “closeness of agreement
between indications or measured quantity values obtained
by replicate measurements on the same or similar objects
under specified conditions” VIM 3: 2.15 [12]. These specified
conditions are repeatability-, intermediate-, and repro-
ducibility conditions [27, 28] where repeatability- and
reproducibility conditions of measurement represent the
extremes from the within-batch/day precision to the in-
clusion of all identifiable causes of variation over extended
periods (reproducibility conditions). Somewhere between
the two extremes are various intermediate reproducibility
conditions of measurement that need to be specified
(Figure 1). APS is currently compared to the intermediate
reproducibility measurement uncertainty [29] for a measur-
and determined within- and between-day reproducibility
uncertainty using a single IVD MD [30-35] and the traceability
to higher-order references [19, 36-38] including lot-to-lot
variation.

While there is a tentative agreement on methods for
establishing APS, there is less agreement on methods for the
follow-up of the fulfillment of APS by individual measuring
systems and end-user laboratories serving entire healthcare
systems, and on the responsibilities of the manufacturers in
this context.

The factors depicted in red are currently neither
included in the APS nor the follow-up of the fulfillment of the

APS. The factors depicted in blue (lot changes) are preferably
determined by the manufacturers but are currently mainly
determined by the end-users.

Manufacturers of IVD MD can and should calculate and
report the uncertainty in the traceability hierarchy and the
intermediate single IVD MD reproducibility. However,
employing several IVD MDs from multiple manufacturers in
laboratories serving a healthcare system, including handling
lots of reagents and calibrators, is in the hands of the end-
users.

The intermediate reproducibility uncertainty is currently
the optimal measure of the measurement uncertainty and
should be compared to the APS. It should include at least the
within- and between-days measurement uncertainty and the
uncertainty of the traceability hierarchy, including lot-to-lot
uncertainty [30-34] (Figure 1). The uncertainty details in the
traceability hierarchy are commonly not publicly available.
Therefore, the lot-to-lot uncertainty is detailed separately
since the end-users can determine it. Decisions regarding
which measurement procedures, IVD MD, routines for lot
number changes, etc., are combined in the laboratories are in
the hands of the end-users. Such decisions will influence the
reproducibility uncertainty for the actual measurand in the
healthcare system. In situations where the intermediate
reproducibility uncertainty CV% is larger than the APS, e.g.
for albumin and homocysteine [39] the producers of reference
materials, the manufacturers, and laboratories serving the
healthcare system need to find strategies to decrease the
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uncertainty. Increasing the number of replicate measure-
ments of reference materials is an evident tool, and more
detailed recommendations have been published by an IFCC
working group [40].

The reproducibility uncertainty [12] includes all uncer-
tainty components in the uncertainty of measurement
results for a certain measurand [19, 36-38] (Figure 1). Over
time, measurement results from samples from a single
patient are unlikely to include all components of variation
included in the reproducibility measurement uncertainty.
Reproducibility measurement uncertainty is, therefore, not
appropriate for monitoring the fulfillment of APS. It should
instead be used in strategies to minimize bias and overall
measurement uncertainty within the healthcare system.

Including bias in uncertainty
calculations

Root mean squares deviation (RMSD)

The understanding- and definitions of measures of impre-
cision have developed over the last two centuries, and
imprecision, as currently defined, should only include
random error (see below). Table 1 illustrates the original
nineteenth-century practice of calculating variation as the
distances between results on the measurement scale. The
example illustrates the pipetting of six replicates of 100 yL of
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water on a micro-scale, listing the results horizontally and
vertically.

The calculation of the mean squared deviation (MSD) is
illustrated in Table 1 and may be expressed as

M d deviation (MSD b 2 (Xi —Xj)z a
ean squared deviation ( )= n(n-1
Root mean squared deviation (RMSD)
2
i Qi (Xi = X)) ©
nn-1)

The number of comparisons needed when using these
formulas increases exponentially with the number of data
(n(n-1)/2).

The MSD as the mean difference between observations
incorporates both random and systematic errors — thus
imprecision and bias. The square root of the MSD is the
RMSD, which is identical to the SD in case the data are
unbiased. The RMSD is fundamentally a mathematical
expression of the mean distance of each number from every
other number and the arithmetic mean irrespective of the
data distribution.

The MSD and RMSD are most efficiently calculated using
the commonly used formulas for calculating the sample
variance and the sample SD, using the mean value and Bessel
correction (n-1) (Egs. (3) and (4)). When the sample mean
value is used in the calculation, the number of comparisons

Table 1: An example of pipetting six replicates of 100 pL of water on a micro-scale. The replicate measurements are listed horizontally on top and
vertically to the left to illustrate their squared differences between all results. For example, the difference between 102.3 and 100 L is 2.3, and 2.3
squared equals 5.3. The number of unique comparisons between the data is 15 and not 16 since there is no difference when a result is compared to itself.
All other differences are subject to variation. Each of the two results make up the difference. Therefore, the degree of freedom is double the number of
unique comparisons, i.e., 2 x 15=30. The mean squared deviation (MSD) (equivalent to the variance) is the sum of squared unique differences divided by
the number of degrees of freedom; here, 97.5/30=3.25, and the RMSD is 1.80. This also illustrates the logic of the Bessel [41] correction (n—1) when

calculating the sample variance.

