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Abstract

Objectives: Misidentification errors in tumor marker tests
can lead to serious diagnostic and treatment errors. This
study aims to develop a method for detecting these errors
using a machine learning (ML)-based delta check approach,
overcoming limitations of conventional methods.

Methods: We analyzed five tumor marker test results:
alpha-fetoprotein (AFP), cancer antigen 19-9 (CA19-9), cancer
antigen 125 (CA125), carcinoembryonic antigen (CEA), and
prostate-specific antigen (PSA). A total of 246,261 records
were used in the analysis. Of these, 179,929 records were
used for model training and 66,332 records for performance
evaluation. We developed a misidentification error detec-
tion model based on the random forest (RF) and deep neural
network (DNN) methods. We performed an in silico simu-
lation with 1% random sample shuffling. The performance

Sollip Kim and Hangsik Shin contributed equally to this work.

*Corresponding authors: Sollip Kim, MD, PhD, Department of Laboratory
Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88,
Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea, Phone: 82 2
3010 4553, Fax: +82 2 2045 3081, E-mail: sollip_kim@amc.seoul.kr, Web of
Science ResearcherID: E-8546-2011. https://orcid.org/0000-0003-0474-
5897; and Hangsik Shin, PhD, Department of Digital Medicine, Asan
Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro
43-gil, Songpa-gu, Seoul 05505, Republic of Korea, Phone: 82 23010 2099,
Fax: +82 2 3010 4182, E-mail: hangsik.shin@amc.seoul.kr, Web of Science
ResearcherID: JFL-1492-2023. https://orcid.org/0000-0002-3353-0310
Hyeon Seok Seok, Interdisciplinary Program of Biomedical Engineering,
Chonnam National University, Yeosu, Republic of Korea. https://orcid.org/
0000-0001-8144-2190

Yuna Choi, Department of Laboratory Medicine, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Republic of Korea. https://
orcid.org/0000-0001-7869-5015

Shinae Yu, Department of Laboratory Medicine, Haeundae Paik Hospital,
Inje University College of Medicine, Busan, Republic of Korea. https://
orcid.org/0000-0002-9527-5853

Kyung-Hwa Shin, Department of Laboratory Medicine and Biomedical
Research Institute, Pusan National University Hospital, Busan, Republic of
Korea. https://orcid.org/0000-0002-8454-4448

of the developed models was evaluated and compared to
conventional delta check methods such as delta percent
change (DPC), absolute DPC (absDPC), and reference change
values (RCV).

Results: The DNN model outperformed the RF, DPC, absDPC,
and RCV methods in detecting sample misidentification er-
rors. It achieved balanced accuracies of 0.828, 0.842, 0.792,
0.818, and 0.833 for AFP, CA19-9, CA125, CEA, and PSA,
respectively. Although the RF method performed better than
DPC and absDPC, it showed similar or lower performance
compared to RCV.

Conclusions: Our research results demonstrate that an
ML-based delta check method can more effectively detect
sample misidentification errors compared to conventional
delta check methods. In particular, the DNN model demon-
strated superior and stable detection performance compared
to the RF, DPC, absDPC, and RCV methods.

Keywords: artificial intelligence; autoverification; deep
neural network; delta check; machine learning; tumor
markers

Introduction

Tumor markers are helpful in diagnosing, prognosticating,
and monitoring cancer treatment [1]. Accurate tumor
marker test results are essential for proper use. We analyzed
five commonly used tumor markers: alpha-fetoprotein
(AFP), carbohydrate antigen 19-9 (CA 19-9), cancer antigen
125 (CA-125), carcinoembryonic antigen (CEA), and prostate-
specific antigen (PSA). AFP is used to aid in diagnosis of
hepatocellular carcinoma and to screen high-risk patients,
and low AFP values after treatment are associated with a
favorable prognosis. CA 19-9 and CA-125 are used to aid in
diagnosis of pancreatic ductal adenocarcinoma and monitor
treatment efficacy for pancreatic and ovarian cancer,
respectively. CEA is mostly used for monitoring the treat-
ment efficacy of metastatic colorectal cancer and is used as
an adjunct to diagnosis due to its high specificity for colo-
rectal cancer, and a high CEA measurement is a marker of
poor prognosis. PSA is used to aid in the diagnosis and
monitoring of the treatment efficacy of prostate cancer.
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In the clinical laboratory testing process, preanalytical
errors can occur during sample collection, handling, or
transportation, leading to erroneous results [2]. These
errors account for 60-70 % of all testing errors [3], with the
majority (about 75 %) attributed to sample quality issues
such as hemolysis or sample clotting [2]. These errors are
mostly detected during the testing process and the clinical
laboratory either rejects the sample based on the degree of
hemolysis or proceeds to the next process with a comment on
the sample quality (e.g., “hemolysis may affect the test re-
sults”) in the test report, along with the test results [4]. How-
ever, sample misidentification errors — although comprising
only about 0.3 % of all preanalytical errors [2] — can lead to
serious consequences when one patient’s results are errone-
ously associated with another’s, leading to diagnostic and
therapeutic mistakes.

