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Abstract

Objectives: The biomarker N-terminal pro B-type natri-
uretic peptide (NT-proBNP) has predictive value for identi-
fying individuals at risk for cardiovascular disease (CVD).
However, it is not widely used for screening in the general
population, potentially due to financial and operational
reasons. This study aims to develop a deep-learningmodel as
an efficient means to reliably identify individuals at risk for
CVD by predicting serum levels of NT-proBNP from the ECG.
Methods: A deep convolutional neural network was
developed using the population-based cohort study
Hamburg City Health Study (HCHS, n=8,253, 50.9 % women).
External validation was performed in two independent
population-based cohorts (SHIP-START, n=3,002, 52.1 %
women, and SHIP-TREND, n=3,819, 51.2 % women). Assess-
ment of model performance was conducted using Pearson
correlation (R) and area under the receiver operating char-
acteristics curve (AUROC).
Results: NT-proBNP was predictable from the ECG (R, 0.566
[HCHS], 0.642 [SHIP-START-0], 0.655 [SHIP-TREND-0]). Across

cohorts, predicted NT-proBNP (pNT-proBNP) showed good
discriminatory ability for prevalent and incident heart fail-
ure (HF) (baseline: AUROC 0.795 [HCHS], 0.816 [SHIP-START-
0], 0.783 [SHIP-TREND-0]; first follow-up: 0.669 [SHIP-START-
1, 5 years], 0.689 [SHIP-TREND-1, 7.3 years]), comparable to
the discriminatory value of measured NT-proBNP. pNT--
proBNP also demonstrated comparable results for other
incident CVD, including atrialfibrillation, stroke,myocardial
infarction, and cardiovascular death.
Conclusions: Deep learning ECG algorithms can predict
NT-proBNP concentrations with high diagnostic and pre-
dictive value for HF and othermajor CVD andmay be used in
the community to identify individuals at risk. Long-standing
experience with NT-proBNP can increase acceptance of such
deep learning models in clinical practice.
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risk; general population; natriuretic peptide

Introduction

The timely identification of individuals in the general popu-
lation at risk for cardiovascular diseases (CVD) allows for an
early medical intervention and thus a potentially better
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outcome [1, 2]. Yet, this can be difficult in outpatient settings,
potentially due to less severe and unspecific symptoms at
early stages [3].

The strong cardiovascular biomarkers Brain natri-
uretic peptide (BNP) and its N-terminal prohormone
(NT-proBNP) alone can help identify individuals with heart
failure in primary care [4] and represent one of the pillars
for heart failure diagnosis and management [5]. This hor-
mone is predominantly secreted by cardiomyocytes upon
stimuli including mechanical stretch. Its biologic functions
include regulation of blood pressure, blood volume and
electrolyte homeostasis. Elevated serum levels of BNP and
NT-proBNP are strongly correlated with multiple prevalent
and incident cardiovascular diseases such as heart failure
(HF), atrial fibrillation (AF), stroke, myocardial infarction
(MI), and death [6–10]. Importantly, these associations have
been validated extensively in patient cohorts and in the
general population [11, 12]. However, only a fraction of
patients with heart failure receives a BNP or NT-proBNP
measurement before their diagnosis [13], despite this evi-
dence and the low barrier for determining natriuretic
peptide levels through point-of-care measurements [14].
Development and application of additional low-barrier
methods for risk assessment may improve timely CVD
diagnosis. One possible way of achieving this may lie in the
application of deep learning (DL) algorithms on the widely
available electrocardiogram (ECG). The ECG, a cheap and
non-invasive routine diagnostic procedure, can be auto-
matically and quickly analysed by DL models to infer
medically relevant information. Previous studies have
shown that ECG-based DL models can detect pathological
states in populations at risk such as valve defects [15], AF in
patients with sinus rhythm [16], or cardiac dysfunction [17],
among others. However, their applicability in the general
population is less effective [18].

We hypothesized that CV risk assessment in the general
population with the benefits of ECG-DL models can be ach-
ieved by training a DL model to predict NT-proBNP serum
levels from the ECG. By doing so, we can utilize a larger
number of datapoints for model training and additionally
build on existing evidence for this strong cardiovascular
biomarker.

To test our hypothesis, we trained a DL model, AI-NT-
proBNP, to predict NT-proBNP serum levels from the ECG
using data from an urban population in Germany, and
consistently tested generalizability in two external inde-
pendent German population-based cohorts. We evaluated
the correlation of predicted NT-proBNP serum levels
(pNT-proBNP) to lab-measured NT-proBNP levels (mNT--
proBNP) from two manufacturers and compared the pre-
dictive ability of pNT-proBNP to mNT-proBNP and a clinical

risk factor-based model for prevalent and incident diseases,
including heart failure, atrial fibrillation, stroke, and car-
diovascular death. To our knowledge, this study is the first to
harness blood biomarker information for an ECG-DL model,
and it shows that a model like AI-NT-proBNP can provide
diagnostic value for cardiovascular risk assessment in the
population comparable to NT-proBNP.

