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Abstract

Objectives: The stratification of individuals suffering from
acute and post-acute SARS-CoV-2 infection remains a critical
challenge. Notably, biomarkers able to specifically monitor
viral progression, providing details about patient clinical
status, are still not available. Herein, quantitative metab-
olomics is progressively recognized as a useful tool to describe
the consequences of virus-host interactions considering also
clinical metadata.

Methods: The present study characterized the urinary
metabolic profile of 243 infected individuals by quantitative
nuclear magnetic resonance (NMR) spectroscopy and liquid
chromatography mass spectrometry (LC–MS). Results were
compared with a historical cohort of noninfected subjects.
Moreover, we assessed the concentration of recently iden-
tified antiviral nucleosides and their association with other
metabolites and clinical data.
Results: Urinary metabolomics can stratify patients into
classes of disease severity, with a discrimination ability
comparable to that of clinical biomarkers. Kynurenines
showed the highest fold change in clinically-deteriorated
patients and higher-risk subjects. Uniquemetabolite clusters
were also generated based on age, sex, and body mass index
(BMI). Changes in the concentration of antiviral nucleosides
were associated with either other metabolites or clinical
variables. Increased kynurenines and reduced trigonelline
excretion indicated a disrupted nicotinamide adenine
nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway.
Conclusions: Our results confirm the potential of urinary
metabolomics for noninvasive diagnostic/prognostic screening
and show that the antiviral nucleosides could represent novel
biomarkers linking viral load, immune response, and meta-
bolism.Moreover, we established for thefirst time a casual link
between kynurenine accumulation and deranged NAD+/SIRT1,
offering a novel mechanism through which SARS-CoV-2
manipulates host physiology.

Keywords: COVID-19; antiviral nucleosides; kynurenine
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Introduction

Despite the proven efficacy of vaccinations in preventing
COVID-19 development, thereby reducing the rate of fatal
events and hospitalizations, the SARS-CoV-2 outbreak still
poses health, social, and economic challenges worldwide. In
fact, the number of confirmed cases is globally increasing [1],
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while a Nature survey conducted amongst immunologists,
virologists, and infectious-disease experts indicated that
SARS-CoV-2 will continue to circulate in the human popula-
tion for years to come [2]. In addition, about 10–15 % of
patients who suffered from mild-to-moderate COVID-19
present persistent symptoms weeks or even months after
the original infection [3]. This emerging clinical condition,
referred to as post-acute COVID-19 syndrome (PACS), has the
potential to overwhelm health systems and economies.

Although COVID-19 preferentially affects the respiratory
tract, it is now well-established that systemic manifestations
are a major component of the clinical picture. While viral
spreading to extrapulmonary organs is mechanistically
explained by the ubiquitous expression of the angiotensin-
converting enzyme 2 (ACE2), disease outcome largely de-
pends on host factors, including age, sex, and pre-existing
comorbidities, as well as on the effectiveness of individual
immune responses mounted to combat the infection [4, 5].
The wide spectrum of the possible virus-host interactions
result in a substantial degree of heterogeneity in symptoms,
severity, recovery time, and response to treatments [5–9].

Besides the broad dysregulation of inflammatory
markers, it is now clear that multiple biochemical pathways
are profoundly affected in COVID-19 [9–16]. Among the
metabolic perturbations associated with SARS-CoV-2 infec-
tion, alterations in the kynurenine pathway represent the
strongest metabolic signal observed so far [17–24]. Other
widely-described abnormalities include metabolites related
to tricarboxylic acid (TCA) and urea cycle, as well as glucose,
phenylalanine, and the niacin metabolite trigonelline [17, 18,
22, 25]. Not only does metabolite dysregulation affect the
initiation and maintenance of immune response [5, 13, 16,
26–28], but it can also be directly linked to specific COVID-19
pathological hallmarks, especially in the case of neurological
symptoms and cardiovascular manifestations [18, 29, 30].
Given the crucial role of the metabolic phenotype in
COVID-19, Holmes and coworkers introduced the concept of
phenoreversion to describe the metabolic evolution associ-
ated with the disease [6] and demonstrated that incomplete
recovery ofmetabolic homeostasis is associated tomore severe
symptoms [31].With regard to the interplaybetweenSARS-CoV-
2 and the immune system, we recently identified novel urinary
biomarkers, namely deoxy-didehydronucleosides (ddhNs),
which are able to describe the activation of the host antiviral
pathways in COVID-19 patients [32].

These observations collectively highlight the need to
investigate the metabolic phenotype of COVID-19 patients
further, as recognition of the specific metabotypes related to
disease progression could have not only a descriptive value
but also relevant diagnostic and prognostic significance. The

present study used a combination of proton nuclear
magnetic resonance (1H NMR) spectroscopy and liquid
chromatography-mass spectrometry (LC–MS) to investigate
the urinary metabolic profiles associated with acute
COVID-19 in a large cohort of patients that was previously
characterized by serum metabolomics [11]. Urine was
selected as biological matrix based on its valuable properties
as non-invasively available biospecimen, which have been
already recognized in the context of COVID-19 [19, 33–37].
Themain focus of the present research was characterization
of the acute COVID-19 urinary metabolic signature and
recognition of the metabotypes specific to patient age, sex,
and clinical deterioration. Further, we evaluated 4 ddhNs
and their potential associationswith either the other urinary
metabolites or clinical parameters. In the final section of the
study, we sought to expand knowledge on the SARS-CoV-
2-induced changes in tryptophan metabolites and their
involvement in the pathogenesis of the disease. More spe-
cifically, based on the crucial role of kynurenines in nico-
tinamide adenine dinucleotide (NAD) biosynthesis [38, 39],
we explored whether a dysregulation in this pathway could
affect the activation of the NAD+-dependent deacetylases
known as sirtuins, which show potent immunomodulatory
and antiviral properties [40–45].

Materials and methods

Study design

The present research investigated the metabolite profile of urine sam-
ples collected from Acute COVID-19 patients (AcuteCOV) (Heidelberg
UniversityHospital). An independent pre-pandemic cohort of SARS-CoV-
2-negative subjects was used as control (CTR) (data provided by Bruker
BioSpin GmbH).

The overall study can be subdivided into 4 major aims: (1) Aim 1:
Identification of the metabolite changes in AcuteCOV urine samples
compared with CTR using 1H NMR. This section analyzed the metabolite
data obtained with 1H NMR spectroscopy and Bruker IVDr method in
urine samples to investigate differences between AcuteCOV (Werner
Siemens Imaging Center, University Hospital Tübingen) patients and
healthy CTR subjects (Data provided by Bruker BioSpin GmbH); (2) Aim
2: Characterization of the AcuteCOV urinary metabolic signature using
1H NMR and LC–MS data. To enhance the characterization of AcuteCOV
urinary metabolic phenotype, additional LC–MS experiments were
carried out (Australian National Phenome Centre and Computational
and Systems Medicine, Murdoch University). The information provided
by this analysis integratedwith the 1H NMR data to derivemore detailed
metabolite profiles of AcuteCOV samples, which were then analyzed to
identify potential disease severity, age, sex, BMI-dependent metabolic
signatures; (3) Aim 3: Analysis of antiviral ddhNs and their associations
with metabolite profiles and clinical variables. Here, we investigated
whether the concentration of 4 antiviral ddhNs, namely 3′-deoxy-

Lonati et al.: Urinary metabolomics uncovers disrupted NAD+/SIRT1 pathway in SARS-CoV-2 771



3′,4′-didehydro-cytidine (ddhC), 3′-deoxy-3′,4′-didehydrocytidine-
5′-carboxylic acid (ddhC-5′CA), 3′-deoxy-3′,4′-didehydrouridine (ddhU),
and 3′,5′-dideoxy-3′,4′-didehydrocytidine-5′-homocysteine (ddhC-5′
Hcy), measured in urine samples by LC–MS, was associatedwith either
variations in urinary metabolite concentration or changes in clinical
parameters; (4) Aim 4: Investigation of the potential association be-
tween SARS-CoV-2-induced kynurenine pathway dysregulation, NAD+

biosynthesis, and sirtuins. In this section, we sought to provide a
biological interpretation underlying the SARS-CoV-2-induced pertur-
bations in the tryptophan metabolites, by investigating whether a
dysregulation in this pathway could affect the activation of the NAD+-
dependent deacetylases sirtuins. To this aim, in addition to the results
obtained by 1H NMR and LC–MS in urine samples, we included the
concentration of inflammatory mediators measured in matched
serum samples of the same cohort of patients [11].