To avoid preanalytical errors, clinical laboratory
investigators use various verification methods before
reporting test results. One strategy is a delta check, which
alerts laboratory personnel to potential errors if the dif-
ference between the last and current test results exceeds a
certain threshold. The conventional delta check method
identifies results that deviate from statistically established
extreme values stemming from either patients’ biological
variations or variations in laboratory instruments. The
conventional delta check method is considered effective in
detecting preanalytical errors such as sample misidentifi-
cation, sample contamination, and hemolysis [5]; however,
the sensitivity of the conventional delta check method
remains around 20 % [6]. Likewise, in our previous study,
when practical delta check limits were established for five
tumor markers by the conventional, delta percent change
(DPC), and absolute DPC (absDPC) methods, the sensitivity
was 20-50 % depending on the clinical setting and test
items [7].

To address this issue, research is underway on a ma-
chine learning (ML)-based delta check method that has
demonstrated superior performance compared to tradi-
tional methods [8, 9]. ML can learn complex relationships
and patterns through non-linear learning mechanisms, and
this approach can detect subtle and adaptive changes that are
difficult to detect with conventional statistical approaches
[10]. Unlike traditional methods, ML techniques can learn
from data distributions and patterns to build optimized
models, which help to improve error detection. While a few
ML-based delta check studies have been reported for general
chemistry and general hematology tests [8, 11, 12], none have
been reported for tumor markers. Therefore, this study aims
to develop and validate an ML-based delta check method for
detecting sample misidentification errors in clinical labora-
tories. We developed a random forest (RF) model and a deep
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learning model to detect sample misidentification errors
using retrospectively collected test results of five tumor
markers, AFP, CA19-9, CA125, CEA, and PSA, and compared
their performance with conventional delta check methods
such as DPC, absDPC, and reference change values (RCV).

Materials and methods
Data collection

Data used in this study are the same as those used in our previous
research [7]. Five tumor markers (AFP, CA19-9, CA125, CEA, and PSA)
were retrospectively collected from a laboratory information manage-
ment system (LIMS) that stored the results of tests performed using a
Roche Cobas C-8000 (Roche Diagnostics GmbH, Mannheim, Germany) at
the Pusan National University Hospital (Busan, Republic of Korea),
Haeundae Paik Hospital (Busan, Republic of Korea), and Ilsan Paik
Hospital (Goyang, Republic of Korea) from Jan. 2020 to Dec. 2021.

Data collected include current result (the current measurement
result), previous result (the result of the last test performed within the
last two years), age, sex, test requesting department, date reported,
and patient class from LIMS, excluding any missing data. In our study,
we utilized previous and current results as input data for model
development. However, variables such as age, sex, test requesting
department, and date reported were omitted from the input data. This
exclusion was deliberate, as these factors were deemed unrelated to
sample misidentification errors or were considered insufficient in
capturing real-world environmental influences. Patient classes are
used for subgroup analysis. Patient class consisted of patients who
underwent health screening (H), outpatients (0), and emergency pa-
tients or inpatients (I). Data with test results exceeding the analytic
measuring interval (AMI) of the analysis system was excluded. The
applied AMIs were 0.908-1,210 pg/L for AFP, 0.6-5,000 KU/L for CA125,
0.6-1,000 KU/L for CA19-9, 0.2-1,000 ug/L for CEA, and 0.003-100 pg/L
for PSA [7]. Table 1 shows the dataset information for each of the five
tumor markers used in this study. The development set (D-set) consists
0£179,929 records for the first 18 months (Jan. 2020-Jun. 2021) to develop
the delta check method and the test set (T-set) consists of 66,332 records
for the last 6 months (Jul. 2021-Dec. 2021) to evaluate the delta check
method.

The data used in this study was collected after approval by the
Ethics Review Boards of each institution, and the requirement for hu-
man consent was exempted as a retrospective study (PNUH 2210-023-120,
HPIRB 2022-09-017, ISPAIK 2022-09-031).

Overall process of sample misidentification error
detection

Figure 1 shows the overall model development and validation processes.
We used random forest (RF) and deep neural network (DNN), which are
frequently used in feature-based binary classification, as ML models for
sample misidentification error detection. RF is a tree-based classifica-
tion and regression model that performs well in feature-based analysis
[13]. DNN is an artificial neural network that contains multiple hidden
layers and is excellent at learning nonlinear relationships [14]. The
performance of the ML-based sample misidentification error detection
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Table 1: Dataset description.