102.3 101.0 100.0 99.6 99.0 97.0 SSQ DF
102.3 0.0 1.7 5.3 7.3 10.9 28.1 53.2 10.0
101.0 0.0 1.0 2.0 4.0 16.0 23.0 8
100.0 / 0.0 0.2 1.0 9.0 10.2 6
99.6 0.0 0.4 6.8 71 4
99.0 0.0 4.0 4.0 2
97.0 0.0 97.5 30.0
Variance=  3.24966667 3.249666667
St dev= 1.80268319

(102.3-100)%2=5.3
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is related to n and avoids the exponential increase in com-
parisons illustrated in Egs. (1) and (2).

n 7 2
Variance = Z,:lrfxlex) 3)
n 7 2
Standard deviation = Z,zlrfxlex) (@)

SD

In a Gresham lecture on January 31st, 1893, Karl Pearson
proposed a re-defined concept and term “SD” for the RMSD
used at the time [42—-45]. He defined “SD” as the square root
of the average of the squared deviations taken from the
arithmetic mean of the population distribution [45], later
taken also from the sample arithmetic mean when the
population mean is unknown. The SD, as defined by Karl
Pearson, and by Gauss, subsequently remains a preferred
measure of variation since it is a parameter in the normal
distribution and, therefore, important as a standard effect
size, e.g., according to Guide to the Expression of Uncertainty
in Measurement (GUM) [10].

Importantly, Pearson’s “SD” represents an estimate of
the population SD for normal-distribution-based inference
rather than a distribution-independent data description.
This association of the “SD” with the normal distribution
implies that it should not include bias. Systematic error
components should be eliminated when the SD is used for
inference, whereas bias and imprecision are natural and
legitimate in variance component analysis and other
descriptive statistical procedures.

Calculating and presenting the traditional SD and
relative SD means there is no intuitive interpretation of the
values because sums-of-squares-based measures vary in
response to both the central tendency and variability
[46]. Therefore, absolute-error - or absolute-deviation-
based measures are increasingly used, e.g., in climatology
where understanding by the public is paramount [46-48].
However, they are unlikely to replace the standard and
relative SD in metrology and laboratory medicine in the
short term.

Rili-BAK and root mean square

The German guidelines for quality assurance for medical
laboratory examinations Rili-BAK [49, 50] express uncer-
tainty related to a target value as the “root mean square” as
follows:
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N | R
A= HZ(XI Xo) )

Where Arepresents the root mean square of the measure-
ment deviation from the target value, x, represents the
target value, x; represents an individual measurement
value, and n is the number of individual values used for
calculation.

When SD (s) and the bias (6) are determined, e.g., in
external quality assurance and are used to calculate the root
mean square, the following relation is used:

"T_ls2 + 8 ©)

A=

The Rili-BAK root mean square statistic has proven
appropriate for including the bias found in proficiency
testing in uncertainty calculations. It is accompanied by
corresponding required performance limits.

Reproducibility measurement uncertainty

The ultimate goal is to optimize the quality of the total (pre-
analytical/analytical/post-analytical) examination process.
Therefore, going beyond setting the current APS [9] and
establishing the examination performance specifications
[51] would be desirable. In principle, the performance
specifications of the pre-and post-analytical laboratory
processes should follow the same models as for APS. When
these additional phases’ components can be expressed
numerically, they could and should be added to the exam-
ination performance specifications. In other situations,
pre- and post-APS will be best represented by separate
quality indicators [9].

Bias is the difference between the mean value of
measurement results obtained by a laboratory and the true
or reference value [30]. It is especially important in clinical
chemistry to differentiate between a major and minor bias
caused, e.g., by calibrations and lot changes. Minor bias
will, over time, become part of reproducibility imprecision
and intermediate reproducibility. Major bias should be
corrected by appropriate service and calibration of the
measuring systems and preferably not by factorization, as
there is a risk that factorization over time will increase the
overall uncertainty of the measurement results in the
healthcare system.

Parametric inferential statistics require the elimina-
tion of bias. The absence of bias is an idealized situation
rarely fully realized in a healthcare system encompassing
multiple laboratories and IVD MDs. Whether these shifts
are counted when calculating SD for establishing limits for
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quality control is open to debate. From the outset of the
practice of process control, Walter Shewhart recommended a
pragmatic approach to deal with this by incorporating in the
control limits all factors causing variation over extended pe-
riods [52, 53]. Including bias in calculating the intermediate
reproducibility measurement uncertainty [54, 55] in labora-
tories serving a healthcare system is appropriate since it
represents a substantial component of the uncertainty,
which needs to be compared to the APS.

The RMSD is a preferred measure of variation [55] since
it can include both random and systematic errors. A major
bias precludes the proper use of parametric methods for
significance testing, but the analysis of variance components
is still valid. RMSD, including the analysis of the components
of uncertainty, is valuable for directing strategic and
detailed measures of improvements in the laboratories
serving the healthcare system. Whether statistics should
primarily be used for making decisions [17, 18, 56, 57] or for
investigating factors causing variation [58] continues to be
amongst the most compelling causes of disagreements in
statistics [59]. Statistics for making decisions have tradi-
tionally been favored in the science and practice of clinical
chemistry, probably because quality control and the use of
measurement results in clinical medicine are primary
activities in the specialty. However, in the current situation
where there is a need to decrease measurement and diag-
nostic uncertainty in the laboratories in attempts to fulfill
APS, there is a need to identify the factors that primarily
cause variation in different circumstances to make effective
and cost-effective strategic decisions aimed at decreasing
measurement uncertainty in the interest of fulfilling APS.
Ranking the influences of the factors causing variation using
nested ANOVA (analysis of variance) or RMSD does not as-
sume normality or any other statistical distributions for the
model effects. However, when any statistical test is used for
testing differences between means or medians or confidence
intervals are to be estimated, assumptions of normal dis-
tributions for the effects of the model are needed.