Study cohort information

Acute SARS-CoV-2 infected cohort (AcuteCOV): SARS-CoV-2 positive
individuals were recruited from 7th September 2020 to 21st March 2021
within a prospective non-interventional study conducted by Heidelberg
University Hospital [46]. According to the World Health Organization
(WHO) guidance, laboratory confirmation for SARS-CoV-2 was defined
as a positive result of quantitative real-time reverse transcriptase–po-
lymerase chain reaction (qRT-PCR) assay of nasal and pharyngeal swabs.
Only subjects who were over 18 years of age and showing completed
questionnaires were included. All participants provided written
informed consent according to the Declaration of Helsinki and the local
Ethics committee had approved biosample and data collection and
analysis (reference number: S-324/2020).

Patient management was based on ambulatory monitoring with
the “Coronataxi digital early warning” (CDEW) system, deployed in
Rhein-Neckar County and Heidelberg, Germany. This approach is an
outpatient care system consisting of remote digital monitoring via a
mobile application (with symptom questionnaire and daily pulse
oximetry), a medical doctor dashboard and medical care delivery to
COVID-19 patients in home quarantine when indicated (Heidelberg
Medical University Ethics commission approval: S-324/2020).

Blood and urine sample collection took place during home visits by
nurses. Upon collection, both blood and urine specimens were kept at
room temperature (RT) and transferred to the Heidelberg University
Hospital. Sampleswere then further processed and stored at−80 °C until
shipment to the University of Tübingen Hospital.

Clinical data were collected based on structured patient interviews.
The recorded information included the following variables: age, sex,
medical comorbidities, regular medication, height, weight, severity of
acute COVID-19 disease, symptoms. For hospitalized patients, the mode of
respiratory support (oxygen supply via nasal low- or high-flow, oxygen
mask or invasive mechanical ventilation) was likewise recorded.

Control (CTR) cohort:Urinemetabolite patterns in healthy subjects have
been characterized by Bruker BioSpin GmbH using a well-established
quantitative in vitro diagnostics research (IVDr) standardized approach
in 1H NMR spectroscopy [47]. Healthy control urine samples were uti-
lized for overall comparison and statistical investigations. In accordance
with local requirements, informed permission was acquired from par-
ticipants or their legal representatives.

Sample processing and quantitative 1H NMR
spectroscopy analysis

1HNMRspectrawere generatedusing the standardizedBrukerAvance IVDr
platform (Avance III HD spectrometer) and the quantification was per-
formed using the different Bruker IVDr packages (https://www.bruker.com/
de/products-and-solutions/mr/nmr-clinical-research-solutions/b-i-
methods.html), as previously described [48]. Urine sample prepara-
tion was performed according to B.I.-embedded standard operation
procedure (SOP) [49]. For quality control (QC), the B.I. BioBank QC™
method; and for quantification B.I. Quant-UR eTM (e – extended, up to
150 metabolites quantified) modules were utilized. Briefly, for each
sample a 600 μL aliquot was transferred into an autoclaved 2 mL
microcentrifuge tube (MCT) and centrifuged at 2000 RCF for 10 min at
4 °C (Heraeus Megafuge 8R, Thermo Electron LED GmbH, Osterode am
Harz, Germany). Then, 585 μL of the supernatant were addedwith 65 μL
of the standard Bruker urine buffer of pH 7.4 (order number AH0621-10,
provided by Bruker BioSpin GmbH, Ettlingen, Germany; contains 1.5 M
KH2PO4, 2 mMNaN3, 0.1 % TSP-d4) and themixture was vortexed for 30 s
(VORTEX-GENIE 2, Scientific Industries, Inc., Bohemia, NY, USA). A vol-
ume of 600 μL of the processed sample was then transferred to a 5 mm
Bruker NMR tube.

NMR spectroscopy was performed using a 5 mm triple resonance
(TXI) RT probe that was controlled via TopSpin software, version 3.6.2.
The sample jet was set to a cooling temperature of 5 °C, then sample
spectral datawere acquired at 300 K. The standard one-dimensional (1D)
NMR experiment with solvent suppression was acquired with 32 scans
(65,536 data points, 20.0186 ppm spectral width). total experimental time
of 4 min per sample. The obtained spectra were uploaded to the Bruker
data analysis server for automated quantification. The sample and shim
quality of the experiment was tested by the full width at half maximum
(fwhm) of the TSP signal (δ 0.00) being less than 1.30 Hz, sharp singlet
symmetrical peak. The residualwater signal after solvent suppression is
less than 30.0 mmol/L.

A statistical total correlation spectroscopy (STOCSY) was per-
formed on each metabolite to find the signal patterns and their
chemical shift [50]. Metabolites that could not be determined by its
pattern and chemical shift by STOCSY were further investigated by 2D
experiments (1H–1H COSY, 1H–1H TOCSY, 1H–13C HSQC and 1H–13C
HMBC). Each spectral region corresponding to the metabolites was
integrated and correlated to the IVDr measurements to validate the
quantification. Those that did not meet the criteria but the correct
concentration is salvageable were done manually in R, otherwise
removed from the analysis. Only metabolites passing the correlation
of lineshape metabolite signals with calculated fit over 80 % were
included in the study. Additionally, maleate quantification was
excluded due to the recent report of urine NMR spectra in the same
spectral region [32].

NMR metabolites were quantified via an external reference based
on an ERETIC calibration [51]. The calibration transfer to each individual
sample is facilitated by the PULCONprinciple [52]. An artificial reference
peak representing a concentration equivalent of 10 mM can be added to
the solvent suppressed 1DNMR spectrum in a regionwithoutmetabolite
signals. Quantitative calibrations need to be obtained and verified using
a dedicated reference sample with known compound concentrations
according to B.I. Methods QC procedures. Human body fluid sample
preparation and NMR protocols were derived from an article of Dona
et al. [49].
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Sample processing and targeted quantitative LC–MS

Urine samples were thawed at 4 °C and prepared for analyses following
previously reported metabolic phenotyping methods [53], with minor
modifications. For the quantification of biogenic amines and amino acid
metabolites, separation was performed by ultra-high-performance
liquid chromatography (UHPLC) using an Acquity UPLC (Waters Corp,
Milford, MA) coupled to a Bruker Impact II QToF mass spectrometer
(Bruker, Daltonics, Billerica,MA). Resulting datafileswere processed for
integrations and quantification using Target Analysis for Screening
Quantification (TASQ) software v2.2 (Bruker, Daltonics, Bremen,
Germany) where calibration curves were linearly fitted with a weight-
ing factor 1/x. For the measurement of tryptophan and associated
catabolites, separation was performed using Acquity UHPLC coupled to
aWaters Xevo TQ-XSmass spectrometer (Waters Corp, Wilmslow, U.K.).
Obtained raw files were processed for peak integrations andmetabolite
quantifications using the TargetLynx package within MassLynx v4.2,
where calibration curves were linearly fitted for eachmetabolites using
aweighting factor of 1/x. Resulting datamatriceswere quality controlled
and combined prior to statistical analysis.