Number of samples

Development set Test set

Data collection period

Jan. 2020-Jun. 2021 Jul. 2021-Dec. 2021

Tumor marker

AFP 44,255 16,229
CA125 22,735 8,187
CA19-9 39,079 14,398
CEA 50,274 18,641
PSA 23,586 8,877
Patient class

H 49,852 17,955
0 115,844 43,070
I 14,233 5,307
Total 179,929 66,332

AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer
antigen 125; CEA, carcinoembryonic antigen; PSA, prostate-specific antigen;
H, health screening; O, outpatients; I, emergency patients or inpatients.

method was compared with the conventional verification method using
DPC, absDPC, and RCV. All models were developed using the D-set and
tested using the T-set. ML models were trained using data that simulated
“sample shuffling” by randomly shuffling a certain percentage of the
current results, while the delta check limits of conventional methods
were derived using data without sample shuffling. ML model’s perfor-
mance was evaluated without considering patient class. The conven-
tional model’s performance was performed in two directions. The first
was to derive delta check limits from all D-sets and apply them to all
T-sets without considering patient class, and the second was to consider
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patient class and derive delta check limits from patient classes H, O,
and Iin the D-sets and evaluate their performance independently for the
corresponding patient classes in the T-sets. The comparative study
between the proposed ML-based model and the conventional model is
shown in Figure 2. Python 3.9 (Python Software Foundation) was used for
model implementation, preprocessing, and DPC, absDPC, and RCV calcu-
lations, and TensorFlow (ver. 2.14.0), Keras (ver. 2.13.1), and scikit-learn (ver.
1.2.2) were additionally used for RF and DNN model implementations.

ML-based delta check model

To simulate sample misidentification errors, we randomly shuffled 1%
of the current results in the D-set. We then labeled these shuffled results
as “misidentified,” denoted by 1, while the correctly identified results
were labeled as “identified,” denoted by 0. The input data was log
transformed to reduce the impact of extreme values and normalize the
data. Log transformation is a preprocessing method often used for
continuous data in model training in ML. Log transformation is
particularly useful for transforming skewed long-tailed distributions
into something that more closely resembles a normal distribution, and is
known to help train more sophisticated models by improving the
normality of the input data [15, 16]. Robust scaling was applied to set
the median value (Q2) of each feature to 0 and normalize it based on the
interquartile range, which is the difference between the 1st (25th
quantile, Q1) and 3rd quartiles (75th quantile, Q3): normalized val-
ue=(value-Q2)/(Q3-Q1).

While implementing RF and DNN models, each model’s hyper-
parameters were optimized by random search. In this process, balanced
accuracy was used as the performance metric to mitigate the impact of
class imbalance. The detailed model architecture and hyperparameters
are described in Supplementary Material 1. Then, we performed 5-fold
cross-validation to verify the more generalized performance of the
model. In 5-fold cross validation, the dataset was divided into 5 evenly
sized folds, and the process of training the model on each 1-fold and
evaluating it on the remaining folds was performed independently
5 times by changing the evaluation fold, and finally the average was
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Figure 2: Comparative study between the proposed ML-based model and the conventional model; RF, random forest; DNN, deep neural network; DPC,
delta percent change; absDPC, absolute delta percent change; RCV, reference change values; H, health screening; O, outpatients; I, emergency patient or

inpatients.

taken as the general model’s performance. The model at the fold with
the highest area under the curve of the receiver operating characteristic
curve (AUROC) in the evaluation was then selected as the “best model”.
Finally, the model’s error detection performance was evaluated by
applying T-set to the best model.

Conventional delta check methods

Conventional delta checks were performed using the DPC, absDPC, and
RCV check limits established in our previous work [7]. DPC was calcu-
lated as the ratio of the change between the previous and current test
results divided by the previous test results (Eq. (1)), absDPC was pre-
sented as the absolute value of the DPC result (Eq. (2)), and RCV was
derived from the asymmetrical RCV formula based on the biological
variation database of the European Federation of Clinical Chemistry and
Laboratory Medicine (EFLM) [17].

DPC(%) = Xeurrent ~ Xprevious % 100 o)

X previous

Xcurrent — Xprevious

absDPC( %) = x 100 )

X previous

The delta check limit was calculated for each H, O, and I within the
D-set. DPC set the limit to 2.5 % of both extremes of the value distribu-
tion, and absDPC set the limit to 95 %.

Performance evaluation

The ML model’s performance was evaluated using the permutation test,
which involves repeatedly evaluating the performance of a model while
randomly re-sampling to obtain the average performance. In this study,
the process of training and validating the model was repeated 1,000
times, with 1% of the data randomly shuffled in each iteration. We
evaluated the sample misidentification error detection performance of

DPC, absDPC, and RCV (conventional method) using a T-set that con-
tained a 1 % sample misidentification error. Initially, we employed delta
check limits derived from the entire D-set to assess the entire T-set.
Additionally, we conducted a separate analysis for patient classes H, I,
and O within the T-set, utilizing delta test limits derived from the D-set
specific to each patient class.