Variance components

In 1861, the astronomer Airy [60] pioneered in elucidating
and reporting that random and systematic factors influ-
enced the results of his measurements. In 1918, Ronald
Fisher [61] ascribed percentages of the total variation in a
genetic trait to its constituent causes and published in 1925
[62] a method of estimating the size of uncertainty from the
different factors using sums of squares of deviations from
the mean. Analysis of variance is used for inference and
applies probability distributions, whereas the analysis of
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variance components quantifies components of variation by
mathematical methods. As Fisher wrote to George Snedecor
in 1934 “The analysis of variance is not a mathematical
theorem but a simple method of arranging arithmetical facts
to isolate and display the essential features of a body of data
with the utmost simplicity” [63].

The ISO 5725 series of standards, especially ISO 5725-3:2003
Accuracy (trueness and precision) of measurement methods
and results — part 3: Intermediate measures of the precision of
a standard measurement method [28] and the R-package for
variance component analysis (https:/cran.r-project.org/web/
packages/VCA/vignettes/VCA_package_vignette.html), together
with large general statistical packages such as SPSS and
laboratory specific software such as Analyse-IT are espe-
cially valuable for estimating components of variation
(Figure 2). Even the common task of calculating within and
between series components of variation commonly needs
improvements [64, 65].

Complex variance component analysis may seem over-
whelming and unnecessary. A practical alternative is to use an
indexed database with information about the laboratory,
groups of measurands, the measuring systems, measurands,
control material, date and time, and the results for calculating
the within- and between days RMSD [65] in different perspec-
tives (Figure 4) thus indicating the major causes of variation.

Graphical display of the results over time, the mean, and
the within- and between-days RMSD of the results in the
chosen perspectives provide useful evidence for identifying
the most influential factors causing measurement uncer-
tainty (Table 2).

An unequal number of results daily (unbalanced data)
is common in clinical chemistry and a confounder when
calculating within- and between-day RMSD. Using algo-
rithms compensating for this is recommended [65, 67].

Reproducibility measurement uncertainty

Optimizing the quality of the total (pre-analytical/analyt-
ical/post-analytical) examination process is the goal.
Therefore, going beyond setting APS and establishing ex-
amination performance specifications would be desirable.
In principle, the performance specifications of the pre- and
post-analytical laboratory processes should follow the
same models as for APS. When these additional phases’
components can be expressed numerically, they could and
should be added to the examination performance specifi-
cations. In other situations, pre- and post-APS will be best
represented by separate quality indicators [9].

As discussed here, APS in healthcare systems assembling
multiple laboratories is debatable. Uncertainties estimated by


https://cran.r-project.org/web/packages/VCA/vignettes/VCA_package_vignette.html
https://cran.r-project.org/web/packages/VCA/vignettes/VCA_package_vignette.html

DE GRUYTER

Theodorsson: Analytical performance specifications in healthcare systems =—— 1525

Measuring
site
(laboratory)
uncertainty

Measuring
system
uncertainty

Reagent
lot uncer-
tainty

Calibrator
lot
uncertainty

Reference
value

Operator
uncertainty

Repeatability
uncertainty

Measurement
uncertainty

Figure 2: Illustration of the components of variation commonly causing variation when analyzing HS. The colored boxes show variation components
normally accounted for in variance component analysis. The calibrator- and reagent lot uncertainties are calculated by the manufacturers, and if there is a
single measurement procedure used and a minimum of lot changes, the Figure provided by the manufacturer for the single measuring system
intermediate imprecision will include the calibrator- and reagent lot uncertainties.

Table 2: Perspectives when calculating the RMSD [65] in healthcare systems assembling multiple laboratories and measuring systems [66]. The laboratory
manager is probably interested in seeing the results of her/his laboratory from the perspective of groups of measurands, measurement systems, measurand, and
control materials. The manager of a group of measurands (e.g., hormones) is interested in all control results from a relevant group of measuring systems, etc.

Control material

Date andtime

Result

Laboratory Group Measuring system |[Measurand Control material
Group Measuring system |Measurand Control material |Date andtime
Measuring system [Measurand Control material Date andtime Result
Measurand Control material Date and time Result

Date andtime Result

Result

statistical methods, including hiological variation and state-of-
the-art variation, are conveniently available, established, and
understood. Other uncertainties are likely to decrease as
concerted efforts reduce pre- and post-analytical variation,
measuring systems become more selective, less influenced by
matrix effects, and subject to better clinical studies regarding
the effects of measurement results on clinical outcomes.

As manufacturers and end-users make the state-of-the-art
reproducibility of IVD MD available, it may be tempting to favor
the best performers regarding intermediate reproducibility
measurement uncertainty, leading indirectly to the elimination
of others. However, other important quality perspectives must
be considered, such as cost-effectiveness, analytical selectivity,
the influence of matrix effects, and convenience. While the
patient’s interests are the prime concern, these need to be
balanced against manufacturers’ capability. It is, e.g., not a goal

that manufacturers go out of business simply due to interme-
diate reproducibility performance ranking, thereby limiting
the available competition.