Materials and methods

Study cohorts

The Hamburg City Health Study (HCHS) is an ongoing population-based
cohort study enrolling randomly selected individuals between 45 and
74 years from the Hamburg metropolitan area in Germany. For this
study, the data release of the first 10,000 subjects enrolled between 2016
and 2019 was used. All participants received a baseline study exami-
nation following the published HCHS protocol [19]. External validation
and prospective assessment were performed in the Study of Health in
Pomerania (SHIP), a population-based study based in Western Pomer-
ania, Germany, which includes multiple cohorts and follow-up exami-
nations [20]. We utilized data from the two independent cohorts
SHIP-START and SHIP-TREND. For SHIP-START, a total of 6,265 in-
dividuals aged from 20 to 79 years were recruited after a two-step
stratified random sampling procedure between 1997 and 2001. Out of
these, 4,308 received baseline examinations (SHIP-START-0). Follow-up
examinations were conducted between 2002 and 2006 among 3,300
participants (SHIP-START-1), 2008 and 2012 among 2,333 participants
(SHIP-START-2) and between 2014 and 2016 among 1,718 participants
(SHIP-START-3). The median follow-up time from baseline was 5.0, 10.8
and 15.8 years for each cohort. The second SHIP cohort, SHIP-TREND,
was initiated in 2008 and included a randomly selected independent
group of individuals from Western Pomerania. Baseline examinations
were conducted between 2008 and 2011 on 4,420 individuals
(SHIP-TREND-0). A follow-upwas performed between 2016 and 2019 on a
sample of 2,507 individuals (SHIP-TREND-1) resulting in amedian follow-
up time of 7.3 years. All SHIP subjects received examinations according
to the SHIP protocol [20].

Participants of all cohorts received 12-lead ECG recordings
(HCHS: CARDIOVIT CS-200 Excellence, Schiller Medizintechnik GmbH,
Germany; SHIP-START-0 to –1: Personal-120-LT, Esaote Biomedica,
Genova, Italy; SHIP-START-2 to –3 and SHIP-TREND-0 to –1: Welch
Allyn SE-PRO-600 Cardioperfect Pro Recorder/Hill-Rom Holdings,
Batesville, Indiana, USA). Medical history and risk factor information
were derived from questionnaires or computer-assisted interviews.
Furthermore, all examined participants received blood draws and
laboratory assessments for routine measures including the mea-
surement of NT-proBNP concentrations. Samples from HCHS were
measured with Alere NT-proBNP for ARCHITECT (Abbott Diagnostics,
Wiesbaden, Germany). NT-proBNP concentrations from all SHIP cohorts
were measured using Siemens VISTA (Siemens Healthcare Diagnostics,
Eschborn, Germany) [21].

The studies were conducted in accordance with the Helsinki
Declaration. The local Ethics Committee of the State of Hamburg
Chamber of Medical Practitioners (PV5131) and the data protection
commissioners of the University Medical Center Hamburg-Eppendorf
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and of the Free and Hanseatic City of Hamburg approved the HCHS. The
Ethics Committee at the University Medicine Greifswald approved the
SHIP studies (approval number BB 39/08). All participants provided
written, informed consent.

Outcomes

Prevalent and incident heart failure, stroke, MI, and cardiovascular
death were assessed by echocardiography, questionnaires or computer-
assisted interviews encompassingmedical history andpriormedication,
laboratory analysis of blood samples, ECGs, and death certificates (see
Supplementary Methods).

Model development and evaluation

For model development, we used a 1-dimensional ResNet convolutional
neural network [22] to predict serum-level NT-proBNP (pNT-proBNP).
The 12-channel ECGs, whichwere recordedwith a sample rate of 250 Hz,
were pre-processed utilizing a powerline and 5th-order Butterworth
filter.

During model training, 3-min and 10-s ECGs were used. 10-s ECGs
were used during inference on test datasets.

The model was trained on resting state ECGs from the HCHS to
predict logarithmizedNT-proBNP values. ECGs (n=8,256)were randomly
split into 66 % development (n=5,416) and 34 % internal testing data
(n=2,840). The development data was deployed in a 5-fold cross valida-
tion scheme, resulting in 5-final models. For the final prediction on test
datasets the mean of these 5 models was calculated and subsequently
used.

In order to build a more robust model, the ECG data was randomly
augmented during training by dropout augmentation (setting one ECG
channel to zero), baseline-shifts, voltage-scaling and generation of
random starting points by randomly cropping approximately 8 s of
every ECG, which translates to 2,048 consecutive samples within each
recording [23].