For the performance evaluation, we utilized the AUROC, balanced
accuracy, sensitivity, and specificity. AUROC serves as a critical indica-
tor of a model’s classification capability, with values ranging from 0 to 1,
where higher values indicate superior performance. Balanced accuracy
is calculated as the average of sensitivity and specificity and provides a
more accurate assessment of a model’s performance, particularly in
datasets with imbalanced class distributions; it signifies how well the
model balances its classification of different classes. Sensitivity mea-
sures the model’s ability to accurately detect true positives, while
specificity assesses its capacity to correctly identify true negatives.

Results

Performance evaluation of the delta check
method

The sample misidentification error detection performance
of the developed models is shown in Figure 3. In Figure 3, the
blue and red solid lines represent the average ROC curves,
and the light blue and light red areas represent the standard
deviation ranges of RF and DNN, respectively. The perfor-
mance of DPC, absDPC, and RCV methods is denoted by each
symbol, and the coordinates mean (sensitivity, 1-specificity).
The classification performance of the RF model was 0.791,
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0.816, 0.751, 0.797, and 0.787 AUROC, lower than that of the
DNN, which was 0.831, 0.877, 0.829, 0.838, and 0.860 AUROC
for AFP, CA19-9, CA125, CEA, and PSA, respectively. Com-
parisons using AUROC showed that DNN generally per-
formed better for all tumor markers. RF showed better
detection performance than the DPC and absDPC methods
but lower performance than the DNN and RCV methods.
Table 2 shows the sample misidentification error
detection performance of RF, DNN, DPC, absDPC, and RCV
methods by tumor marker type. RF detected the sample
misidentification error with balanced accuracy of 0.753,
0.721, 0.746, 0.771, and 0.575 for AFP, CA19-9, CA125, CEA, and
PSA, respectively. However, RF performed worse in CA19-9
and PSA compared to RCV, with the lowest performance
(0.575 of balanced accuracy) in PSA. Meanwhile, the sample
misidentification error detection accuracy of the DNN
method for AFP, CA19-9, CA125, CEA, and PSA tumor markers
were 0.828, 0.842, 0.792, 0.818, and 0.833, respectively, which
were the highest of any other methods; moreover, the
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sensitivity was 0.909, 0.852, 0.832, 0.804, and 0.808, better
than other methods except for PSA.

Performance evaluation of the delta check
method by patient class

Figure 4 shows the performance evaluation results of each
model by patient class. Rows correspond to tumor markers
and are AFP, CA19-9, CA125, CEA, and PSA from top to bottom,
respectively; columns correspond to patient class and are H,
0, and I from left to right, respectively; the blue solid line
represents the ROC curve of the RF, while the red solid line
represents the ROC curve of the DNN. The evaluation results
of the DPC, absDPC, and RCV methods are indicated by the
coordinates corresponding to (sensitivity, 1-specificity). The
DNN performed best overall for all tumor markers and all
patient classes; however, in patient class I, it performed
similar to or slightly lower than the RCV. The RF performed
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Figure 3: ROC curves of the RF and DNN models and conventional methods: (A) AFP, (B) CA19-9, (C) CA125, (D) CEA, (E) PSA. The maker means the best
threshold of RF, DNN, DPC, absDPC, and RCV. AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carci-
noembryonic antigen; PSA, prostate-specific antigen; RF, random forest; DNN, deep neural network; DPC, delta percent change; absDPC, absolute delta
percent change; RCV, reference change values; SE, sensitivity; SP, specificity; ROC, receiver operating characteristic.
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Table 2: Performance comparison for each delta check model in detecting sample misidentification errors for tumor markers. Numbers represent the

mean (95 % CI).

Sensitivity

Specificity

Tumor marker Method Balanced accuracy
AFP RF 0.753 (0.742-0.764)
DNN 0.828 (0.821-0.834)
DPC 0.643 (0.639-0.647)
absDPC 0.616 (0.613-0.620)
RCV 0.745 (0.741-0.749)
CA19-9 RF 0.721 (0.711-0.731)
DNN 0.842 (0.834-0.849)
DPC 0.720 (0.716-0.724)
absDPC 0.673 (0.669-0.677)
RCV 0.753 (0.750-0.756)
CA125 RF 0.746 (0.732-0.760)
DNN 0.792 (0.780-0.805)
DPC 0.612 (0.606-0.618)
absDPC 0.603 (0.599-0.608)
RCV 0.728 (0.723-0.734)
CEA RF 0.771 (0.764-0.779)
DNN 0.818 (0.812-0.824)
DPC 0.708 (0.704-0.712)
absDPC 0.641 (0.637-0.645)
RCV 0.741 (0.738-0.745)
PSA RF 0.575 (0.568-0.581)
DNN 0.833 (0.827-0.840)
DPC 0.699 (0.693-0.704)
absDPC 0.655 (0.651-0.658)
RCV 0.757 (0.753-0.761)