Enzyme-linked immunoassay (ELISA) based analysis to
assess serum SIRT1

SIRT1 serum concentration was measured with a commercially avail-
able Human SIRT1 ELISA Kit (Thermo Fisher Scientific Inc., Germany.
Inter assay coefficient of variation <10 %, Intra assay coefficient of
variation <12 %, detection limit: 1.23 ng/mL), according to the manufac-
turer’s instructions. Serum samples of 171 patients were used in this
experiment. Briefly, each well was filled with 50 µL of undiluted serum
and 50 µL of proprietary diluent. Seven different concentrations of a
lyophilized human SIRT1 standard were prepared to build a calibration
curve ranging from 300 ng/mL to 1.229 ng/mL. Absorbance was measured
at 450 nm using a plate Reader (Tecan Trading AG, Switzerland). SIRT1
concentration was then calculated based on the standard curve and by
adjusting for sample dilution.

Statistical analysis and data interpretation

Statistical analysis was performed using the online comprehensive tool
Metaboanalyst (Version 5.0), the JMP Pro 15 software (©SAS Institute
Inc., Cary, NC, USA), and SigmaPlot 11.0 (Systat Software Inc., San Jose,
CA, USA).

Missing values were handled by the replacement by limit of
detection (LoDs)method (1/5th of the positive value of each variable). All
spectra were baseline corrected and normalized using probabilistic
quotient normalization (PQN) [54]. Both univariate and multivariate
analysis approaches were applied. Unsupervised agglomerative hier-
archical cluster analysiswas performed to identify any potential specific
signature ofmetabolite urine concentration (NA-chip analyzer program,
https://sites.google.com/site/dchipsoft/). Unsupervised principal compo-
nent analysis (PCA), supervised partial least squares discriminant
analysis (PLS-DA) and orthogonal partial least squares - discriminant
analysis (OPLS-DA) were also carried out as multivariate analysis.
Differences across experimental groups were investigated by Mann–
Whitney U test, Pearson’s chi-squared test, One-way analysis of variance
(ANOVA) or Kruskal–Wallis test on ranks. Two-way ANOVAwas applied
to investigate influences of two independent variables and their

potential interaction. Tukey’s test was used for post hoc multi-
comparison procedure. The false discovery rate (FDR) was controlled
using the Benjamini-Hochberg correction to maximize statistical power
[55]. Linear correlation between variables was assessed based on
Pearson’s correlation coefficient. A p-value <0.05 and a fold change (FC)
>1.2 were considered significant.

The graphical abstract was generated via the biorender.com
service with the help of standard COVID-19 related template (World
Health Organization. https://www.who.int/emergencies/diseases/
novel-coronavirus-2019).

Results

Baseline characteristics of the study cohorts
and metabolic data included in the analysis

A schematic workflow diagram of the investigation is shown
in Figure 1.

Study sample

A subset of 243 individuals from the Coronataxi study, for
whom there complete metadata as well as urine and blood
samples collected at the first follow-up timepoint, was used
for the purpose of this study. Concerning the CTR group, 309
subjects were extracted from the Bruker cohort and
included in the present research. Demographic data of the
two study groups are reported in Table 1. Age ranges were
defined according to the following criteria [56]: young adult,
from 19 to 24 years; adult, from 25 to 44 years; middle aged,
from 45 to 64 years; aged, from 65 to 79 years; senile, >80
years. Body mass index (BMI) categories were likewise
assigned based on standard classification: (1) underweight,
BMI≤18.5 kg/m2; (2) normal weight, BMI≥18.5 and <24.9 kg/m2;
(3) overweight, BMI≥25 and ≤29.9 kg/m2; (3) obesity I, BMI>30
and ≤34.9 kg/m2; (4) obesity II, BMI>35 and ≤39.9 kg/m2; (5)
obesity III, BMI>40 kg/m2 [57]. Table 2 shows the baseline
characteristics, clinical outcomes, laboratory data, and
comorbidities of the AcuteCOV cohort.

Metabolic data

Up to 150 low-molecular-weight metabolite concentrations
were obtained from the Bruker IVDr quantification in urine
B.I.Quant-UR. The dataset was then subjected to internal QC
analysis as described in the Methods: (1) Rho-sigma filtering;
(2) metabolite detection in at least 70 % of the evaluated
patient samples; (3) correlation of lineshape QC with calcu-
lated fit over 80 %. Based on these criteria, 44 metabolites
were selected to be part of the final metabolite list for the
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comparison of AcuteCOV vs. CTR (Aim 1, Figure 1; please find
the complete list in Supplementary Table S1).

With regard to aims 2, 3, and 4 the concentrations of
alanine, glycine, methionine, taurine, and valine provided
by NMR spectroscopy experiments were replaced with the

corresponding LC–MS-based data (Figure 1, Supplementary
Table S1,metabolites highlighted in green color).Moreover, 5
additional metabolites (3-indoxylsulfate, hypoxanthine,
pseudouridine, urea, cis-aconitate) were manually analyzed
using Chenomx NMRSuite 7.1. Therefore, the final list for
aims 2, 3, and 4 included 92metabolites, out of which 44were
measured byNMR and 48 by LC–MS (Figure 1; please find the
complete list in Supplementary Table S1).

Aim 1: Identification of the metabolite
changes in AcuteCOV urine samples
compared with CTR

PCA was carried out to investigate general group separation
based on urinary metabolite concentrations assessed via 1H
NMR spectroscopy-basedmetabolomics approach (Figure 2A).
Unsupervised hierarchical clustering revealed a good
discrimination between the urinary metabolite profile of
AcuteCOV and CTR groups (Supplementary Material 1.2.1).
Associations between metabolite concentration profiles were
explored by multivariate analysis that disclosed 13 main
clusters of variables (Supplementary Material 1.2.1.2, Supple-
mentary Table S2). Univariate analysis identified a total of 22
differentially expressed metabolites, of which 11 were
increased in theAcuteCOVgroup comparedwith CTR,while 11
metabolites were decreased (Figure 2B).

Next, we investigated whether sex, age, and BMI factors
can influence the metabolite changes associated with
SARS-CoV-2 infection. Unsupervised hierarchical clustering

Table : Demographic information of the AcuteCOV and CTR study
cohorts.

Study cohorts

CTR AcuteCOV
(n=) (n=) p-Value

Gender group, n (%) .
F  (.%)  (.%)
M  (.%)  (.%)

Age, years . ± . . ± . .
Age group, n (%) .
Young adult  (.%)  (.%)
Adult  (.%)  (.%)
Middle aged  (.%)  (.%)
Aged  (.%)  (.%)
Senile  (.%)  (.%)

BMI, kg/m
. ± . . ± . <.

BMI group, n (%) .
Underweight  (%)  (.%)
Normal weight  (%)  (.%)
Overweight  (.%)  (.%)
Obesity class I  (.%)  (.%)
Obesity class II  (%)  (.%)
Obesity class III  (.%)  (.%)

Data are expressed as mean±standard deviation or n (%). p-Values were
calculated byWilcoxon test or Pearson’s chi-squared test when appropriate.
BMI, body mass index; AcuteCOV, acute COVID.