Statistical analysis

To assess the performance of pNT-proBNP, we calculated Pearson’s cor-
relation coefficient (R) with NT-proBNP laboratory measurements
(mNT-proBNP) on internal and external validation datasets. For compar-
ison, two baseline linear regressionmodels (Risk FactorModel)werefitted
to predict the log-transformed NT-proBNP in the same 5-fold cross vali-
dation scheme: RF-ModelLin-1 was fitted using the characteristics age and
sex only, while RF-ModelLin-2 was fitted with the addition of body mass
index, hypertension, diabetes mellitus, smoking status, LDL-cholesterol
concentrations, AF and CKD-epi estimated glomerular filtration rate
(eGFR) [24]. The correlation coefficient was bootstrapped for 1,000 itera-
tions in order todetermine confidence intervals (CI) and toperformz-tests.
For the evaluation of the diagnostic and prognostic value of mNT-proBNP
and pNT-proBNP for adverse cardiovascular events, comprising incident
heart failure, AF, MI, stroke, and cardiovascular death, five logistic
regression models were computed: 1. pNT-proBNP alone as predictor, 2.
mNT-proBNP alone as predictor, 3. pNT-proBNP as predictor adjusted for
risk factors, 4. mNT-proBNP as predictor adjusted for risk factors, and 5.
risk factors (age, sex, body mass index, hypertension, diabetes, smoking
status, LDL-cholesterol, AF, and eGFR) without NT-proBNP as predictors
(RF-ModelLog = reference model). AF as a risk factor was excluded when

adjustingmodels for the evaluation of diagnostic value for AF. Adjustment
of pNT-proBNP and mNT-proBNP for risk factors was performed by
generating regression models that included pNT-proBNP or mNT-proBNP
and the above-mentioned risk factors. These logistic regression models
were bootstrapped using random stratified sampling with replacement
(drawing frompositive andnegative classes separately to retain the rate of
incident events) and a stratified 20% test split. The performance was
assessed using the area under the receiver operating characteristic
(AUROC). The accumulated AUROCs for different logistic regression
models were tested for statistical significance by z-tests. Brier scores for
each classification were determined. Additionally, net reclassification
improvement (NRI) analysis was performed to compare pNT-proBNP to
mNT-proBNPusing a cut-offof 0.1 for risk categories. This analysis is in line
with previously published statistical analyses on DL models [25] and the
recommendations of the DZHK project group AI/ML [26]. Patients with
cancer at baseline were excluded from the analysis. Also, patients with
missing baseline variables were removed from further analysis. Model
training was performed in Python 3 [27] using PyTorch [28] and torchvi-
sion [29]. All statistical analysis was performed using Python 3 and SciPy
[30]. Plots were generated using Matplotlib [31].

All statistical analyses to reproduce the results reported in this
paper will become open-source and available under MIT license at:
https://github.com/JanBrem/AI-NT-proBNP.

Results

Study cohorts

The model AI-NT-proBNP was developed using resting ECGs
from the HCHS. A total of 8,253 ECGs with corresponding
NT-proBNP serum concentrations were available. The mean
age of these individuals was 62.8 ± 8.6 years (50.9 %women).
The median NT-proBNP serum concentration was 81.0 pg/
mL. AI-NT-proBNP was validated on the SHIP-START and
SHIP-TREND cohorts. For SHIP-START-0, we analysed a total
of 3,002 subjects, with a mean age of 48.7 ± 16.4 years at
baseline (52.1 % women). From SHIP-TREND-0, data of 3,819
individuals with a mean age 50.7 ± 15 years (51.2 % women)
were analysed. Data from the follow-up studies were
included to assess the diagnostic value of pNT-proBNP.
Figure 1 provides a graphical overview of the analysis and of
the study cohorts. Baseline characteristics for all partici-
pants included in this study are presented in Table 1.

Prediction of NT-proBNP serum
concentrations from ECGs using
AI-NT-proBNP

The performance of AI-NT-proBNP to predict pNT-proBNP
from the ECG in HCHS is shown in Figure 2 and Table 2. On
log-scale, pNT-proBNP values showed a decent correlation
with mNT-proBNP concentrations (R=0.566, 95 % CI 0.563–
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(A)

(B)

Figure 1: Study overview. (A) Analysis workflow. After training of the model, ECGs of study participants were analysed using AI-NT-proBNP, resulting in
predicted NT-proBNP serum concentrations for each participant. Predicted NT-proBNP concentrations were correlated with lab-measured NT-proBNP
values. Also, predicted NT-proBNP concentrations were analysed in regards to their diagnostic value for predicting incident and prevalent CVD, including
heart failure, atrial fibrillation, stroke,myocardial infarction, and cardiovascular death. (B) Cohort overview. The population-based HCHS (n=8,253) served
asmodel development cohort. The cohort was split into a training (n=5,416) and an internal validation set (n=2,837). External validationwas performed on
data from the SHIP-START and SHIP-TREND cohorts, which are also population-based. Both cohorts had FUs after baseline examinations. For each FU, the
respective median FU time in years and the number of participants are presented. CVD, cardiovascular disease; HCHS, Hamburg City Health Study; FU,
follow-up.