0.616 (0.594-0.638)
0.909 (0.897-0.922)
0.329 (0.321-0.338)
0.274 (0.267-0.281)
0.755 (0.747-0.763)
0.482 (0.463-0.502)
0.852 (0.838-0.867)
0.485 (0.477-0.494)
0.394 (0.387-0.401)
0.851 (0.845-0.857)
0.610 (0.582-0.637)
0.832 (0.807-0.858)
0.266 (0.254-0.278)
0.254 (0.246-0.263)
0.655 (0.644-0.666)
0.649 (0.635-0.664)
0.804 (0.792-0.816)
0.493 (0.485-0.501)
0.324 (0.316-0.331)
0.754 (0.748-0.761)
0.165 (0.152-0.177)
0.808 (0.794-0.821)
0.446 (0.435-0.458)
0.361 (0.353-0.368)
0.850 (0.842-0.858)

0.889 (0.889-0.889)
0.746 (0.745-0.746)
0.956 (0.956-0.956)
0.959 (0.959-0.959)
0.736 (0.736-0.736)
0.960 (0.960-0.960)
0.831 (0.831-0.831)
0.955 (0.955-0.955)
0.952 (0.952-0.952)
0.655 (0.655-0.655)
0.883 (0.882-0.883)
0.753 (0.752-0.753)
0.958 (0.958-0.958)
0.953 (0.953-0.953)
0.801 (0.801-0.802)
0.893 (0.893-0.893)
0.832 (0.832-0.833)
0.923 (0.923-0.923)
0.959 (0.959-0.959)
0.729 (0.729-0.729)
0.985 (0.985-0.985)
0.859 (0.859-0.859)
0.951 (0.951-0.951)
0.949 (0.948-0.949)
0.663 (0.663-0.663)

CI, confidence interval; AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA,
prostate-specific antigen; RF, random forest; DNN, deep neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV,

reference change values.

worse than the DNN and RCV in all cases and was similar to
the DPC and absDPC. The detailed performance metrics of
RF, DNN, DPC, absDPC, and RCV according to patient class are
shown in Tables 3-5.

Discussion

In this study, we developed delta check methods based on RF
and DNN models for each of the five tumor markers. We
evaluated their performance in detecting sample misiden-
tification errors and compared them with conventional
methods like DPC, absDPC, and RCV. This is the first study to
develop an ML-based delta check method for tumor marker
tests. Additionally, we developed the ML method using the
same raw data as in [7], enabling a fair comparison with the
conventional delta check method. Sensitivity and specificity
are crucial metrics for evaluating model performance.
However, optimizing both simultaneously is challenging due
to their trade-off relationship. Thus, criteria should be set
based on the situation. From delta check perspective,

sensitivity refers to detecting an abnormal sample when a
sample misidentification error has occurred. However, higher
sensitivity can increase false positives, leading to unnecessary
retests or system overhauls and increasing laboratory work-
load. Meanwhile, specificity refers to considering an error-free
sample as normal. However, higher specificity can lead to
more false negatives. Therefore, it is crucial to ensure that both
metrics perform at an acceptable level for clinical laboratories
rather than biasing a model towards either sensitivity or
specificity. Notably, the ROC curve of DNN outperforms that of
conventional methods (see Figure 3). Giving that sensitivity
and specificity depend on cut-off values but are ultimately
determined by the ROC curve, DNN’s performance is consid-
ered superior to conventional methods despite trade-off.
However, the target values for sensitivity and specificity may
vary across laboratories, so optimization may require adjust-
ing cut-off values based on laboratory policy.

The superior performance of the DNN model over the RF
model in detecting sample misidentification errors can be
attributed to differences in the underlying working princi-
ples of these two models. DNN iteratively performs weighted
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Figure 4: Performance comparison of ML-based methods and conventional methods according to the patient class. Solid lines represent the ROC curve
and numbers represent the AUROC; rows represent the type of tumor marker; column represent the patient class. AFP, alpha-fetoprotein; CA 19-9,

carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA, prostate-specific antigen; RF, random forest; DNN, deep
neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV, reference change values; H, health screening; O, outpatients; I,
emergency patients or inpatients; ML, machine learning; ROC, receiver operating characteristic; AUROC, area under the receiver operating characteristic.



1428 —— Seok et al.: ML-based sample misidentification detection for tumor markers

DE GRUYTER

Table 3: Performance comparison for each delta check model in detecting sample misidentification errors for tumor markers in patient class H (health
screening). Delta check methods based on RF and DNN were developed using a 1 % randomly shuffled total D-set, without regard to patient class.
Conventional delta check limits for DPC, absDPC, and RCV were derived using the non-shuffled D-set from the patient class H. Numbers represent the

mean (95 % CI).