Figure 1: Consort diagram. Urine
metabolomics was performed by 1H NMR
spectroscopy and LC–MS in a large cohort of
SARS-CoV-2 infected individuals (n=243). The
study is structured in 4 different consecutive
aims. In addition to urinary metabolite pro-
files, Aim 4 involved the investigation of SIRT1
concentration in matched serum samples.
Thirteen inflammatory mediators, whose
concentration was measured within our pre-
vious study [11], were likewise included in the
present analysis. AcuteCOV, Acute COVID-19
cohort; CRP, C-reactive protein; CTR, controls;
ddhNs, deoxy-didehydronucleosides; LC–MS,
liquid chromatography–mass spectrometry;
NAD+, nicotinamide adenine dinucleotide;
NMR, nuclear magnetic resonance; QC, quality
control; SIRT1, sirtuin 1.
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analysis of metabolite concentrations disclosed a disease-
driven clusterization, indicating that the distinctive
infection-dependent metabolic signature previously identi-
fied was sustained irrespective of age (Figure 2C, Supple-
mentary Figure S1), sex (Figure 2D, Supplementary
Figure S2), and BMI (Figure 2E). Consistently, for most of the
differentially-expressed metabolites, the magnitude and
pattern of modulation was similar to those observed within
the whole sample analysis (Supplementary Table S3 and S4).

However, some metabolites showed a different degree of
modulation across demographic factors (sex, age, and BMI).
Among these, taurine (p-value of interaction=0.042) and
creatine (p=0.041) were differentially modulated between
sex groups (Supplementary Table S3), whilst orotic acid
(p=0.048), citric acid, (p=0.001), trigonelline (p=0.048), and
glycine (p=0.009) showed different concentrations across age
groups (Supplementary Table S3). Of note, lactic acid and
succinic acid appeared to be modulated by both sex and age

Table : Baseline characteristics of the AcuteCOV cohort.

AcuteCOV cohort

Whole sample Women Men
(n=) (n=) (n=)

Demographics
Age, years . ± . . ± . . ± .
BMI, kg/m

. ± . . ± . . ± .
Comorbidities
Diabetes  (.%)  (.%)  (.%)
Asthma  (.%)  (.%)  (.%)
COPD  (.%)  (%)  (.%)

Clinical outcomes
Hospital admission  (.%)  (.%)  (.%)
Oxygen saturationb . ± . . ± . . ± .
Oxygen demand  (.%)  (.%)  (.%)
ICU  (.%)  (.%)  (.%)
Body temperaturea, °C . ± . . ± . . ± .

Clinical laboratory
CRPc, mg/dL . ± . . ± . . ± .
LDHc, U/L . ± . . ± . . ± .
ASTc, U/L . ± . . ± . . ± .
Glucosea, mg/dL . ± . . ± . . ± .
Creatininea, mg/dL . ± . . ± . . ± .
GFRa, mL/min . ± . . ± . . ± .
Hemoglobina, g/dL . ± . . ± . . ± .
Transferrina, g/L . ± . . ± . . ± .
Transferrin saturationa, % . ± . . ± . . ± .
Ferritina, ng/mL . ± . . ± . . ± .
D-Dimerc, mg/L . ± . . ± . . ± .
Plateletsa, × cells/μL . ± . . ± . . ± .
Leukocytesb, × cells/L . ± . . ± . . ± .
Lymphocytes b, × cells/L . ± . . ± . . ± .
Ureac, mg/dL . ± . . ± . . ± .
Presence of urine proteinsa  (.%)  (.%)  (.%)
Presence of urinary ketone bodiesa  (.%)  (.%)  (.%)

Concurrent therapy
Steroids  (.%)  (.%)  (.%)
L-Thyroxin  (.%)  (.%)  (.%)
DOACs  (.%)  (%)  (.%)
Immunosuppression  (.%)  (.%)  (.%)
Hypertension  (.%)  (.%)  (.%)
Allopurinol  (.%)  (%)  (.%)

Data are expressed as mean±standard deviation or n (%). AST, aspartate transaminase; BMI, body mass index; COPD, chronic obstructive pulmonary
disease; CRP, C-reactive protein; DOAC, direct oral anticoagulants; GFR, glomerular filtration rate; ICU, intensive care unit; LDH, lactate dehydrogenase.
aMeasured on the day of urine collection; bminimum value; cmaximum value (peak). Conversion factors to SI units: CRP, mg/dL corresponds to mg/L;
glucose:  mg/mL corresponds to . mmol/L; creatinine,  mg/dL corresponds to . μmol/L; hemoglobin,  g/dL corresponds to  g/L.
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Figure 2: Identification of the metabolite changes in AcuteCOV urine samples compared with CTR. (A) Principal component analysis (PCA) scores plot
illustrating general group separation based on urinarymetabolite concentrations assessed via 1H NMR spectroscopy-basedmetabolomics approach. The
analysis excluded 4 patients based on extremely different glucose and creatinine urinary concentrations. Out of the 4 outliers, 3 were controls, while 1
subject was from the AcuteCOV group. (B) List of metabolites increased or decreased in AcuteCOV compared with CTR. Only molecules showing log2 fold
change (FC) >1.2 are included. A two-color scale is used to illustrate FC: deep red denotes +1.6, deep blue denotes −1. Wilcoxon–Mann–Whitney test.
Unsupervised hierarchical clustering reveals an overall SARS-CoV-2 infection-driven clusterization irrespective of (C) age, (D) sex, and (E) BMI groups.
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factors. Moreover, two additional classes of modulation
were identified: (1) different response to SARS-CoV-2 infec-
tion across sex groups, including syringic acid (p-value of
interaction <0.001), erythritol (p=0.048), and pantothenic
acid (p=0.033); (2) different response to SARS-CoV-2 infection
across age groups, including formic acid (p=0.001) and
inosine (p=0.045). Concerning BMI, the changes induced by
SARS-CoV-2 were similar across BMI groups for most of the
evaluated metabolites, except for succinic acid (p-value of
interaction=0.036), oxypurinol (p=0.009), dimethylamine
(p=0.031), glycolic acid (p=0.019), pantothenic acid (p=0.026),
and inosine (p=0.043) (Supplementary Table S4).

The metabolites differentially modulated between
AcuteCOV and CTR groups were manually assigned to the
following major metabolic pathways: (1) drug/food metabo-
lite (n=5): caffeine, theobromine, pantothenic acid, oxy-
purinol, tartaric acid; (2) TCA cycle (n=4): succinic acid,
fumaric acid, citric acid, glycolic acid; (3) one-carbon meta-
bolism (n=3): dimethylamine, N,N-dimethylglycine, glycine;
(4) fasting/ketogenesis (n=2): acetone, acetoacetic acid; (5)
glucose homeostasis (n=2): glucose, lactic acid; (6) cysteine
oxidation/creatine metabolism (n=2): taurine, creatine; (7)
pyrimidine de novo synthesis/urea cycle (n=2): orotic acid,
allantoin; (8) phenylalanine catabolism (n=1): hippuric acid;
(9) nicotinic acidmetabolism (n=1): trigonelline. Of interest,
“one-carbon metabolism” includes only down-regulated
metabolites, while “fasting/ketogenesis” and “glucose ho-
meostasis” involve only increased molecules. Figure 2F il-
lustrates the metabolic pathways enriched of modulated
metabolites. Enrichment pathway analysis demonstrated a
significant similarity to the diabetes mellitus metabolic
signature (8 hits over 19 total metabolites, FDR-adjusted
p-value: 7.78 × 10−8).