Table : Baseline characteristics by study cohort.

Variables HCHS SHIP-START- SHIP-START- SHIP-START- SHIP-START- SHIP-TREND- SHIP-TREND-

n , , , ,  , ,
Follow-up Baseline Baseline st nd rd Baseline st
Follow-up time, years – –  . . – .
Age, years . ± . . ± . . ± . . ± . . ± . . ± . . ± .
Sex (women), % . . . . . . .
NT-proBNP pg/mL  (, )  (, )  (, )  (, ) –  (, ) –

Body mass index, kg/m
. ± . . ± . . ± . . ± . . ± . . ± . . ± .

Hypertension, % . . . . . . .
Diabetes, % . . . . . . .
Smoking status (never), % . . .  . . .
eGFR, mL/min/.m

 ±   ±   ±   ±   ±   ± .  ± 

LDL-cholesterol, mmol/L . ± . . ± . . ± . . ± . . ± . . ± . . ± .
Heart failure, % . .  . . . .
Atrial fibrillation, % . . . . . . .
History of myocardial
infarction, %

. . . . . . .

History of stroke, % . . . . . . 

Continuous variables are summarized with mean and standard deviation. For LDL cholesterol and NT-proBNP median and quartiles are reported. For
follow-up timesmedian is reported. eGFR, estimated glomerular filtration rate; HCHS, Hamburg City Health Study; LDL, low-density lipoprotein; NT-proBNP,
N-terminal prohormone of brain natriuretic peptide; SHIP, Study of Health in Pomerania.
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RF−ModelLin−2

RF−ModelLin−1

AI−NT−proBNP

Heart Failure

No Heart Failure

Age < 60

Age > 60

Atrial Fibrillation

No Atrial Fibrillation

All

(A)

(B)

Pearson Correlation Pearson Correlation Pearson Correlation

Figure 2: Correlation of differentNT-proBNPpredictionmodelswith laboratorymNT-proBNP. (A) Scatter plots for correlations betweenpNT-proBNPand
mNT-proBNP at baseline (HCHS, START, TREND). Concentrations are printed on logarithmic scale. (B) Pearson correlation coefficients ofmNT-proBNP and
pNT-proBNP for three differentmodels (RF-ModelLin-1 (red), RF-ModelLin-2 (turquoise), AI-NT-proBNP (purple)) for all study participants and for different
subcohorts. HCHS, Hamburg City Health Study; pNT-proBNP, predicted N-terminal prohormone of brain natriuretic peptide; mNT-proBNP, measured
N-terminal prohormone of brain natriuretic peptide.

Table : Correlation of different NT-proBNP prediction models with laboratory mNT-proBNP.

Cohort AI-NT-proBNP RF-ModelLin- RF-ModelLin-
R (% CI)

HCHS .a,b

(., .)
.

(., .)
.

(., .)
SHIP-START- .a,b

(., .)
.

(., .)
.

(., .)
SHIP-START- .a,b

(., .)
.

(., .)
.

(., .)
SHIP-START- .a,b

(., .)
.

(., .)
.

(., .)
SHIP-TREND- .a,b

(., .)
.

(., .)
.

(., .)

Provided are Pearson’s correlation coefficients (R) and % bootstrapped confidence intervals. mNT-proBNP is correlated either with pNT-proBNP,
predicted NT-proBNP levels from a linear regression model including age and sex (RF-ModelLin-), or predicted NT-proBNP levels from a linear regression
model including age, sex, BMI, hypertension, diabetes, smoking status, LDL-cholesterol, atrial fibrillation, and eGFR (RF-ModelLin-). Models were fitted in
the individual data sets. The bootstrapped R values of AI-NT-proBNP were tested for significance using z-tests in comparison to RF-ModelLin- and
RF-ModelLin-. ap<. in comparison to RF-ModelLin-. bp<. in comparison to RF-ModelLin-.
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0.569). Multivariable linear regression models using the var-
iables age and sex (RF-ModelLin-1) or the additional risk fac-
tors hypertension, diabetes mellitus, body mass index (BMI),
LDL-cholesterol levels and smoking status (RF-ModelLin-2)
yielded weaker correlations (R=0.478, 95% CI 0.474–0.481 and
R=0.538, 95% CI 0.535–0.541) compared to AI-NT-proBNP.