Sensitivity

Specificity

Tumor marker Method Balanced accuracy
AFP RF 0.713 (0.706-0.720)
DNN 0.753 (0.747-0.759)
DPC 0.635 (0.629-0.641)
absDPC 0.618 (0.612-0.623)
RCV 0.746 (0.741-0.752)
CA19-9 RF 0.599 (0.592-0.607)
DNN 0.810 (0.802-0.818)
DPC 0.788 (0.779-0.796)
absDPC 0.769 (0.761-0.777)
RCV 0.760 (0.754-0.766)
CA125 RF 0.607 (0.596-0.619)
DNN 0.719 (0.707-0.732)
DPC 0.618 (0.608-0.629)
absDPC 0.616 (0.606-0.625)
RCV 0.707 (0.695-0.720)
CEA RF 0.709 (0.701-0.717)
DNN 0.775 (0.769-0.782)
DPC 0.725 (0.717-0.733)
absDPC 0.711 (0.702-0.719)
RCV 0.746 (0.739-0.753)
PSA RF 0.566 (0.559-0.574)
DNN 0.818 (0.809-0.827)
DPC 0.785 (0.775-0.795)
absDPC 0.777 (0.766-0.787)
RCV 0.812 (0.803-0.820)

0.519 (0.506-0.533)
0.698 (0.687-0.710)
0.314 (0.302-0.327)
0.275 (0.264-0.286)
0.735 (0.724-0.746)
0.205 (0.191-0.220)
0.710 (0.694-0.726)
0.627 (0.610-0.644)
0.596 (0.579-0.612)
0.836 (0.824-0.848)
0.282 (0.259-0.306)
0.685 (0.660-0.710)
0.286 (0.265-0.307)
0.285 (0.265-0.304)
0.604 (0.579-0.629)
0.458 (0.441-0.474)
0.690 (0.677-0.704)
0.566 (0.551-0.582)
0.450 (0.433-0.466)
0.737 (0.722-0.751)
0.138 (0.124-0.153)
0.732 (0.715-0.749)
0.619 (0.599-0.639)
0.595 (0.574-0.615)
0.809 (0.792-0.826)

0.906 (0.906-0.907)
0.808 (0.808-0.808)
0.956 (0.956-0.956)
0.960 (0.960-0.961)
0.757 (0.757-0.757)
0.993 (0.993-0.993)
0.910 (0.910-0.910)
0.948 (0.948-0.948)
0.943 (0.943-0.943)
0.684 (0.684-0.684)
0.932 (0.932-0.932)
0.753 (0.753-0.753)
0.950 (0.950-0.950)
0.947 (0.947-0.947)
0.810 (0.810-0.810)
0.960 (0.960-0.961)
0.860 (0.860-0.860)
0.883 (0.883-0.883)
0.971 (0.971-0.972)
0.755 (0.755-0.755)
0.995 (0.995-0.995)
0.904 (0.904-0.904)
0.951 (0.951-0.951)
0.959 (0.959-0.959)
0.814 (0.814-0.815)

CI, confidence interval; AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA,
prostate-specific antigen; RF, random forest; DNN, deep neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV,

reference change values.

sum operations on input data to generate a continuous
output value, which is subsequently evaluated for errors
using decision criteria. In contrast, RF relies on the contin-
uous segmentation of randomly selected features according
to specific criterion values to predict the dependent variable.
Given that delta check fundamentally involves “analyzing
the difference between two inputs,” it is noteworthy that,
unlike DNNs, tree-based models split the tree based on ab-
solute values without performing operations between input
features. This can lead to significant performance variations
if the range of input values is diverse or extensive, affecting
the number or depth of the tree. Moreover, RF models can
result in overfitting or unstable prediction outcomes when
dealing with a small number of input features due to the
random feature selection process. In our study, we utilized
only two test results, the previous and current results, as
inputs to the model, and it is presumed that DNN offers an
advantage over the RF model in achieving robust perfor-
mance under these circumstances.

DPC and absDPC establish delta check limits for detect-
ing sample misidentification errors by using the distribution
of results in a specific patient group to statistically. For
non-standardized or non-harmonized tests, measurements
vary depending on the laboratory method used and reagents
and calibration materials manufacturer, especially for
tumor markers [18]. Delta check limits should not be adopted
directly from different laboratories or clinical settings. Since
RCVs are set using intra-individual variability and labora-
tory imprecision, they must be set considering each clinical
condition. We derived delta check limits of DPC, absDPC, and
RCV by patient class and applied them to each patient class to
evaluate the sample misidentification error detection per-
formance. RF and DNN were evaluated by applying the
trained model to all patient classes without distinguishing
patient classes. The results showed that when evaluated by
patient class, DNN outperformed the conventional delta test
methods optimized by patient class, even though they were
not optimized by patient class. However, in the case of
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Table 4: Performance comparison for each delta check model in detecting sample misidentification errors for tumor markers in patient class O
(outpatients). Delta check methods based on RF and DNN were developed using a 1 % randomly shuffled total D-set, without regard to patient class.
Conventional delta check limits for DPC, absDPC, and RCV were derived using the non-shuffled D-set from the patient class O. Numbers represent the

mean (95 % CI).