Aim 2: Characterization of the AcuteCOV
urinary metabolic signature

To further investigate the metabolic changes elicited dur-
ing SARS-CoV-2 infection, the AcuteCOV urine sampleswere
analyzed using LC–MS at the Australian National Phenome
Centre, Murdoch University. As reported in Supplementary
Table S1, we measured 44 additional metabolites and 4
antiviral ddhNs: ddhC, ddhC-5′CA, ddhC-5′Hcy, and ddhU
[32].

Association between urine metabolic profiles and
disease severity

Differences in the urinary metabolite concentration be-
tween hospitalized and nonhospitalized patients
We explored metabolite differences between non-hospitalized
(n=186) and hospitalized (n=57) patients. Univariate analysis
identified 12 up-regulated metabolites in the hospitalized
group, among which there were the antiviral nucleosides
and 4 metabolites involved in the tryptophan catabolic
pathway, namely 3-hydroxykynurenine, kynurenine,
3-hydroxyanthranilic acid, and quinolinic acid (Supple-
mentary Table S5). On the other hand, 8 metabolites,
including citric acid, trigonelline, allantoin, and glycine
were down-regulated in hospitalized patients compared
with subjects who did not require hospital admission.

To depict the clinical significance of the identified
metabolite differences, a volcano plot was created using both
metabolites and clinical data. As shown in Figure 3, C-reactive
protein (CRP) and ferritin serum concentrations showed
similar fold change range anddegree of statistical significance
compared with the antiviral ddhNs, 3-hydroxykynurenine,
and kynurenine. With regard to variables with reduced con-
centrations in the hospitalized compared with the nonhospi-
talized group, iron, citric acid, lymphocyte count, Transferrin
saturation, glomerular filtration rate (GFR), platelets, and
glycine, showed the most significant p-values.

Finally, we carried out a biomarker analysis based on
area under ROC curve (AUC) calculation (Supplementary
Figure S3). Peak CRP showed the greater discrimination
ability between hospitalized and nonhospitalized patients
(AUC: 0.802(0.743–0.862), specificity: 0.785(0.731–0.842)),
sensitivity: 0.737(0.622–0.834)), followed by 3-hydroxy
kynurenine (AUC: 0.766(0.694–0.840, specificity: 0.763(0.707–
0.817), sensitivity: 0.719(0.614–0.816)), and kynurenine (AUC:
0.7654(0.691–0.829), specificity: 0.715(0.642–0.769), sensitivity:
0.737(0.613–0.851)). Of note, the best performance in this
population was provided by the ratio between platelets and
peak CRP that showed an AUC of 0.837 (0.767–0.898) (Supple-
mentary Figure S3).

Recognition of metabolic signatures associated with clin-
ical deterioration
Metabolic profiles were analyzed according to the serum
concentration of biomarkers currently used in the clinical

(F) Simplified diagram illustrating the dysregulated metabolites and their interactions. Increased metabolites in AcuteCOV vs. CTR are typed with red
letters, while down-regulated with blue letters. Metabolites typed with black letters show similar concentration across study groups. Wilcoxon–Mann–
Whitney test, p-values: *****<10−10; ****<10−8; ***<10−4; **<0.01; *<0.05. BMI, body mass index; Cys, cysteine; FC, fold change; met, metabolism; Phe,
phenylalanine; TCA, tricarboxylic acid.
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practice to evaluate the main pathophysiological de-
rangements leading to severe disease. Notably, based on
previous studies [58, 59], we elected to use the following
clinical variables: CRP (inflammation), peripheral blood
lymphocyte count (immune response), D-dimer (coagula-
tion), and oxygen saturation (SpO2, lung function). We also
included the Endothelial activation and stress index (EASIX),
a predictor of endothelial complications recently validated
in a cohort of COVID-19 hospitalized patients [60]. As shown
in the heatmap reported in Figure 4, twomain clusters were
identified (euclidean distance measure, ward clustering): (1)
metabolites whose concentration tend to increase along
with worsening of clinical parameters; (2) metabolites whose
concentration tend to decrease along with worsening of
clinical parameters. As highlighted in the dendogram of the
hierarchical cluster analysis, each of the two main clusters
included two sub-clusters, referred to as 1A (n=2metabolites),
1B (n=11), 2A (n=7), and 2B (n=9). Of note, Cluster 1B includes
the tryptophan-related metabolites neopterin, 3-hydroxy
kynurenine, kynurenine, and 3-hydroxyanthranilic acid,
together with the 4 antiviral ddhNs.

Influences of sex, age, and BMI factors on the AcuteCOV
metabolomic profile

We investigated whether specific metabolite profiles could
be identified across sex, age, and BMI patient subgroups.

Comparedwithwomen,men had higher concentrations
of xanthurenic acid, tryptophan, 3-hydroxykynurenine,

tyrosine, kynurenine (Supplementary Figure S4A).
Conversely, female urine showed higher amounts of a
number of organic acids, including lactic acid, citric acid,
indole-3-acetic acid, beta-aminoisobutyric acid, succinic
acid, glutamic acid, acetic acid, aspartate, and fumaric acid
(Supplementary Figure S4A).

Investigation of the metabolite differences across age
groups disclosed increasing concentrations of neopterin,
ddhC-5′CA, and taurine as the population increases in age,
since lower levels of these metabolites were observed in
younger subjects compared with the senile group (Supple-
mentary Figure S4B). Of note, the same pattern of modula-
tion was observed for the metabolites related to the
tryptophan pathway, including kynurenine, quinolinic acid,
3-hydroxykynurenine, and kynurenic acid (Supplementary
Figure S4B).

Finally, healthy-weight range patients displayed increased
urinary concentrations of glycine, citric acid, indole-3.-acetic
acid, and serine compared with subjects with higher BMI,
whereas inosine, tyrosine, 1-methylhistidine showed an oppo-
site modulation pattern (Supplementary Figure S5).

Aim 3: Analysis of the antiviral ddhNs and
their associations with metabolite profiles
and clinical variables

The 4 antiviral molecules ddhC, ddh-5′CA, ddhC-5′Hcy, ddhU
accounted for a significant proportion of variability in the

Figure 3: Differences in urinary metabolite
concentration and serum clinical parameters
between hospitalized and nonhospitalized
patients. (A) Combined volcano plot showing
the metabolites and the clinical variables
significantly different in the comparison of
hospitalized (n=57) vs. nonhospitalized (n=186)
patients, with a fold change >1.2 and p-value
<0.05. Increased variables are typed with red
letters, while decreased with blue letters.
Metabolites are written in bold, while clinical
parameters are diplayed in a regular typeface.
*Denotes serum variables assessed on the
same day of urine collection. BMI, body mass
index; BT, body temperature; CRP, C-reactive
protein; EASIX, endothelial activation and
stress index; GFR, glomerular filtration rate;
RR, respiratory rate; Tf, transferrin.
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dataset, as indicated by PCA (Figure 5A). Thus, we explored
whether these molecules were related to specific metabolite
signatures and clinical manifestations. To this end, a combined
factor, referred to as “Total ddhNs”, was calculated for each
patient by adding up the urinary concentration of the 4 anti-
viral nucleosides: [ddhC] + [ddh-5′CA] + [ddhC-5′Hcy] + [ddhU].
As shown in Table 3, “Total ddhNs” was positively associated
with markers of systemic inflammation, including CRP, EASIX,
and LDH, whereas leukocytes and lymphocyte counts
decreased along with increasing antiviral nucleoside

concentrations. With regard to associations with the other
metabolites, a strong positive correlation was found with
neopterin and a number of molecules related to tryptophan
metabolism, including quinolinic acid, kynurenine,
3-hydroxykynurenine, kynurenic acid, and
3-hydroxyanthranilic acid (Table 4). On the other hand, citric
acid, glycine, and threonine showed the lowest correlation
coefficients, indicating an inverse association with antiviral
nucleosides. Moreover, an inverse correlation was observed
between the nucleoside sum and different glucogenic amino