Uncertainty of the traceability to
higher-order references

The uncertainty of the traceability to higher-order refer-
ences is usually the most quantitatively important single
component of the uncertainty of the measurement results
in patient samples [68, 69]. The higher-order references are
the linkage of quantities of measurands to SI units, a
certified value of a reference material, the value assigned
using a reference measurement procedure, the value
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assigned to an international conventional calibrator, and
the values assigned through an international harmoniza-
tion protocol. The traceability uncertainty to higher-order
references is usually in the hands of manufacturers of
reference materials, calibrators, and reagents. Results
when measuring reference materials from different man-
ufacturers for the same measurand should be equivalent
[19]. However, that is not always the case, e.g., due to
selectivity- and commutability issues.

Estimates of bias using commutable
samples

Equivalent results [19] of measurements of measurands in
human samples, measured using different end-user IVD
MDs, are essential for applying clinical practice guidelines
for diagnosis, treatment, monitoring, or risk assessment.
Using human samples to investigate the bias between
results from IVD MDs [70-73] is intuitively appropriate
since the sample matrix in human samples is routinely
encountered, and single-donor fresh human samples are
usually commutable. In proficiency testing schemes
involving IVD MDs from numerous manufacturers, matrix
effects are usually offered as explanations when bias is found
between IVD MDs using stabilized control samples. When
claiming commutability for any material, it formally needs to
be tested using all involved IVD MD [74]. Using human samples
in split sample schemes is a feasible and economical alternative
without formal commutability testing. However, possible
commutability issues between IVD MDs need to be identified by
studies of numerous split samples over weeks and months
since human samples are not always commutable.

The use of certified reference materials and reference
measurement procedures are the cornerstones of trueness in
laboratory medicine. Even though manufacturers use such
metrological references, there is always a need to monitor
the trueness of end-user IVD MDs, especially since they
commonly use measuring systems, calibrators, and reagents
from different manufacturers. The chosen monitoring
method depends on the available resources, circumstances,
measurement systems, and information technology facilities.
The more numerous measurement systems and procedures
are involved, the more pronounced the need to use direct and
indirect patient sample-based monitoring methods to ensure
the intended equivalence of measurement results.

In 1965 Hoffmann and Waid proposed the “average of
normals” method (AON) for detecting bias in laboratory
medicine [75]. They truncated the results by only including
results within the central 95% reference interval when
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calculating daily mean values. AON is especially valuable for
measurands with low biological variation. In 1974 Bull and
Elashoff [76, 77] introduced the weighted moving averages of
red blood cell indices of at least 20 patient results and the
mean value of the previous batch of 20 values to moderate
the variations in the moving average [78]. Weighted moving
averages have subsequently become a standard graphical
and statistical tool in the software of automated hematology
analyzers. As practiced by Hoffman & Waid, the method of
moving averages has been shown to have less sensitivity for
detecting bias than stable control materials for measurands
in clinical chemistry [79-81]. However, improvements in
measurement systems and procedures have enabled a sub-
stantially decreased frequency of internal quality control
samples analyzed daily to save costs. Improved information
technology has simultaneously improved the procedures for
implementing various forms of the AON. Tony Badrick and
coworkers have even proposed replacing traditional inter-
nal quality control with a combination of AON and “real
time” External Quality Assurance [78, 82-85].

In 2018 Linda Thienpont and Dietmar Stockl presented
the Percentiler and Flagger applications, which are well
suited for investigating bias [86]. The Percentiler calculates
the measuring system-specific daily medians of selected
measurands, and the Flagger calculates the percentage of
patient results outside the reference limits and evaluates
them against the stability limits based on the effect of
analytical instability on surrogate medical decisions [86]. A
very important and novel property of Percentiler and Flagger
is that they enable laboratories to compare their results to
other laboratories regionally, nationally, and internationally
[87]. Percentiler and Flagger are currently being unified and
updated, and the new version will be released shortly [87].

All persons involved in the laboratories should share
responsibility for the quality of the measurements of the
measurand they are involved in measuring and share ac-
cess to all necessary quality-related data. In a split-sample
scheme for multiple laboratories [30-32], one IVD MD may
be appointed as a mentor/master. Important criteria when
appointing such mentors is that their trueness is especially
well established, maintained, and monitored, e.g., by
participating in proficiency testing schemes, of which at
least one is based on reference measurement procedures.
Another important criterion for a mentor IVD MD is that it
isnear a transport hub the laboratories use to send samples
to referral laboratories. The point is that the same organi-
zation will be used for the split samples as for the samples
sent to referral laboratories. Furthermore, since the split-
sample scheme increases the number of measurements
performed by the mentor IVD MD, the cost per measure-
ment on the mentor IVD MD must be as modest as possible.
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Figure 3: The mentor IVD MD should be located amongst the multiple
laboratories so that the same logistic is used for sending samples to
referral laboratories as for the split samples.

This means that a reference measurement procedure is
seldom the first choice for a mentor IVD MD, even though it
serves as a cornerstone in the quality organization of the
laboratories. There will be one, and only one, IVD MD
appointed for each measurand by the laboratories. The IVD
MDs measuring the part of the split sample not sent to the
mentor are categorized as adepts (Figure 3).