Sensitivity

Specificity

Tumor marker Method Balanced accuracy
AFP RF 0.731 (0.726-0.735)
DNN 0.777 (0.772-0.782)
DPC 0.650 (0.645-0.655)
absDPC 0.621 (0.616-0.625)
RCV 0.749 (0.744-0.754)
CA19-9 RF 0.599 (0.595-0.604)
DNN 0.814 (0.809-0.819)
DPC 0.713 (0.708-0.719)
absDPC 0.663 (0.658-0.668)
RCV 0.762 (0.758-0.766)
CA125 RF 0.620 (0.616-0.624)
DNN 0.778 (0.773-0.784)
DPC 0.612 (0.605-0.619)
absDPC 0.613 (0.608-0.618)
RCV 0.740 (0.733-0.746)
CEA RF 0.700 (0.695-0.704)
DNN 0.771 (0.767-0.775)
DPC 0.716 (0.711-0.721)
absDPC 0.636 (0.632-0.641)
RCV 0.751 (0.747-0.755)
PSA RF 0.548 (0.545-0.552)
DNN 0.784 (0.779-0.790)
DPC 0.667 (0.660-0.674)
absDPC 0.616 (0.611-0.620)
RCV 0.741 (0.737-0.746)

0.538 (0.529-0.548)
0.719 (0.709-0.729)
0.344 (0.334-0.354)
0.284 (0.275-0.293)
0.766 (0.757-0.775)
0.205 (0.196-0.214)
0.730 (0.720-0.740)
0.470 (0.459-0.481)
0.370 (0.360-0.379)
0.851 (0.843-0.859)
0.270 (0.262-0.278)
0.718 (0.707-0.729)
0.265 (0.251-0.280)
0.272 (0.261-0.282)
0.658 (0.645-0.670)
0.450 (0.440-0.459)
0.711 (0.703-0.719)
0.500 (0.490-0.510)
0.317 (0.308-0.326)
0.752 (0.744-0.760)
0.103 (0.096-0.110)
0.764 (0.754-0.775)
0.383 (0.369-0.396)
0.286 (0.277-0.295)
0.863 (0.854-0.872)

0.923 (0.923-0.923)
0.835 (0.835-0.835)
0.956 (0.956-0.956)
0.957 (0.957-0.957)
0.732 (0.732-0.732)
0.993 (0.993-0.993)
0.898 (0.898-0.899)
0.956 (0.956-0.957)
0.957 (0.957-0.957)
0.673 (0.673-0.673)
0.970 (0.970-0.970)
0.839 (0.839-0.839)
0.959 (0.959-0.959)
0.954 (0.954-0.954)
0.822 (0.822-0.822)
0.950 (0.950-0.950)
0.832 (0.832-0.832)
0.932 (0.932-0.932)
0.956 (0.956-0.956)
0.750 (0.750-0.750)
0.993 (0.993-0.993)
0.805 (0.805-0.805)
0.951 (0.951-0.951)
0.945 (0.945-0.945)
0.619 (0.619-0.619)

(I, confidence interval; AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA,
prostate-specific antigen; RF, random forest; DNN, deep neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV,

reference change values.

patient class I, DNN performed as well as or worse than RCV,
suggesting that model training may have been H or O
dominant due to the small proportion of I in the training data
(14,223/179,929~7.9 %). RF’s performance varied depending
on the tumor marker, with low performance for CA19-9 and
PSA compared to other methods.

The difference between ML-based and conventional
methods by patient class is noteworthy. Figure 5 shows the
difference in balanced accuracy by patient class for each of
the five tumor markers. The balanced accuracy tends to
decrease for all models in the order of H, O, and I. However,
conventional methods show a larger variation, or devia-
tion, by patient class than ML methods. This likely stems
from statistical estimation methods’ high susceptibility
to input data variability, as they detect errors through
numbers derived by a fixed methodology. In contrast,
ML-based models, which learn potential patterns associ-
ated with sample misidentification during the process of
training the model regardless of patient class, are more

robust to environmental changes than conventional
models that rely on numerical variability. In conclusion,
the above results suggest that the ML-based DNN model not
only performs the best as a sample misidentification error
detection model with previous and current test result
values as input but is also more robust to clinical envi-
ronment differences than conventional methods and can be
applied flexibly in practical situations. We believe that the
results indicate the capability of DNNs to perform effec-
tively when applying delta check models developed based
on one manufacturer’s device results to another manu-
facturer’s devices. We intend to further investigate and
analyze this aspect in future research.

An important consideration in interpreting the results
of this study is that it used data generated through in silico
simulations rather than actual sample misidentification
data. This method, which was also applied in Zhou’s study
[8], can be considered a viable alternative for developing
sample misidentification error detection models in current
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Table 5: Performance comparison for each delta check model in detecting sample misidentification errors for tumor markers in patient class I
(emergency patients or inpatients). Delta check methods based on RF and DNN were developed using a 1 % randomly shuffled total D-set, without regard
to patient class. Conventional delta check limits for DPC, absDPC, and RCV were derived using the non-shuffled D-set from the patient class I. Numbers

represent the mean (95 % CI).