The performance of AI-NT-proBNP generalized well
in predicting NT-proBNP serum concentrations in the
external cohorts SHIP-START-0 (R=0.642, 95 % CI 0.640–
0.644) and SHIP-TREND-0 (R=0.655, 95 % CI 0.653–0.656). The
generalizability remained good in the follow-up studies
after five years in SHIP-START-1 (R=0.681, 95 % CI 0.679–

0.683) and ten years (median 10.8 years) in SHIP-START-2
(R=0.652, 95 % CI 0.650–0.655). In these cohorts, too, AI-NT-
proBNP’s performance was compared to the RF-ModelLin-1
and with RF-ModelLin-2. pNT-proBNP consistently yielded
a stronger correlation with mNT-proBNP compared to
RF-ModelLin-1, while RF-ModelLin-2’s correlation strength
came closer to pNT-proBNP, partially surpassing it. Given
that NT-proBNP was measured using systems from
different manufactures in HCHS (Abbott Diagnostics) and
the SHIP (Siemens Healthcare Diagnostics) cohorts, this
data additionally underlines that pNT-proBNP correlates
well across these two systems.

Figure 3: Classification of prevalent heart failure. (A) AUROC curves for the prediction of prevalent heart failure using unadjusted logistic regression
models pNT-proBNP andmNT-proBNP in baseline cohorts (HCHS, START, TREND). (B) Odds ratios for three risk factor adjusted logistic regressionmodels
(pNT-proBNP adjusted for risk factors (turquoise), mNT-proBNP adjusted for risk factors (red), RF-ModelLog (purple)) predicting prevalent heart failure at
baseline cohorts. HCHS, Hamburg City Health Study; pNT-proBNP, predicted N-terminal prohormone of brain natriuretic peptide; mNT-proBNP,
measured N-terminal prohormone of brain natriuretic peptide; AUROC, area under receiver operating characteristic; LDL, low density lipoprotein; eGFR,
estimated glomerular filtration rate; CKD-EPI, chronic kidney disease epidemiology collaboration.
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pNT-proBNP and prevalent heart failure

To evaluate the predictive value of pNT-proBNP for identi-
fying individuals with prevalent heart failure, we compared
the bootstrapped AUROCs for heart failure classification
with logistic regression models. These included crude
models for pNT-proBNP or mNT-proBNP, respectively, risk
factor adjustedmodels for pNT-proBNP ormNT-proBNP, and
a model for the risk factors alone (RF-ModelLog). Each
comparisonwas performed in each cohort with baseline and
follow-up studies (Figure 3, Table 3). Brier scores and NRI
were also calculated to investigate calibration and reclassi-
fication (Supplementary Table 1, Supplementary Table 3).

In these cohorts and follow up studies, mNT-proBNP
alone consistently provided excellent discriminatory prop-
erties for prevalent heart failure, consistent with published
data [6–8]. pNT-proBNP demonstrated similar properties in
HCHS and in both external validation cohorts and their
follow-up studies.

When adjusting for risk factors, the AUROCs of models
with pNT-proBNP and mNT-proBNP consistently increased.
Both models’ performances were superior compared to the
reference model RF-ModelLog in all studies. The AUROC of
mNT-proBNP adjusted for risk factors was slightly higher
compared to pNT-proBNP adjusted for risk factors in HCHS,
SHIP-START-1 and SHIP-TREND-0. There was no statistically
significant difference in the AUROCs between risk factor-
adjusted models with pNT-proBNP and mNT-proBNP in

SHIP-START-0 and SHIP-START-2. Compared to RF-ModelLog,
neither the addition of pNT-proBNP, nor mNT-proBNP pro-
vided a significant positive or negative effect on reclassifica-
tion. Brier scores present comparable accuracy for adjusted
models of mNT-proBNP and pNT-proBNP, as well as
RF-ModelLog across cohorts.

pNT-proBNP and incident cardiovascular
events

To assess the predictive value of pNT-proBNP for incident
cardiovascular events, we followed a similar approach
(Table 4, Supplementary Table 2, Supplementary Table 3).

The risk factor-adjusted model including pNT-proBNP
showed comparable AUROCs for incident heart failure
prediction compared to a risk factor-adjusted model with
mNT-proBNP in all cohorts, being similar in SHIP-START-1
and SHIP-TREND-1, lower in SHIP-START-2 and higher in
SHIP-START-3. Itwas superior to RF-ModelLog in SHIP-START-
3, while the risk factor-adjustedmodel withmNT-proBNPwas
superior to RF-ModelLog in SHIP-START-2 (Figure 4). Unad-
justed models with pNT-proBNP present predictive values
comparable to unadjusted models with mNT-proBNP across
all follow-ups and cohorts.

The prediction of incident stroke with a risk factor
adjusted model including pNT-proBNP was superior
compared to a model including mNT-proBNP in partici-
pants in SHIP-START-1 and SHIP-START-2, yet similar in

Table : Area under the curve information for classification of prevalent heart failure.

