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Abstract: One hundred years ago, the role of vitamin D for
bone mineralization and the prevention of rickets was
discovered. Vitamin D comprises a group of over 50 metab-
olites with multiple functions that go far beyond calcium
homeostasis and bone mineralization. Approximately
50 years ago, first methods for the measurement of
25-hydroxyvitamin D (25(OH)D) in human blood were
developed. Over the years, different analytical principals
were employed including competitive protein binding
assays, high-performance liquid chromatography, various
immunoassay and mass spectrometric formats. Until the
recent standardization of serum 25(OH)D measurement,
agreement betweenmethods was unsatisfactory. Since then,
comparability has improved, but substantial variability
between methods remains. With the advent of liquid chro-
matography tandem mass spectrometry (LC-MS/MS), the
accurate determination of 25(OH)D and other metabolites,
such as 24,25(OH)2D, becomes increasingly accessible for
clinical laboratories. Easy access to 25(OH)D testing has
triggered extensive clinical research showing that large
parts of the population are vitamin D deficient. The variable
response of vitamin D deficient individuals to supplemen-
tation indicates that assessing patients’ vitamin D stores by
measuring 25(OH)D provides limited insight into the meta-
bolic situation. Meanwhile, first evidence has emerged sug-
gesting that the simultaneous measurement of 25(OH)D,
24,25(OH)2D and other metabolites allows a dynamic evalu-
ation of patients’ vitamin D status on metabolic principals.
This may help to identify patients with functional vitamin D
deficiency from those without. It can be expected that
research into the assessment vitamin D status will continue
for another 50 years and that this will help rationalizing our
approach in clinical practice.
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Historical aspects

One-hundred years ago, McCollum et al. introduced the
term vitamin D into the scientific literature as an anti-
rachitic substance that is distinct from vitamin A [1].
Rickets, a bone disease that was first mentioned in the 17th
century in England, is characterized by impaired bone
mineralization, disturbed bone growth and skeletal
deformations. In adults, the condition is known as osteo-
malacia. Observations that rickets could be successfully
treated by the use of cod-liver oil and sunlight-exposure
sparked discussions whether the disease was caused by the
deficiency of a nutritional compound or an environmental
factor [2]. The mechanistic relationship between sunlight
exposure and nutrition was finally unravelled by Steen-
bock and Black in 1924, when they showed that the irradi-
ation of selected food items increased their vitamin D
activity [3]. This invention led to the establishment of the
Wisconsin Alumni Research Foundation (WARF), an orga-
nization that pioneered modern food fortification with a
patent for the irradiation of yeast added to milk to increase
vitamin D content. A few years later, Adolf Windaus iden-
tified the chemical structure of vitamin D3 and its precursor
7-dehydrocholesterol, which earned him the Nobel Prize in
1928 [4]. These milestones of scientific history paved the
way for widespread food fortification in the following
decades, which led to a drastic reduction of rickets and
osteomalacia. While some countries, such as Canada,
adopted mandatory vitamin D fortification of milk, the UK
ended milk powder and margarine fortification with
vitamin D in 1953 after a series of cases with hyper-
calcaemia that were believed to reflect vitamin D toxicity
[5]. Consequently, rickets and osteomalacia are still highly
prevalent in the UK [6]. In a study amongst pregnant
women, 36% were found to be deficient [6]. Although food
fortification drastically reduced rickets and osteomalacia
soon after its introduction, vitamin D remained a research
topic of great interest until today.
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Biochemistry

Synthesis of vitamin D

The term vitamin D does not refer to a single compound, but
to a group of over 50 chemically related metabolites with
more or less anti-rachitic activity [7–10]. Chemically, they
are secosteroids with an open B-ring that forms when UV-B
irradiation cleaves the bond between the carbon atoms C9
and C10 of the precursor molecule 7-dehydrocholesterol.
Due to the lipophilic nature of secosteroids they circulate
bound to vitamin D binding protein (VDBP), albumin and
lipoproteins. Skin-derived cholecalciferol (vitamin D3) and
food-derived ergocalciferol (vitamin D2) are the two main
forms of vitamin D with vitamin D2 having an additional
double bond between C22 and C23 and a methyl group on
C24 [11]. Under physiologic circumstances, food-derived
vitamin D can contribute 10–20% of the total vitamin D
supply of humans [12–14]. Good sources of vitamin D are
fatty fish, liver oil, and egg yolk [12–14]. Higher amounts of
vitamin D can be obtained from fortified foods, such asmilk
and margarine, or vitamin supplements [15].