Figure 4: Recognition of urinary metabolic signatures associated with clinical deterioration. Heatmap showing the concentration of those metabolites
which resulted significantly different across the following classes of clinical variables: EASIX; low risk, vs. high risk; D-dimer: normal vs. high; CRP: normal
vs. minor elevation, vs. moderate elevation vs. marked elevation; lymphocyte count: normal vs. low; SpO2: normal vs. low-minor risk vs. low-medium risk
vs. low-high risk. Clustering method: average linkage; distance metric: 1–Spearman’s rank correlation. Four main metabolite signatures are identified:
(1A) (orange dendrogram), (1B) (green), (2A) (violet), (2B) (brown). A two-color scale is used to illustrate the metabolite modulation pattern: deep red
denotes +5, deep blue denotes −5. Specific color-coded scales denote the different clinical parameters and their classes. CRP, C-reactive protein; EASIX,
endothelial activation and stress index; SpO2, oxygen saturation.
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acids entering the TCA cycle upstream to succinate, such as
glycine, serine, threonine, alanine, arginine, glutamine,
whereas aspartate,which is converted to oxaloacetate, resulted
positively correlated.

To further understand the association between the anti-
viral nucleosides and the concentration of the other metabo-
lites, we stratified the population according to quartiles (Q) of
“Total ddhNs”: (1) Q1, from 0.1 AU to 214.6 AU; (2) Q2, from 214.6
AU to 756.7 AU; (3) Q3, from 756.7 AU to 2,220.9 AU; (4) Q4, from
2,220.9 AU to 6,939.4 AU. PLS-DA found an excellent discrimi-
nation between Q1 and Q4 (Figure 5B). These results were
confirmed by univariate analysis performed to investigate
differences in the metabolite concentrations across the quar-
tiles (Figure 5C and Supplementary Table S6). Among the me-
tabolites whose concentration increased along with higher
“Total ddhNs”, kynurenine, neopterin, 3-hydroxykynurenine,

and quinolinic acid showed the highest FC between Q1 and Q4.
Conversely, the reduced metabolites were citric acid and
trigonelline.

Aim 4: Investigation of the potential
association between SARS-CoV-2-induced
kynurenines/trigonelline dysregulation,
NAD+ biosynthesis, and sirtuins

As schematized in Figure 6A, the kynurenine pathway
mediates NAD+ de novo synthesis from tryptophan. Since
SARS-CoV-2 can inhibit NAD+ generation through down-
regulation of the enzymes NAD Synthetase 1 (NADSYN1) and
quinolate phosphoribosyltransferase (QPRT) [61], the

Figure 5: Analysis of the antiviral ddhNs and
their associations with metabolic urinary
profiles. (A) Principal component analysis (PCA)
loading plot showing a strong influence of the
4 ddhNs on PC1. (B) PLS-DA reveals no overlap
between the quartile Q1 and Q4 of “Total
ddhNs”, which was calculated for each patient
by adding up the urinary concentrations of the
4 antiviral nucleosides: [ddhC] + [ddh-5′
CA] + [ddhC-5′Hcy] + [ddhU]. (C) Box plots
illustrating the metabolites with the highest
fold change between “Total ddhNs”Q1 andQ4.
Kruskal-Wallis One-way ANOVA on Ranks.
Normalized concentrations were obtained by
applying the probabilistic quotient normaliza-
tion (PQN). All the metabolites displayed here
had a p-value<0.001. For each experimental
group, box plots show the median [25–75],
while the red line denotes the mean. LDA,
linear discriminant analysis; PCA, principal
component analysis; Q, quartile.
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accumulation of kynurenine metabolites could be a conse-
quence of the virus-induced blockade of the downstream
biochemical steps. In this view, the reduced urinary con-
centration of 1-methylnicotinamide and trigonelline could
reflect an increased activation of the NAD+ salvage path-
ways, in an effort to improve NAD+ recycling. Therefore, a

pilot study was performed to investigate whether the
derangement in NAD+ biosynthesis could have influences on
the activation of sirtuins, NAD+-consuming enzymes with
potent immunomodulatory and antiviral properties.

We assessed SIRT1 expression in blood samples and
found detectable concentrations of this enzyme only in 49

Table : Association between “Total ddhNs” and clinical variables.

Group Variable Total ddhNs

r p-Value

Demographic data
Age . <.
BMI . ns
HOMA-IR −. ns

Systemic inflammatory
response

CRPc . <.
EASIXa . <.
LDHc

. <.
Ferritina . <.

Immune function
Leukocytesa −. <.
Leukocytesb −. <.
Lymphocytesa −. <.
Lymphocytesb −. <.
Neutrophilesa −. <.

Blood coagulation and
fibrinolysis

D-Dimerc . ns
Plateletsa −. <.
INRa −. <.

Iron homeostasis
Irona −. <.
Transferrin
saturationa

−. <.

Transferrina −. ns
Pulmonary function

Dyspnea −. ns
HF −. ns
RR −. ns
O saturation

b −. ns
Liver function

Ureac . ns
GGTa . ns

Kidney function
Creatinea . ns
GFRa −. ns

Spearman’s rank correlation; a color scale is used to illustrate r coefficients:
deep red denotes +, deep green denotes −, white indicates no
correlation. BMI, body mass index; HOMA-IR, homeostasis model
assessment–insulin resistance; EASIX, endothelial activation and stress
index; LDH, lactate dehydrogenase; INR, international normalised ratio; HF,
heart frequency; RR, respiratory rate: GGT, gamma-glutamyl transferase;
AST, aspartate aminotransferase; GFR, glomerular filtration rate.
aMeasured on the day of urine collection; bminimum value; cmaximum
value (peak).

Table : Association between “Total ddhNs” and the other urinary
metabolites.

Pathway Metabolites Total ddhNs

r p-Value

Immune response
Neopterin . <.

Tryptophan metabolism
Quinolinic acid . <.
Kynurenine . <.
-Hydroxykynurenine . <.
Kynurenic acid . <.
-Hydroxyanthranilic
acid

. <.

Indole--acetic acid −. <.
Ketogenesis

Acetone . <.
Phenylalanine
metabolism

Phenylalanine . <.
Dopamine . <.

Cysteine oxidation/crea-
tine metabolism

Taurine . <.
Creatinine . <.
Creatine −. <.

One carbon metabolism
Dimethylamine . <.
Trimethylamine . <.
Glycine −. <.
Serine −. <.

TCA cycle
Citric acid −. <.

AA and derivatives
Aspartate . <.
Threonine −. <.
Alanine −. <.
-Hydroxyproline −. <.
Glutamine −. <.

Urea cycle
Allantoin −. <.
Citrulline −. <.
Arginine −. <.
Urea −. <.

Other
Pseudouridine . <.
Erythritol −. <.

Spearman’s rank correlation; a color scale is used to illustrate r coefficients:
deep red denotes +, deep green denotes −, white indicates no
correlation. AA, amino acids; TCA, tricarboxylic acid.
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patients (presence of SIRT1), while 122 subjects showed no
serum Sirt1 (absence of SIRT1). Next, we investigated the
potential association between SIRT1 and the metabolic per-
turbations and clinical deterioration observed in COVID-19.
Univariate analysis revealed that absence of SIRT1 was
associated with significantly higher kynurenic acid, quino-
linic acid, and neopterin levels in both serum and urine
samples (Figure 6B). Moreover, patients with no SIRT1
expression had higher concentration of the inflammatory
indexes ferritin, CRP, EASIX, and LDH compared with those
patients showing detectable SIRT1 amounts in their blood
(Figure 6C). Consistently, absence of SIRT1 was associated
with increased serum concentration of the chemokines IL-8
and MCP-1 (Figure 6D).