Cohort pNT-proBNP
crude

mNT-proBNP
crude

pNT-proBNP
adjusted

mNT-proBNP
adjusted

RF-ModelLog Number of
participants

AUROC
(% CI)

with heart
failure/total cohort

HCHS .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-TREND- .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

Provided are AUROC values for the diagnosis of prevalent heart failurewith %bootstrapped confidence intervals. Baseline characteristics in the adjusted
models are: age, sex, BMI, hypertension, diabetes, smoking status, LDL-cholesterol, atrial fibrillation, and eGFR. The bootstrapped AUROC values of
pNT-proBNP adjusted were tested for significance using z-test in comparison tomNT-proBNP adjusted and RF-ModelLog. The bootstrapped AUROC values
of mNT-proBNP adjusted were tested for significance using z-test in comparison to RF-ModelLog. ap<. in comparison tomNT-proBNP adjusted. bp<.
in comparison to RF-ModelLog. AUROC, area under the receiver operating characteristics; BMI, body mass index; CI, confidence interval; eGFR, estimated
glomerular filtration rate; LDL, low-density lipoprotein; mNT-proBNP, measured N-terminal prohormone of brain natriuretic peptide; pNT-proBNP,
predicted N-terminal prohormone of brain natriuretic peptide.
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SHIP-START-3 and inferior in SHIP-TREND-1. A difference
between a risk factor adjusted model including pNT--
proBNP and RF-ModelLog was observed in SHIP-START-1
and SHIP-START-2.

ForAF, a risk factor-adjustedmodel includingpNT-proBNP
showed inferior predictive value in all cohorts compared to
a risk-factor adjusted model including mNT-proBNP, but
superior to RF-ModelLog in SHIP-START-2 and SHIP-START-3. A

Table : Area under the curve information for classification of incident cardiovascular diseases.

Variable Cohort pNT-proBNP
crude

mNT-proBNP
crude

pNT-proBNP
adjusted

mNT-proBNP
adjusted

RF-ModelLog Events/total
number of

participants
AUROC (% confidence interval)

Heart failure SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-START- .
(., .)

.
(., .)

.a

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.

(., .)
.

(., .)
/,

SHIP-TREND-


.
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

Stroke SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-TREND-


.
(., .)

.
(., .)

.a

(., .)
.b

(., .)
.

(., .)
/,

Atrial fibrillation SHIP-START- .
(., .)

.
(., .)

.a

(., .)
.b

(., .)
.

(., .)
/

SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-START- .
(., .)

.
(., .)

.a,b

(., .)
.b

(., .)
.

(., .)
/,

SHIP-TREND-


.
(., .)

.
(., .)

.a

(., .)
.b

(., .)
.

(., .)
/,

Myocardial
infarction

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-TREND-


.
(., .)

.
(., .)

.a,b

(., .)
.

(., .)
.

(., .)
/,

Cardiovascular
death

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-START- .
(., .)

.
(., .)

.
(., .)

.
(., .)

.
(., .)

/,

SHIP-TREND-


.
(., .)

.
(., .)

.a,b

(., .)
.b
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Provided are AUROC values for the classification of incident cardiovascular diseaseswith %bootstrapped confidence intervals. Baseline characteristics in
the adjusted models are: age, sex, BMI, hypertension, diabetes, smoking status, LDL-cholesterol, atrial fibrillation, and eGFR. The bootstrapped AUROC
values of pNT-proBNP adjusted were tested for significance using z-test in comparison to mNT-proBNP adjusted and RF-ModelLog. The bootstrapped
AUROC values of mNT-proBNP adjusted were tested for significance using z-test in comparison to RF-ModelLog. ap<. in comparison to mNT-proBNP
adjusted. bp<. in comparison to RF-ModelLog. AUROC, area under the receiver operating characteristics; BMI, body mass index; eGFR, estimated
glomerular filtration rate; LDL, low-density lipoprotein; mNT-proBNP, measured N-terminal prohormone of brain natriuretic peptide; pNT-proBNP,
predicted N-terminal prohormone of brain natriuretic peptide.
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risk factor adjusted model with mNT-proBNP had a greater
AUROC compared to RF-ModelLog in all cohorts.

Neither risk factor-adjustedmodels includingpNT-proBNP,
nor includingmNT-proBNP showed differing results compared
to the reference RF-ModelLog in predicting incident MI or
cardiovascular death in all SHIP-START follow-up studies. In
SHIP-TREND-1, a risk factor-adjusted model with pNT-proBNP
showed significantly better results in predicting MI compared
to both a risk factor-adjusted model with mNT-proBNP or
RF-ModelLog, while the AUROCs of the latter two were not
significantly different. In the same study, a risk-factor adjusted
model with pNT-proBNP showed a lower AUROC for cardio-
vascular death prediction compared to both an adjusted model

with mNT-proBNP or RF-ModelLog. NRI revealed that neither
mNT-proBNP, nor pNT-proBNP yielded a significant effect on
reclassification compared to RF-ModelLog for any incident
event. Accuracy was comparable across cohorts and cardio-
vascular events.