Vitamin D2 and D3 are further metabolized by the same
enzymes and form similar metabolites. For each metabolite,
the vitamin D2 derived fraction is rather small and cannot be
measured with standard techniques including liquid chro-
matography tandem mass spectrometry (LC-MS/MS)
methods that are commonly used in medical laboratories.
The exception is 25(OH)D2, which is routinely captured by
immunoassays and LC-MS/MS methods. Only in patients
who supplement vitamin D2, relevant amounts of other
vitamin D2 metabolites can be encountered. Throughout the
remaining section of this review, vitamin D2 and D3 metab-
olites will be mentioned separately only when necessary.
In order to gain biological activity, vitamin D requires
hydroxylation in position 1 and 25. The hepatic cytochromes
P450 CYP2R1 (microsomal) and CYP27A1 (mitochondrial)
catalyse the first hydroxylation in position 25. Although the
resulting 25(OH)D represents the most abundant vitamin D
metabolite in human blood, it is still inactive. CYP27B1 is
responsible for the second hydroxylation step that produces
the active metabolite 1,25(OH)2D. While the kidneys are the
primary source of circulating 1,25(OH)2D, many extra-renal
tissues can also express CYP27B1 leading to local synthesis of
1,25(OH)2D with primarily autocrine and paracrine function.
Under most circumstances, the extra-renal production of
1,25(OH)2D does not relevantly contribute to the circulating
concentration of this metabolite [16]. However, in granulo-
matous disease, such as sarcoidosis, the excessive activity of

CYP27B1 in macrophages of granulomas can result in raised
plasma concentrations [17].

Catabolism of vitamin D

Excessive amounts of 25(OH)D and 1,25(OH)2D require
efficient elimination as they can cause hypercalcaemia
with neuromuscular symptoms and renal calcifications.
The principal pathway of vitamin D degradation starts with
another hydroxylation in position C24 resulting in the
formation of 24,25-dihydroxy-vitamin D [24,25(OH)2D] and
1,24,25-trihydroxy-vitamin D [1,24,25(OH)3D] [18, 19]. These
catabolites are further processed and are ultimately con-
verted into inactive calcitroic acid [20–22]. In addition to
24-hydroxylation, there is an alternative pathway of
vitamin D catabolism that starts with hydroxylation in
position C23 and ends with the synthesis of calcitriol lactone,
which has been reported to possess biological activity. Both
catabolic pathways are mediated by the enzyme CYP24A1,
which has both 24-hydroxylase and 23-hydroxylase activity
[23]. Although 1,25(OH)2D is the preferred substrate for
24-hydroxylase, 25(OH)D is also metabolized by this enzyme.
Interestingly, calcitriol lactone has been reported to have
unique actions that are different from those of 1,25(OH)2D [24].
Shima et al. reported that this metabolite may stimulate bone
formation, which is supported by a reduction of serum cal-
cium, increased collagen production, and an inhibition of
bone resorption. Also, the intermediates 1,24,25(OH)3D and
24,25(OH)2D appear to have some biological activity [22]. The
latter has been reported to be required for optimal endo-
chondral ossification in the growth plate [25]. However,
existing evidence that supports a relevant role of these
catabolites in humans is largely lacking and the primary role
of CYP24A1 remains the elimination of excess amounts of
1,25(OH)2D and 25(OH)D.