Importantly, the fundamental role of EQA is the
assessing and reduction of patient risks among several lab-
oratories and IVD MDs. A possible decrease in the number
of participating laboratories and IVD MD in a healthcare
system based on split-sample measurement results must
be carefully considered. The risks in a healthcare system
assembling multiple laboratories and IVD MDs are greater
than those of a single laboratory and IVD MD.

The laboratories can appoint laboratory professionals to
mentor groups for appropriate parts of the assortment of
measurands that the laboratory organization provides, e.g.,
hormones, electrolytes, blood gases, hematology, coagula-
tion, etc. The role of the mentor groups is to monitor and
improve the equivalence of the measurement results within
their scope of measurands using results of internal quality
control, proficiency testing, split-sample schemes,

Measuring system
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accreditation, analysis of variance component analyses, etc.
The mentor groups are primary resources for trouble-
shooting, corrective actions, and strategic planning within
their field. Their task is to ensure the equivalence of labo-
ratory results in the entire healthcare system (Figure 4).

Two main principles must guide which samples are
employed as split samples: Samples for a particular meas-
urand should be sent regularly at agreed time intervals, and
as much of the concentration intervals seen in the laboratory
as possible should be covered within one year. No extra
measurement is performed on the part of the split sample of
the adept since the actual measurand has already been
analyzed in that sample.

Once a decision is made that an already analyzed
sample should be a split sample, the sample tube should be
labeled with a new bar code number as a split control
sample, and the results should be registered in the database
for control results. This new label and the information in
the laboratory information system should further identify
the measurand, the adept IVD MD, the site, the mentor
group, and the operator. When the split control sample
arrives at the mentor, no handling other than entering the
tube into the total automation system should be required [66].

Split samples should not replace participation in pro-
ficiency testing due to the need for comparison with labo-
ratories outside the healthcare system, accreditation, and
other regulatory requirements. However, a comprehen-
sively performed split sample scheme combined with a
well-designed internal quality control scheme using stabi-
lized materials can reduce the number of IVD MDs required
to participate in proficiency testing schemes.

A proper estimate of bias requires replicates of mea-
surements of reference samples [30, 88]. A single measure-
ment of a split sample by an adept and a mentor represents
only one of the many data required to establish that a bias is

Mentor group
hematology

Mentor group

hormones

Mentor group
coagulation

Figure 4: Task structure of laboratories serving
a healthcare system. Four laboratories, A to D,
and at least four mentor groups are illustrated
here. The mentor groups are tasked with
fulfilling the overall APS across the

laboratories.

Mentor group
enzymes
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present. Furthermore, some samples may present matrix
effects, requiring the elimination of outliers [69]. Since the
concentrations in the split samples vary over the common
measurement intervals in the human sample, each pair of
adept-mentor result analysis is therefore normalized as
follows:

Adept — Mentor

1
Mentor 00

Normalized result (%) = @)

to show the relative bias as a percentage. Importantly,
the original adept and mentor results must be registered
with the normalized results to display and calculate the ef-
fect of the concentration level.

Knowledge of the precision profile of measurement
systems is crucial for interpreting bias and imprecision
[89-91], including the study of normalized results of the
measurement of split samples. A recent R-package for
calculating comprehensive precision profiles is available
[92]. Identifying the relative influence of the quantitatively
most important components of measurement uncertainty
for the measurands in a healthcare system provides crucial
quality improvement tools. Minimizing the number of
different IVD MD used and purchasing larger reagents and
calibrator lots contribute to minimizing the risk of bias and
its contribution to measurement uncertainty.

For information

The theoretical approaches and practical implementations
described in the manuscript were programmed and imple-
mented in a client-server computer system QM, originally
developed from 1995 to 2002, earlier described, e.g. in [31, 66].
The system is widely used in the Nordic countries.

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions: The author has accepted respon-
sibility for the entire content of this manuscript and
approved its submission.

Competing interests: The author states no conflict of
interest.

Research funding: None declared.

Data availability: Not applicable.

References

1. Laessig RH. Medical need for quality specifications within laboratory
medicine. Ups ] Med Sci 1990;95:233-44.

2. Tonks DB. A study of the accuracy and precision of clinical chemistry
determinations in 170 Canadian laboratories. Clin Chem 1963;9:217-33.

1.

12.

13.

20.

21.

DE GRUYTER

. Biittner J. History of clinical chemistry. Berlin, New York: Walter de

Gruyter; 1983.

. Elevitch FR. Proceedings of the 1976 Aspen conference on analytical

goals in clinical chemistry. In: Analytical goals in clinical chemistry.
Skokie, II: College of American Pathologists; 1977.

. Elevitch FR. Analytical goals in clinical chemistry: their relationship to

medical care. Am ] Clin Pathol 1979;71:624-30.

. de Verdier CH, Groth T, Hyltoft Petersen P. Medical need for quality

specifications—a NORDKEM project for selecting the appropriate
quality in clinical laboratories. Scand J Clin Lab Invest 1993;215:29-37.

. Kenny D, Fraser CG, Petersen PH, Kallner A. Consensus agreement.

Scand J Clin Lab Invest 1999;59:585.

. Fraser CG. The 1999 Stockholm Consensus Conference on quality

specifications in laboratory medicine. Clin Chem Lab Med 2015;53:
837-40.

. Sandberg S, Fraser CG, Horvath AR, Jansen R, Jones G, Oosterhuis W,

et al. Defining analytical performance specifications: consensus
statement from the 1st strategic conference of the European
federation of clinical chemistry and laboratory medicine. Clin Chem Lab
Med 2015;53:833-5.