Discussion

The present study confirms and expands the crucial role of
urinary metabolic profiling as a diagnostic and prognostic
tool in COVID-19. We show that changes in metabolite uri-
nary concentration can stratify patients into classes of dis-
ease severity, with a discrimination ability comparable to
that of clinical biomarkers. We likewise provide further
evidence of the importance of the kynurenine pathway in
SARS-CoV-2-induced phenoconversion, by documenting a
marked accumulation of these metabolites in deteriorated
patients as well as in higher-risk subjects. The analysis of
urinary ddhNs indicates that these antiviral nucleosides not
only describe active infection but are also associated with
the main COVID-19-related perturbations, suggesting a
potential role of suchmolecules as a molecular link between
viral load, host immune response, and metabolic distur-
bances. Finally, an association between kynurenine dysre-
gulations and NAD+/sirtuins has been established for the
first time, offering a new pathogenic mechanism potentially
responsible for a variety of COVID-19 pathological hallmarks.

By integrating 1H NMR spectroscopy and LC–MS data,
we provide a precise description of the changes in urine
metabolite concentration associated with clinical deterio-
ration and severe disease requiring patient hospitalization.
More specifically, we identified 29 metabolites whose con-
centration significantly increases/decreases along with a
worsening of clinical parameters routinely used to capture
the main pathophysiological derangements of the disease
[58, 59], including, CRP, SpO2, d-dimer, and lymphocyte
count. In addition, in our cohort, metabolite urinary con-
centration showed a distinctive pattern in hospitalized and
nonhospitalized individuals, with a diagnostic performance
comparable to that of clinical variables. These observations
further confirm that assessment ofmetabolite levels in urine

samples provides valuable diagnostic and prognostic infor-
mation in COVID-19 [33,34,36,37] and could represent a
potent mean for noninvasive screening in all the clinical
conditions characterized by metabolic dysregulations,
similarly to SARS-CoV-2 infection.

The greatest differences between higher-risk and lower-
risk patients were observed in the concentration of metab-
olites related to the tryptophan/kynurenine pathway and of
the urinary ddhNs. SARS-CoV-2-induced dysregulation of the
kynurenine pathway is widely described in both acute
COVID-19 and PACS [17–24, 62]. The rise of kynurenines is
positively associated with release of inflammatory media-
tors [18, 20, 23, 63] and disease severity [20, 23, 24]. Moreover,
since high levels of kynurenic acid, 3-hydroxykynurenine,
3-hydroxyanthranilic acid, and quinolinic acid exert dele-
terious effects on the brain and the gut [18, 39, 62], the
accumulation of these molecules can directly contribute to
exacerbating patient health status. Consistently, we found
higher kynurenine urinary concentration in hospitalized
patients compared with non-hospitalized, as well as in sub-
jects showing poorer clinical picture. Moreover, increased
tryptophan metabolites were detected in urine samples of
higher-risk patients, including elderly and men. This finding
offers a rationale for the poorer clinical outcome associated
with these classes of patients [20, 23, 63].

Concerning ddhNs, our study provides additional in-
formation regarding their role in SARS-CoV-2 infection. In
our previous work [32], we linked the excretion of these
endogenous antiviral agents to the activity of the virus
inhibitory protein, endoplasmic reticulum-associated, IFN
inducible (Viperin) protein, an enzyme induced by in-
terferons to inhibit viral replication [64]. A positive corre-
lation between serum ddhNs and cytokine levels was also
identified, together with higher ddhN urinary concentra-
tions in hospitalized patients compared with nonhospital-
ized. Here, we confirm and expand these observations, by
demonstrating that nucleoside concentration changes are
associated with alterations in numerous clinical variables
routinely used to assess patient health status in COVID-19,
including biomarkers of inflammation, leukocyte count and
molecules related to iron homeostasis. Moreover, the anti-
viral ddhNs showed a distinctive profile in hospitalized
compared with nonhospitalized patients, with similar fold
changes and statistical significance of CRP and ferritin.
These findings clearly demonstrate that urinary ddhNs not
only capture active viral infection but can also describe
clinical deterioration, with a discrimination ability compa-
rable with that of the markers currently used in clinical
practice [58, 59]. With regard to associations with urinary
metabolites, a strong positive correlation was found be-
tween ddhNs and neopterin, kynurenines, and taurine,
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Figure 6: Association between kynurenine/trigonelline dysregulation, NAD+ biosynthesis, and sirtuins. (A) Simplified diagramof the tryptophan pathway
and its connection to NAD+ biosynthesis, which, in turn, is crucial to activate sirtuins. Metabolites typed in red fonts have increased urinary concentrations
in patients with worst clinical condition, in males, in elderly, and/or in subjects with higher ddhN urinary release, whereas metabolites typed in blue
showed an opposite modulation pattern, with lower urinary concentrations in at least one of the patient classes mentioned above. Enzymes involved in
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while different amino acids and molecules related to the
urea cycle were inversely associated with the nucleosides.
These results provide additional evidence supporting the
connection between viral load, host antiviral response, and
metabolic derangements in infectious diseases.

The comparison between AcuteCOV and controls, which
relied exclusively on 1H NMR data, further demonstrates that
metabolic phenoconversion could have a causative role in the
evolution of the main homeostatic perturbations observed in
COVID-19 [18]. Increased succinate and fumarate, together
with reduced citrate, denote an impairment in the TCA cycle,
in line with previous studies [11, 33]. In particular, the rise of
succinate suggests a dysfunctional mitochondrial complex II,
namely succinate dehydrogenase, which plays a crucial role
in the generation of oxygen reactive species [65–67]. More-
over, since succinate can act as a pro-inflammatory/
chemoattractant signaling molecule [26], its deregulation
could represent one of the deleterious biological events
leading to immunometabolic reprogramming, which was
extensively documented in COVID-19 [5, 27]. Compared
with noninfected individuals, the AcuteCOV group also
showed reduced concentrations of dimethylamine, N,N--
dimethylglycine, and glycine. In addition to being indic-
ative of altered one-carbon metabolism, these findings
could unveil a new-onset insulin resistance [68, 69]. The
higher glucose excretion observed in SARS-CoV-2 patients
further supports this concept [70, 71]. Consistent with pre-
vious papers [6, 18], we revealed a marked increase in uri-
nary taurine. Accumulation of this metabolite could derive
from deranged one-carbon/cysteine metabolism or might
reflect the activation of adaptive mechanisms to cope with
oxidative stress. Of note, taurine appears to be particularly
relevant for PACS development, as perturbations in its
concentration were reported to be persistently sustained
over months after the original SARS-CoV-2 infection [6, 72].