C3-epimerisation of vitamin D

Another biochemical aspect of vitamin D catabolism is
3’epimerisation where the C3 hydroxy group of the A ring
changes from α to β orientation. This enzymatic process is
supposed to be catalysed by the enzyme 3-epimerase, which
does not belong to the cytochrome P450 family. While the
gene encoding this enzyme is still unidentified, it seems to
require NADPH as cofactor. All naturally occurring metab-
olites of vitamin D can be epimerized. The resulting epimers
can be furthermetabolized by the same enzymes involved in
the metabolism of 25(OH)D3 so that individual C3 epimer
metabolites can be converted to the respective downstream
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metabolites. Although 3-epi-25(OH)D2 has been detected in
blood, epimerization of vitamin D2 metabolites has not been
studied in detail. It is also worth mentioning that the affinity
of 3-epi-25(OH)D for VDBP and the vitamin D receptor (VDR)
is only 36–46% and 2–3%, respectively, of 25(OH)D [19]. Own
analyses have shown quantifiable 3-epi-25(OH)D concentra-
tions in 40% of an unselected cohort of adult patients with
concentrations between 5 and 14 nmol/L and corresponding
25(OH)D concentrations between 60 and 136 nmol/L [26].
The circulating concentration of 3-epi-25(OH)D appears to be
relatively stable ranging between 4 and 10% of the non-
epimerized 25(OH)D concentration [19]. However, in infants
younger than 2 years of age higher proportions have been
reported [27]. During the first year of life, a median 3-epi-
25(OH)D concentration of 6.9 nmol/L has been reported by
Singh et al., which accounts for 10–20% of the 25(OH)D
concentration in most cases. In contrast, other studies that
measured 3-epi-25(OH)D concentrations in maternal and
embryonic umbilical cord blood reported average quantities
of less than 10% [28, 29]. Of note, in individual cases the
proportion of 3-epi-25(OH)D can bemuch higher reaching up
to 60% (reviewed in [30]). In addition to the discussion on
3-epi-25(OH)D concentrations in various clinical conditions,
there is an ongoing debate whether or not C3 epimer me-
tabolites are of any clinical relevance. In vitro studies sug-
gest that they have reduced biological activity. Amongst the
different C3 epimer metabolites, 3-epi-1α,25(OH)2D3 seems to
bemost active with similar PTH suppressing properties than
1α,25(OH)2D3, but markedly lower anti-proliferative capacity
[19]. Also, 3-epi-1α,25(OH)2D3 contributes less to calcium
homeostasis, the activation of osteocalcin and the CYP24
gene. The extremely low plasma concentration of 3-epi-
1α,25(OH)2D3, which ranges between 0.12 and 1.06 pmol/L,
further questions its biological relevance. Finally, most
existing knowledge on the biological activity of C3-epimer
metabolites has been produced by in-vitro studies, which
impedes a direct translation to humans.

Measurement of vitamin D
metabolites

General analytical aspects

In clinical practice, 25(OH)D is the most widely measured
metabolite of vitamin D as it is believed to reflect vitamin D
stores that are available for metabolism. From an analytical
point of view, concentrations in the nmol/L range, a half-life
of approximately 2 weeks [31] and a rather small biological
variation make 25(OH)D the preferred analyte. In contrast,

themost active metabolite 1,25(OH)2D circulates in the pmol/L
range and has a plasma half-life of just 4–6 h [32], which
renders quantitation much more demanding. Moreover, this
metabolite is produced on demand through CYP27B1, which
makes it less useful for the assessment of vitamin D status. In
recent years, the measurement of 24,25(OH)2D, the principal
catabolite of 25(OH)D, has gained substantial interest in clin-
ical and experimental studies. With the technological advent
of LC-MS/MS, several other metabolites, such as 3-epi-25(OH)
D3, 3-epi-25(OH)D2, 25,26(OH)2D and others, can be measured
in serum and plasma [9, 33, 34], but their clinical relevance is
not yet understood. Therefore, these metabolites will not be
reviewed here. Over the last five decades Clinical Chemistry
and Laboratory Medicine has contributed substantially to the
enormous progress in our analytical and diagnostic capabil-
ities of assessing patient’s vitamin D status by publishing
hundreds of articles in this field.