. JCGM. Evaluation of measurement data — guide to the expression of

uncertainty in measurement. JCGM 100:2008, GUM 1995 with minor
corrections. Joint Committee for Guides in Metrology; 2008. Available
from: http://www.bipm.org/utils/common/documents/jcgm/JCGM_
100_2008_E.pdf.

Westgard JO, Carey RN, Wold S. Criteria for judging precision and
accuracy in method development and evaluation. Clin Chem 1974;20:
825-33.

Bureau International des Poids et Mesures. International vocabulary of
metrology — basic and general concepts and associated terms (VIM 3).
https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_
2012.pdf [Accessed 8 Apr 2019].

Jones GRD, Albarede S, Kesseler D, MacKenzie F, Mammen |,
Pedersen M, et al. Analytical performance specifications for external
quality assessment - definitions and descriptions. Clin Chem Lab Med
2017;55:949-55.

. Jones GR. Analytical performance specifications for EQA schemes -

need for harmonisation. Clin Chem Lab Med 2015;53:919-24.

. Thelen MHM, Jansen RTP, Weykamp CW, Steigstra H, Meijer R,

Cobbaert CM. Expressing analytical performance from multi-sample
evaluation in laboratory EQA. Clin Chem Lab Med 2017;55:1509-16.

. Thompson M, Fearn T. What exactly is fitness for purpose in analytical

measurement? Analyst 1996;121:275-8.

. CLSL EP54-A-IR verification of comparability of patient results within

one health care system; approved guideline (interim revision). Wayne,
PA: Clinical and Laboratory Standards Institute; 2012.

. CLSI. EP31-A-IR verification of comparability of patient results within

one health care system; approved guidelines (interim revision). Wayne,
PA: Clinical and Laboratory Standards Institute; 2017.

. IS0 17511:2020. In vitro diagnostic medical devices — requirements for

establishing metrological traceability of values assigned to calibrators,
trueness control materials and human samples. In:

Technical Committee, editors. ISO/TC 212 clinical laboratory testing
and in vitro diagnostic test systems. Geneva, Switzerland: International
Organization for Standardization; 2020.

Willink R. An approach to uncertainty analysis emphasizing a natural
expectation of a client. Adv Math Comput Tools Metrol VII 2006;72:
344-9.

De Bievre P. Fitness for purpose is different from a performance
specification. Accred Qual Assur 2007;12:501.


http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf

DE GRUYTER

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Vessman J, Stefan R, Van Staden JF, Danzer K, Lindner W, Burns DT,
et al. Selectivity in analytical chemistry - (IUPAC Recommendations
2001). Pure Appl Chem 2001;73:1381-6.

Rappold BA. Mass spectrometry selectivity, specifically. Clin Chem
2016;62:154-6.

Valcarcel M, Rios A. Selectivity in analytical-chemistry. Analysis 1990;18:
469-75.

Rigo-Bonnin R, Munoz-Provencio D, Canalias F. Reference change
values based on uncertainty models. Clin Biochem 2020;80:31-41.
Magnusson B, Ossowicki H, Rienitz O, Theodorsson E. Routine internal-
and external-quality control data in clinical laboratories for estimating
measurement and diagnostic uncertainty using GUM principles. Scand
J Clin Lab Invest 2012;72:212-20.

ISO 5725-1:2003. Accuracy (trueness and precision) of measurement
methods and results: part 1: general principles and definitions. In:
Technical Committee, editors. ISO/TC 69/SC 6 measurement methods
and results. Geneva, Switzerland: International Organization for
Standardization; 2003.

ISO 5725-3:2003. Accuracy (trueness and precision) of measurement
methods and results: intermediate measures of precision of a standard
measurement method. In: Technical Committee, editors. ISO/TC 69/5C
6 measurement methods and results. Geneva, Switzerland:
International Organization for Standardization; 2003.

Fraser CG, Petersen PH. The importance of imprecision. Ann Clin
Biochem 1991;28:207-11.

Theodorsson E, Magnusson B, Leito L. Bias in clinical chemistry.
Bioanalysis 2014;6:2855-75.

Theodorsson E. Validation and verification of measurement methods in
clinical chemistry. Bioanalysis 2012;4:305-20.

Theodorsson E. Quality assurance in clinical chemistry: a touch of
statistics and a lot of common sense. | Med Biochem 2016;35:103-12.
Milinkovic N, Ignjatovic S, Sumarac Z, Majkic-Singh N. Uncertainty of
measurement in laboratory medicine. ] Med Biochem 2018;37:279-88.
Kallner A, Theodorsson E. An experimental study of methods for the
analysis of variance components in the inference of laboratory
information. Scand ] Clin Lab Invest 2020;80:73-80.

Coskun A. Bias in laboratory medicine: the dark side of the moon. Ann
Lab Med 2024;44:6-20.

ISO/TS 20914:2019. Medical laboratories — practical guidance for the
estimation of measurement uncertainty. Geneva: The International
Organization for Standardization; 2019.

Plebani M, Zaninotto M. Lot-to-lot variation: no longer a neglected
issue. Clin Chem Lab Med 2022;60:645-6.