Tumor marker

Method

Balanced accuracy

Sensitivity

Specificity

AFP

CA19-9

CA125

CEA

PSA

RF

DNN
DPC
absDPC
RCV

RF

DNN
DPC
absDPC
RCV

RF

DNN
DPC
absDPC
RCV

RF

DNN
DPC
absDPC
RCV

RF

DNN
DPC
absDPC
RCV

0.684 (0.656-0.711)
0.705 (0.680-0.731)
0.599 (0.577-0.621)
0.511 (0.500-0.521)
0.619 (0.595-0.644)
0.596 (0.585-0.607)
0.795 (0.785-0.805)
0.615 (0.604-0.626)
0.526 (0.520-0.533)
0.690 (0.683-0.698)
0.591 (0.575-0.606)
0.742 (0.726-0.758)
0.599 (0.584-0.615)
0.519 (0.510-0.528)
0.691 (0.674-0.708)
0.693 (0.682-0.705)
0.727 (0.717-0.737)
0.623 (0.613-0.634)
0.542 (0.534-0.550)
0.667 (0.657-0.677)
0.529 (0.513-0.544)
0.765 (0.733-0.797)
0.706 (0.674-0.739)
0.513 (0.495-0.531)
0.650 (0.619-0.681)

0.536 (0.481-0.591)
0.751 (0.700-0.801)
0.229 (0.186-0.273)
0.050 (0.029-0.072)
0.796 (0.746-0.845)
0.214 (0.192-0.237)
0.763 (0.743-0.784)
0.273 (0.250-0.295)
0.104 (0.091-0.118)
0.881 (0.866-0.895)
0.238 (0.207-0.268)
0.716 (0.683-0.748)
0.230 (0.199-0.261)
0.085 (0.068-0.103)
0.724 (0.690-0.758)
0.501 (0.478-0.524)
0.757 (0.737-0.777)
0.304 (0.283-0.325)
0.130 (0.114-0.146)
0.796 (0.776-0.816)
0.079 (0.048-0.110)
0.776 (0.712-0.841)
0.469 (0.404-0.534)
0.089 (0.053-0.124)
0.846 (0.785-0.908)

0.831 (0.831-0.832)
0.660 (0.659-0.660)
0.968 (0.968-0.968)
0.971 (0.971-0.971)
0.443 (0.443-0.444)
0.978 (0.978-0.978)
0.826 (0.826-0.827)
0.957 (0.957-0.957)
0.949 (0.948-0.949)
0.500 (0.500-0.500)
0.944 (0.943-0.944)
0.768 (0.768-0.768)
0.969 (0.968-0.969)
0.953 (0.953-0.953)
0.658 (0.658-0.658)
0.886 (0.886-0.886)
0.696 (0.696-0.697)
0.943 (0.943-0.943)
0.954 (0.954-0.954)
0.538 (0.537-0.538)
0.978 (0.978-0.978)
0.753 (0.753-0.754)
0.944 (0.943-0.944)
0.938 (0.937-0.938)
0.454 (0.453-0.454)

CI, confidence interval; AFP, alpha-fetoprotein; CA 19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA,
prostate-specific antigen; RF, random forest; DNN, deep neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV,

reference change values.
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Figure5: Balanced accuracy by patient class for each of the five tumor markers. (A) AFP, (B) CA19-9, (C) CA125, (D), CEA, (E) PSA. AFP, alpha-fetoprotein; CA
19-9, carbohydrate antigen 19-9; CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; PSA, prostate-specific antigen; RF, random forest; DNN,
deep neural network; DPC, delta percent change; absDPC, absolute delta percent change; RCV, reference change values; H, health screening; O,
outpatients; I, emergency patients or inpatients.

laboratory testing environments where sample mis-
identifications and associated test results are not recorded in
the LIMS. Collecting real-world sample misidentification
data will allow us to understand the different conditions that

affect sample misidentification, as well as test results, so that
we can improve error detection performance with addi-
tional inputs. Moreover, this study provided an important
step in confirming the feasibility of ML in detecting tumor
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market misidentification errors, however, it focused on
internal validation and did not include validation of gener-
alizability. In a follow-up study, we aim to overcome this
limitation by conducting external validation using data from
various organizations, which is an important step before
clinical application.

Conclusions

We developed a delta check method based on RF and DNN
models for the five most commonly used tumor markers in
clinical laboratories and evaluated it against the conven-
tional delta check method for its performance in detecting
sample misidentification errors. The DNN model showed the
highest overall values of balanced accuracy considering both
sensitivity and specificity for all tumor markers, suggesting
that it is the most appropriate delta check method for use in
clinical laboratories. In addition, the DNN has shown that it
can be applied to multiple patient classes with development
with a single total dataset, which is expected to be useful in
the future for various checks in clinical laboratories.
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