The last section of our research sought to expand
knowledge about SARS-CoV-2-induced changes in trypto-
phanmetabolites and their involvement in the pathogenesis
of COVID-19. From a mechanistic point of view, the kynur-
enine pathway leads to the production of quinolinic acid
which, in turn, serves as a precursor in NAD+ de novo
biosynthesis [38, 39, 73]. Besides being a key coenzyme in
many redox reactions, NAD+ has emerged as a master
regulator of inflammation, leukocyte functions, and host

antiviral responses [73–76]. In fact, NAD+ availability is
essential to activate the NAD+-dependent enzymes sirtuins,
CD38, and poly-ADP-ribose polymerases (PARPs), which
exert broad immunomodulatory and defense effects [40–44].
Increasing evidence demonstrates that many viruses,
including SARS-CoV-2, can deplete NAD+ concentrations
[5, 77, 78]. This phenomenon could be part of the miscel-
laneous viral strategies to evade the host immune system
[73, 79, 80]. Recently, Heer and colleagues showed that
SARS-CoV-2 infection is associated with down-regulation of
genes involved in NAD+ synthesis from tryptophan or nico-
tinic acid, namely QPRT and NADSYN [61]. Based on these
findings, we hypothesized that the kynurenine accumula-
tion detected in our cohort and in other AcuteCOV pop-
ulations reflects a virus-induced blockade of the
downstream biochemical steps required to generate NAD+.
Furthermore, the reduced excretion of the niacinmetabolite
trigonelline could be a consequence of enhanced NAD+

recycling in the salvage pathways. Since NAD+ depletion
leads to decreased sirtuin activity [43], we tested the idea
that such SARS-CoV-2-induced metabolic perturbations
could be associated with SIRT1 deregulation.

Our pilot study discloses, for the first time, a potential
association between kynurenines/trigonelline and SIRT1 in
COVID-19. In fact, higher kynurenine concentrations in both
serum and urine samples were associated with lower SIRT1
blood levels. After stratifying our cohort according to SIRT1
levels, we found that patients with impaired SIRT1 showed
higher serum concentration of biomarkers of systemic
inflammation and epithelial dysfunction, as well as an
enhanced release of inflammatory mediators. Given the
multiple detrimental consequences of SIRT1 deregulation on
host homeostasis [41, 42, 81], our preliminary results not only
provide a potential mechanistic explanation underlying
the SARS-CoV-2-induced superactivation of the kynurenine
pathway, but they also offer a new pathogenic mechanism
potentially responsible for a variety of clinical manifesta-
tions in COVID-19, including excessive systemic cytokine
release, metabolism alterations, and insulin resistance.

Some limitations of the study should be discussed. First,
this is a single-center analysis which mainly involved
patients suffering from mild disease, while a very small
proportion of severe cases was included [46]. Therefore, the
results of the present research could not be generalized to

the biochemical reactions presented here are typed in capital letters; the expression of enzymes framed in green is modulated by SARS-CoV-2 [61].
Differences in the concentration of (B) selectedmetabolites, (C) clinical variables, and (D) serum inflammatorymediators between patient groups derived
based on absence (n=122, white box) or presence (n=49, green box) of SIRT1 in serum samples. Box plots illustrate median [25–75], red lines denote the
mean of each study group. Wilcoxon–Mann–Whitney test; p-values: *p<0.05; **p<0.01; ***p<0.001. CRP, C-reactive protein; EASIX, endothelial activation
and stress index; LDH, lactate dehydrogenase; IDO, 2,3-dioxygenase and indole 2,3-dioxygenase; NADSYN1, NAD synthetase 1; NAPRT, nicotinic acid
phosphoribosyltransferase; NNMT, nicotinamide N-methyltransferase; QPRT, quinolate phosphoribosyltransferase; SIRT1, sirtuin 1.
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thewide-spectrum of COVID-19 severity classes. On the other
hand, our data specifically describe the metabolic pertur-
bations underlying asymptomatic and mild diseases, which,
due to the successful introduction of vaccination, represent
the most common clinical manifestations of SARS-CoV-2
infection. Second, we exclusively analyzed spontaneous
urine that could be less informative than 24 h-urine in
describing a person’s metabolic state as it is affected by
external factors such as diet, hydration, and circadian
rhythms. Nevertheless, compared to 24-h urine, spontaneous
urine samples offer clear clinical advantages in terms of ease
of collection and practicality. Hence, they were considered
the optimal choice for analyzing a large number of patients
in our real-world cohort. Still on sample collection, since the
“Coronataxi” study did not involve scheduled regimen for
collecting biological specimens, we cannot exclude the pos-
sibility of influences on the urinarymetabolite profile due to
variations in fasting condition among patients. Lastly, we
acknowledge that evaluating SIRT1 concentration by ELISA
may not represent the ideal method to investigate Sirtuin
activation. Despite this, wewere able to provide preliminary
evidence suggesting a potential link between the kynurenine
pathway and NAD+/sirtuins in SARS-CoV-2. Therefore, our
results represent a useful starting point for further re-
searches on the topic.

In conclusion, we demonstrated that urinary metab-
olomics assumes similar diagnostic/prognostic power to
clinical pathology in COVID-19 as it can fully capture patient
clinical deterioration and aberrant immune activation.
Therefore, the description of metabolite changes in urine
samples appears extremely useful not only to optimize
patient stratification, but also to assess the effectiveness of
novel treatments in preventing severe COVID-19 or PACS
development. In this regard, the urinary ddhNs emerge as
promising biomarkers of SARS-CoV-2 and possibly other
viral infections. In fact, unlike the nonspecific markers
currently used in the clinical practice, ddhNs concentration
is not influenced by pre-existing comorbidities. To facilitate
the clinical usability of our results, Table 5 provides a list of
the most discriminant metabolites for each of our study
aims, along with their absolute concentrations. The com-
bined use of serum and urine metabolomics can further
improve diagnostic accuracy, fostering the application of
precision medicine in the context of infectious diseases [82],
as well as in other clinical conditions marked by deranged
metabolism.

A substantial novelty of the present research resides in
the recognition of a potential association between kynur-
enine pathway superactivation and impaired NAD+ biosyn-
thesis, which could lead to inefficient sirtuin response. Our

Table : Most discriminant metabolites.

Metabolite Normalized concentration, mM

Aim  Aim  – hospitalization Aim  – Total ddhNs Aim  – Serum SIRT

AcuteCOV CTR Yes No High Low Presence Absence

-Hydroxykynurenine NA NA . ± . . ± . . ± . . ± . . ± .a . ± .a

Acetone . ± . . ± .
Alanine NA NA . ± . . ± . . ± . . ± .
Citric acid . ± . . ± . . ± . . ± . . ± . . ± .
Creatine . ± . . ± .
DdhC NA NA , ±   ±  NA NA
Glucose . ± . . ± . . ± . . ± .
Glycine . ± . . ± .  ±   ± ,  ±   ±   ± ,  ± 

Hippuric acid . ± . . ± .
Kynurenine NA NA . ± . . ± . . ± . . ± . . ± .a . ± .a

Neopterin NA NA . ± . . ± . . ± . . ± . . ± . . ± .
Picolinic acid NA NA . ± . . ± .
Quinolinic acid NA NA . ± . . ± . . ± . . ± .
Succinic acid . ± . . ± . . ± . . ± .
Taurine . ± . . ± .  ±   ±   ±   ± 

Trigonelline . ± . . ± . . ± . . ± . . ± . . ± .

Summary Table reporting the average normalized concentration of the metabolites showing the highest fold change/statistical significance in one of the
following comparison: () Aim , AcuteCOV vs. CTR; () Aim , hospitalized patients vs. nonhospitalized patients; () Aim , high “Total ddhNs“ vs. low “Total
ddhNs“; () Aim , presence of SIRT in serum samples vs. absence of SIRT in serum samples. Normalized concentrations were obtained by applying the
probabilistic quotient normalization (PQN); data are presented as mean ± SD NA, not applicable. aSerum metabolite.
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observations could be of paramount clinical relevancefor
the development of innovative therapeutic strategies aimed
at restoring the physiological NAD+ turnover in COVID-19
patients [75, 83, 84].
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