Loh TP, Sandberg S, Horvath AR. Lot-to-lot reagent verification:
challenges and possible solutions. Clin Chem Lab Med 2022;60:675-80.
Braga F, Pasqualetti S, Borrillo F, Capoferri A, Chibireva M, Rovegno L,
et al. Definition and application of performance specifications for
measurement uncertainty of 23 common laboratory tests: linking
theory to daily practice. Clin Chem Lab Med 2023;61:213-23.

Bais R, Armbruster D, Jansen RT, Klee G, Panteghini M, PassarelliJ, et al.
Defining acceptable limits for the metrological traceability of specific
measurands. Clin Chem Lab Med 2013;51:973-9.

Lawrynowicz K. Friedrich Wilhelm Bessel 1784-1846. Basel: Birkhduser
Verlag; 1995.

Pearson ES. Studies in the history of probability and statistics. XIV some
incidents in the early history of biometry and statistics, 1890-94.
Biometrika 1965;52:3-18.

Magnello ME. Karl Pearson’s Gresham lectures: W.F.R. Weldon,
speciation and the origins of Pearsonian statistics. Brit J Hist Sci 1996;
29:43-63.

Theodorsson

: Analytical performance specifications in healthcare systems =—— 1529

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Stigler SM. The history of statistics. The measurement of uncertainity
before 1900. Cambridge, Massachusetts: The Belknap Press of Harvard
University Press; 1986.

Pearson K. Contributions to the mathemathical theory of evolution.
Philos Trans R Soc London A 1894;185:71-110.

Willmott CJ, Matsuura K, Robeson SM. Ambiguities inherent in
sums-of-squares-based error statistics. Atmos Environ 2009;43:
749-52.

Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute
error (MAE)? - arguments against avoiding RMSE in the literature.
Geosci Model Dev 2014,7:1247-50.

Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model
performance. Clim Res 2005;30:79-82.

Bundesdrztekammer. Revision of the “guideline of the German
medical association on quality assurance in medical laboratory
examinations - RiliBAEK”. | Lab Med 2015;39:26-69.
Bundesarztekammer. Richtlinie der Bundesarztekammer zur
Qualitatssicherung laboratoriumsmedizinischer Untersuchungen
GemaR dem Beschluss des Vorstands der Bundesarztekammer
vom 11.04.2014 und 20.06.2014. Dtsch Arztebl 2014;111:A1583-618.
Nordin G, Dybkaer R, Forsum U, Fuentes-Arderiu X, Pontet F.
Vocabulary on nominal property, examination, and related concepts
for clinical laboratory sciences (IFCC-IUPAC Recommendations 2017).
Pure Appl Chem 2018;90:913-35.

Shewhart WA. Statistical method from the viewpoint of quality control.
New York: Dover Publications; 1939.

Shewhart WA. Economic control of quality of manufactured product.
New York: D. Van Nostrand Company; 1923.

MacDonald R. Quality assessment of quantitative analytical results in
laboratory medicine by root mean square of measurement deviation.
Lab Med 2006;30:111-7.

Coskun A, Theodorsson E, Oosterhuis WP, Sandberg S, European
Federation of Clinical C, Laboratory Medicine T, et al. Measurement
uncertainty for practical use. Clin Chim Acta 2022;531:352-60.

Wald A. Statistical decision functions. New York: John Wiley & Sons, Inc.;
1950.

Fisher LEL. Neyman, and the creation of classical statistics. New York,
NY: Springer; 2011, vol viii:115 p.

Searle SR, Casella G, McCullogh CE. Variance components. New York:
John Wiley & Sons, Inc.; 1992.

Acree MC. The myth of statistical inference. Switzerland: Springer
Nature; 2021.

Airy GB. On the algebraical and numerical theory of errors of
observations and the combinations of observations. Cambridge and
London: Macmillan and Co.; 1861, vol xvi:103 p.

Fisher RA The correlation between relatives on the supposition of
Mendelian inheritance. Edinburgh: Transactions of the Royal Society;
1918, vol 52:399-433 pp.

Fisher RA. Statistical methods for research workers. Edinburgh,
London: Oliver and Boyd; 1925, vol ix:1 p.

Searle SR, Casella G, McCullogh CE. Variance components. New York:
John Wiley & Sons, Inc.; 2006.

Krouwer JS. Observations on comparisons of within-run and day-to-day
precision. Clin Chem 1981;27:202.

Aronsson T, Groth T. Nested control procedures for internal analytical
quality control. Theoretical design and practical evaluation. Scand ] Clin
Lab Invest Suppl 1984;172:51-64.

Norheim S. Computer support simplifying uncertainty estimation using
patient samples. Sweden: Department of Biomedical Engineering,



1530 —— Theodorsson: Analytical performance specifications in healthcare systems

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

78.

79.

Linkoping University; 2008. Available from: http://liu.diva-portal.org/
smash/record.jsf?pid=diva2:417298.

Sahai H, Ojeda MM. Analysis of variance for random models: volume II,
unbalanced data: theory, methods, applications, and data analysis.
Boston: Birkhaduser; 2004.

ISO 17511:2003. In vitro diagnostic medical devices - measurement of
quantities in biological samples - metrological traceability of values
assigned to calibrators and control materials. Technical Committee
CEN/TC 140 In vitro diagnostic devices in collaboration with Tecnical
Committee ISO/TC 212 clinical laboratory testing and in vitro diagnostic
test systems. Geneva, Switzerland: International Organization for
Standardization; 2003.