Discussion
We developed a DL model (AI-NT-proBNP) across commu-
nity cohorts to predict serum concentrations of the cardio-
vascular biomarker NT-proBNP from the surface ECG. It was
validated in two external population-based cohorts with

pNT−proBNP

mNT−proBNP

eGFR (CKD−EPI)

Smoking status (never)

LDL−cholesterol

Hypertension

Diabetes

Body mass index

Sex

Age

pNT−proBNP adjusted for Risk Factors

mNT−proBNP adjusted for Risk Factors

 RF-ModelLog

Odds Ratio Odds Ratio Odds Ratio Odds Ratio

b)

0.3 0.5 1.0 3.0 5.00.3 0.5 1.0 3.0 5.00.3 0.5 1.0 3.0 5.0 10.0 0.3 0.5 1.0 3.0 5.0

(A)

(B)

Figure 4: Classification of incident heart failure. (A) AUROC curves for the prediction of incident heart failure using unadjusted logistic regressionmodels
of pNT-proBNP or mNT-proBNP in follow-up cohorts. (B) Odds ratios for three risk factor adjusted logistic regression models (pNT-proBNP adjusted for
risk factors (turquoise), mNT-proBNP adjusted for risk factors (red), RF-ModelLog (purple)) predicting incident heart failure at follow-up cohorts. AUROC,
area under receiver operating characteristic; LDL, low density lipoprotein; eGFR, estimated glomerular filtration rate; CKD-EPI, chronic kidney disease
epidemiology collaboration; pNT-proBNP, predicted N-terminal prohormone of brain natriuretic peptide; mNT-proBNP, measured N-terminal pro-
hormone of brain natriuretic peptide.
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robust generalization of results. The assessment of pNT--
proBNP at baseline through AI-NT-proBNP showed predic-
tive abilities comparable the biomarker NT-proBNP for
prevalent and incident cardiovascular events, including
heart failure, AF, stroke, MI, and cardiovascular death. After
correction for confounders, pNT-proBNP revealed predictive
value for prevalent and incident heart failure which was
consistently comparable to mNT-proBNP. Furthermore, ac-
curacy and reclassification improvement compared to
baseline models were consistently similar for mNT-proBNP
and pNT-proBNP. pNT-proBNP showed variable predictive
value for incident AF or stroke compared to a baseline risk
factor model and little to no additional value for prediction
of cardiovascular death or MI compared to a baseline model
in SHIP-START or SHIP-TREND. However, mNT-proBNP did
not provide clinically relevant additional risk information
compared to a baseline model including cardiovascular risk
factors in this study either. Since pNT-proBNP revealed re-
sults for prediction of prevalent and incident cardiovascular
disease which are comparable to the well-established
biomarker NT-proBNP, we can assume that a model like
AI-NT-proBNP can serve as a valuable auxiliary technology
for cardiovascular risk prediction in population cohorts.

BNP and NT-proBNP are released from cardiomyocytes
for volume and blood pressure homeostasis and to coun-
teract cardiac stress upon different stimuli such as neuro-
hormones, angiotensin II and endothelin I, and cytokines
[32]. The predominant trigger is myocyte stretch. Parallel to
the mechanisms leading to the secretion of this peptide, the
electrophysiology of the cardiomyocytes seems to change,
which leads to subtle changes of the ECG. Alterations of the
ECGmay thus confer important information, but remain less
visible to the human eye. DL algorithms, however, appear to
be able to identify such small electrocardiographic differ-
ences allowing for the derivation of disease specific infor-
mation. Due to the inherent inexplicability of deep learning
models, we cannot rule out the possibility that AI-NT-proBNP
captures changes in ECGs which do not have secretion of
NT-proBNP as a direct correlate, but instead, for example,
cardiac fibrosis or conduction, or a combination of those.
The analysis of these ECG changes likely impacts the pre-
dictive value of deep learningmodels like AI-NT-proBNP and
could be the reason for higher AUROC values for pNT--
proBNP compared to mNT-proBNP in some instances. This
impact could be even more pronounced in models that are
trained directly to predict specific cardiovascular diseases.

AI-NT-proBNP can predict serum levels of NT-proBNP
with a decent R value. A larger training dataset with a wider
range of NT-proBNP values could improve correlation be-
tween pNT-proBNP and mNT-proBNP, which could further

increase trust in the model and interpretability of its output.
Yet, our study shows that pNT-proBNP can have similar
value in cardiovascular risk assessment to mNT-proBNP in
the general population, despite not having an R value close to
1, suggesting that aiming for a better correlationmight not be
necessary if identifying individuals at risk is the goal.