Historical aspects of vitamin D testing

Vitamin D testing in serum/plasma has a history of more
than five decades. In 1966, Lund and DeLuca reported the
existence of a polar vitamin D metabolite that was later
identified as 25(OH)D [35, 36]. The presence of thismetabolite
in human serumwas demonstrated one year later byDeLuca
et al. after the administration of tritiated vitamin D3 to
patients with familial vitamin D-resistant rickets [37]. In the
early 1970s, serum 25(OH)D was measured radioactively
[38]. For this purpose, radioactively labelled vitamin D was
administered by injection. Later, serum from these patients
was extracted with organic solvents and the lipid fraction
was isolated by column chromatography. Then, the lipid
fraction was separated by thin-layer chromatography.
Finally, radioactivity in the 25(OH)D band was quantitated
using a gamma counter. While this method was useful for
physiologic studies, it did not allow measurement of the
native 25(OH)D concentration in patient’s serum. At around
the same time, first competitive protein-binding assays were
developed for the quantitation of 25(OH)D in human serum
[39–41]. These assays employed VDBP from different species
and used various radioactive tracers for detection. Early
25(OH)D assays were quite cumbersome and required a
large sample volume. For example, the radio-ligand assay
developed by Bayard et al. required 3mL of plasma and used
tritium labelled 3H-25(OH)D3 for recovery [41]. After extrac-
tion and purification with thin-layer chromatography,
diluted plasma from an osteomalacia man was added as
VDBP source. Following another incubation step, free and
bound fractions were separated and analysed. Measuring
plasma samples from normal individuals revealed a 25(OH)
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D3 concentration of 37.5 ± 10.5 nmol/L (mean ± SD), whereas
in vitaminDdeficient patients concentrations ranged between
5 and 17.5 nmol/L. Aiming to simplify the measurement of
serum 25(OH)D, several non-chromatographic methods were
developed in the 1970s [42–44]. However, these assays gave
much higher values than chromatographic methods and they
showed unacceptable linearity and accuracy [45]. In 1974,
Preece et al. developed a competitive protein binding assay for
the separate quantitation of 25(OH)D3 and 25(OH)D2 [46]. With
this assay a mean total 25(OH)D (sum of 25[OH]D3 and 25[OH]
D2) concentration of 29.3 (range of 9.5–82) nmol/L was found
in healthy British subjects.

The next milestone in vitamin D testing was the
development of high-performance liquid chromatography
(HPLC) basedmethodswith ultraviolet light detection [47–49].
Thesemethods offered significant advantages over traditional
competitive protein-binding assays, as theywere faster, more
specific, offered better precision, and did not require radio-
active tracers. In the following decades, numerous HPLC
methods were developed with the aim to further improve
analytical quality [50–52]. With the advent of immunometric
methods, radioimmunoassays (RIA) were developed for the
measurement of 25(OH)D [53–55]. However, early method
comparison studies revealed a problematic analytical per-
formance of RIA assays, and HPLC was recommended as
preferable method for clinical laboratories [56, 57]. At the end
of the last century, an assay comparison study by Lips et al.
showed that competitive binding protein assays, RIA and
HPLC agreed poorly. Even different competitive binding
protein assays varied substantially in their accuracy.

Measurement of 25(OH)D by LC-MS/MS

Considering the apparent difficulties of measuring 25(OH)D
in human serum, efforts continued to develop analytical
methods with better sensitivity, accuracy, and specificity. In
the late 1970s and early 1980s, first mass spectrometric
methods were presented [58–60]. Prior to quantitation in the
mass spectrometer, serum samples have to be extracted and
purified with strong organic solvents. In view of the high
affinity of all vitamin D metabolites to VDBP and other car-
riers, this step is critical for analytical accuracy. The purified
samples are then separated chromatographically and finally
introduced in the mass spectrometer. HPLC is the most
widely used technique for sample separation, but gas chro-
matographic (GC)methods have also been published [61–63].
Due to the extremely high complexity of GC-MS methods,
they have not gained wider use. Compared to GC-MS, LC-MS/
MS methods require substantially less time for sample
preparation and allow shorter analytical run times. Today,