IS0 21151:2020. In vitro diagnostic medical devices — requirements for
International harmonisation protocols establishing metrological
traceability of values assigned to calibrators and human samples. In:
Technical Committee, editors. ISO/TC 212 clinical laboratory testing
and in vitro diagnostic test systems. Geneva, Switzerland: International
Organization for Standardization; 2020.

Shahangian S, Cohn RD, Gaunt EE, Krolak JM. System to monitor a
portion of the total testing process in medical clinics and laboratories:
evaluation of a split-specimen design. Clin Chem 1999;45:269-80.
Connett JE, Lee WW. Estimation of the coefficient of variation from
laboratory analysis of split specimens for quality-control in clinical-
trials. Contr Clin Trials 1990;11:24-36.

Miller WG. Specimen materials, target values and commutability for
external quality assessment (proficiency testing) schemes. Clin Chim
Acta 2003;327:25-37.

Miller WG, Jones GR, Horowitz GL, Weykamp C. Proficiency testing/
external quality assessment: current challenges and future directions.
Clin Chem 2011;57:1670-80.

Evaluation of commutability of processed samples, 4th ed. Malvern, PA:
Clinical and Laboratory Standards Institute; 2022.

Hoffmann RG, Waid ME. The “average of normals” method of quality
control. Am J Clin Pathol 1965;43:134-41.

Bull B, Elashoff RM. The use of patient-derived hematology data in
quality control. Proc San Diego Biomed Symp 1974;13:515-9.

. Bull BS, Elashoff RM, Heilborn DC, Couperus J. A study of various

estimators for the derivation of quality control procedures from patient
erythrocyte indices. Am ] Clin Pathol 1974;61:473-81.

Zhou QQ, Loh ZP, Badrick T, Lim CYE. Impact of combining data from
multiple instruments on performance of patient-based real-time
quality control. Biochem Med 2021;31:1-7.

Kilgariff M, Owen JA. An assessment of the “average of normals” quality
conrol method. Clin Chim Acta 1968;19:175-9.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

DE GRUYTER

Amador E, Hsi BP, Massod MF. An evaluation of the “average of
normals” and related methods of quality control. Am ] Clin Pathol 1968;
50:369-78.

Cembrowski GS, Chandler EP, Westgard JO. Assessment of “Average of
Normals” quality control procedures and guidelines for
implementation. Am J Clin Pathol 1984;81:492-9.

Badrick T, Graham P. Can a combination of average of normals and
“real time” external quality assurance replace internal quality control?
Clin Chem Lab Med 2018;56:549-53.

van Rossum HH, Bietenbeck A, Cervinski MA, Katayev A, Loh TP,
Badrick TC. Benefits, limitations and controversies on patient-based
real-time quality control (PBRTQC) and the evidence behind the
practice. Clin Chem Lab Med 2021;59:1213-20.

Loh TP, Bietenbeck A, Cervinski MA, van Rossum HH, Katayev A,
Badrick T, et al. Recommendation for performance verification of
patient-based real-time quality control. Clin Chem Lab Med 2020;58:
1205-13.

Badrick T, Bietenbeck A, Cervinski MA, Katayev A, van Rossum HH,
Loh TP, et al. Patient-based real-time quality control: review and
recommendations. Clin Chem 2019;65:962-71.

Thienpont LM, Stockl D. Percentiler and Flagger - low-cost, on-line
monitoring of laboratory and manufacturer data and significant surplus
to current external quality assessment. | Lab Med 2018;42:289-96.
NOKLUS. The percentiler and flagger programs. Bergen, Norway:
NOKLUS. https://www.noklus.no/en/the-percentiler-and-flagger-
programs/ [Accessed 16 Oct 2023].

Becker D, Christensen R, Currie L, Diamondstone K, Eberhardt KR,
Gills T, et al. Use of NIST standard reference materials for decisions
on performance of analytical chemical methods and laboratories.
Gaithersburg: National Institute of Standards and Technology;
1992.

Sanchez-Alvarez J, Cano-Corres R, Corral-Comesana S, Fuentes-
Arderiu X. Heteroscedasticity and homoscedasticity, and precision
profiles in clinical laboratory sciences. Clin Chim Acta 2011;412:2351-2.
Sadler WA, Smith MH. Use and abuse of imprecision profiles - some
pitfalls illustrated by computing and plotting confidence-intervals. Clin
Chem 1990;36:1346-50.

Kallner A, Petersmann A, Nauck M, Theodorsson E. Measurement
repeatability profiles of eight frequently requested measurands in
clinical chemistry determined by duplicate measurements of patient
samples. Scand J Clin Lab Invest 2020;80:202-9.

Schuetzenmeister A. Precision profiles with R-package VFP. 2022.
Available from: https://cran.r-project.org/web/packages/VFP/
vignettes/VFP_package_vignette.html.


http://liu.diva-portal.org/smash/record.jsf?pid=diva2:417298
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:417298
https://www.noklus.no/en/the-percentiler-and-flagger-programs/
https://www.noklus.no/en/the-percentiler-and-flagger-programs/
https://cran.r-project.org/web/packages/VFP/vignettes/VFP_package_vignette.html
https://cran.r-project.org/web/packages/VFP/vignettes/VFP_package_vignette.html

	Issues in assessing analytical performance specifications in healthcare systems assembling multiple laboratories and measur ...
	Analytical performance specifications
	Including bias in uncertainty calculations
	Root mean squares deviation (RMSD)
	SD
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