We chose NT-proBNP serum concentrations as a target
variable when training an ECG deep learning model for
several reasons. First, NT-proBNP has been shown to be
highly predictive ofmultiple cardiovascular diseases. Thus, a
model like AI-NT-proBNP can build on the long-standing
clinical experience with this biomarker, increasing trust-
worthiness for clinical application and can be applied to
several adverse cardiovascular outcomes. Furthermore, it
makes training a model less dependent on complex disease
definitions which can change over time. This is beneficial in
contrast to models trained to directly predict specific car-
diovascular outcomes, which might not be as useful for
general cardiovascular risk prediction and cannot leverage
on protracted evidence. Additionally, predicted NT-proBNP
values are less abstract than disease risk probability. This
increases interpretability of the model’s output, which is
important in clinical settings. Second, NT-proBNP serum
concentrations are widely available in large datasets, which
is a necessity for training reliable DL models. Incident car-
diovascular diseases are rare in population-based datasets,
hindering effective training if a model is developed to pre-
dict specific diseases in the general population. Additionally,
a wide range of continuous values of this biomarker is
available, resulting in a broader distribution of training data
points and ultimately better performance of a model. We
used classical statistical models as meta-models for predic-
tion of adverse events to achieve a high performance despite
comparatively low incidence of events in the general popu-
lation. Third, a validation in external cohorts is more
feasible with a standardized NT-proBNP laboratory mea-
surement, increasing the credibility of this DL model.

Generalizability of ECG DL algorithms derived from
patient data to populations outside the clinical setting has
remained unsatisfactory as demonstrated for ECG-AF
models [18, 25]. Therefore, we set out to generate a DL
model applicable in the community by using data from
population-based cohorts using one of the strongest cardiac
biomarkers in screening for cardiovascular events in the
community [12]. Other biomarkers with cardio-specificity
and strong predictive value for cardiovascular events in the
general population are cardiac troponins measured with
high sensitivity assays, which have low intraindividual
variability and therefore represent additional promising
targets for deep learning models [33, 34].
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We saw some variation in predictive value of pNT-proBNP
in SHIP-START and SHIP-TREND, which underlines the het-
erogeneity of these cohorts. However, we did not observe a
systematic shift, increasing our confidence in generalizability
of AI-NT-proBNP.

pNT-proBNP, even when not adjusted for risk factors,
demonstrates good predictive value in identifying in-
dividuals with prevalent heart failure using only the ECG.
The availability of a standard 12-lead ECG and its automated
analysis by a DL model could be particularly relevant as an
initial screening step, possibly complementing other avail-
able screening measures such as point-of-care NT-proBNP
testing kits. This augmentation of diagnostic value of the ECG
can be especially crucial in middle- or low-income countries
where laboratory infrastructure and trained personnel is
sparse. A model like this could also be a relevant addition to
the toolbox for CV risk assessment in industrialized coun-
tries, where other opportunities for fast and robust risk
evaluation, for example by measuring natriuretic peptides,
are not used often enough despite availability [35].

Limitations

Limitations of this study include the demographics. Consid-
ering that HCHS and SHIP both represent populations from a
Western European country, AI-NT-proBNP might yield
differing results in cohorts from other regions of the world.
Furthermore, DL models are little explainable, which re-
quires caution in the application of thesemodels in high-risk
settings, such as health care [36]. Whereas it remains largely
unclear which ECG features contribute to the predictive
ability of AI-NT-proBNP, robust validation can increase the
trust in the reliability of the model. We could demonstrate
sound external validation in two independent cohorts.
Additionally, this model holds greatest potential in an
outpatient-setting and could be used to assist trained
healthcare professionals to initiate further diagnostics.
Treatment decisions would not be directly based on the
model, comparable to the biomarker NT-proBNP. Many of
these limitations can be addressed by training AI-NT-proBNP
on a larger and more diverse dataset.

To verify the ability of pNT-proBNP to be useful for CV
risk assessment in the general population, multicenter
studies comparing pNT-proBNP, mNT-proBNP and other
strong biomarkers, namely troponins, are needed.

In conclusion, AI-NT-proBNP is a model that predicts an
important cardiac biomarker and has the potential to be
applied for simple, non-invasive screening for heart failure
and cardiovascular disease risk in the general population. It
may leverage the accessible diagnostic modality ECG, which

is fast, cheap, and reliable and could help identifying high-
risk patients for referral to a specialist for further assess-
ment and potential work-up. Such an approach could be
applied widely and might be associated with improved car-
diovascular disease outcomes [1].
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