LC-MS/MS is considered the gold standard for the measure-
ment of 25(OH)D and other related metabolites [10]. Due to
its high sensitivity and specificity, this technology allows
accurate quantitation of individual vitamin D metabolites
despite numerous other, chemically related vitamin D
metabolites that coexist in human serum at very different
concentrations ranging from a few pmol/L to hundreds of
nmol/L. In addition, mass spectrometric methods are rela-
tively immune to common matrix effects, such as hetero-
philic antibodies, hemolysis, icterus and lipemia. The
simultaneous determination of multiple vitamin D metabo-
lites is another key advantage of this technique. Already
in 1989, Coldwell et al. described a method that allowed
the simultaneous measurement of 25(OH)D2, 25(OH)D3,
24,25(OH)2D2 and 25,26(OH)2D2 [63]. Recently, Jenkinson et al.
developed a method for the parallel measurement of 13
vitamin D metabolites [9], but a rather high complexity
impedes a wider use of this method. Despite the advantages
listed before, LC-MS/MSmethods can vary in their analytical
performance [64]. Recognizing the substantial analytical
variability between different methods and laboratories in
measuring 25(OH)D3, in 2004, Vogeser et al. developed a first
candidate reference method for this metabolite [65]. A few
years later, the Office of Dietary Supplements from the U.S.
National Institutes of Health in collaboration with the
National Institute of Standardization (NIST) developed the
serum-based standard reference material SRM 972 (4 levels)
with certified concentrations for 25(OH)D3, 25(OH)D2 and
3-epi-25(OH)D3 [66]. A later version of thismaterial (SRM972a)
also contained certified concentrations for 24,25(OH)2D3. In
2014, NIST released SRM 2972, which consists of two separate
solutions of 25(OH)D3 and 25(OH)D2 in ethanol, which are
intended for use in calibration. Until today, three additional
candidate reference methods have been developed and vali-
dated [67–69]. All these methods allow the accurate determi-
nation of 25(OH)D3 and 25(OH)D2 without interferences from
the respective C3-epimers, which has been identified as a
major confounder in LC-MS/MS methods for 25(OH)D [64].
3-epi-25(OH)D3 co-elutes and has identical mass as 25(OH)
D3, and they can only be separated by high resolution
chromatography. To date, the consensus is that 3-epi-
25(OH)D3 should bemeasured in pediatric cohorts but there
is no agreement yet about adult populations. Considering
all of the above, laboratories that use LC-MS/MS should
carefully validate their method and participate in an
External Quality Assessment (EQA) program that addresses
this issue. Despite the superior analytical performance of
LC-MS/MS, high instrument cost, methodological complexity,
limited throughput, and the lack of competent staff still detain
many laboratories from adopting this technology in clinical
practice.
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Measurement of 25(OH)D by automated
immunoassays

The introduction of fully automated 25(OH)D immunoassays
in the early 2,000 years was another milestone in the history
of vitamin D testing [70, 71]. With these tests, laboratories
were able to cope with the rapidly growing number of
requests. However, these assays were characterized by a
highly variable analytical performance. For example, the
electrochemiluminescence immunoassay from Roche
Diagnostics for the E170 analyser showed good overall
agreement with LC-MS/MS, but large variations were
observed in individual patient samples [71]. In an own
assay comparison study with LC-MS/MS, this test showed
systematic bias of −25% and a poor concordance correlation
coefficient of only 0.66 [72]. Likewise, the first generation of
automated 25(OH)D assays from other manufacturers also
exhibited a highly variable performance with systemic bias
between −25% and +25%, and constant bias of up to 15 nmol/L
[72]. Later studies identified 25(OH)D2 as the main source of
error in automated 25(OH)D immunoassays [26], whereas the
impact of C3-epi-25(OH)D is limited [72]. Also matrix effects,
such as heterophilic antibodies, or specific patient conditions,
such as pregnancy, renal failure or acute illness, can cause
analytical bias [10]. Over the last 15 years, many more fully
automated 25(OH)D assays have entered the market and
existing assays have been updated repeatedly by the manu-
facturers. The development of reference measurement pro-
cedures and reference materials has clearly contributed to a
better agreement of existing methods, but considerable
variability still persists. A very recent inter-laboratory com-
parison has shown that an assay bias of more than 20% is still
relatively common, especially in the presence of specific
confounders, such as C3-epi-25(OH)D, 25(OH)D2 or 24,25(OH)2D
[64]. Also, the results from EQA programs show that a bias of
±20% and more is not rare. A main hurdle for automated
immunoassays is that they cannot use strong organic solvents
to release 25(OH)D from its carriers. Therefore, they have to
employ alternative strategies that have an inferior dissocia-
tion efficacy. These strategies are optimized for the expected
matrix composition. However, in situations where the matrix
is altered, such as in pregnant women, patients with chronic
kidney disease or individuals with a polymorphic variant of
VDBP, these approaches may be less efficient and may thus
introduce analytical bias. In contrast, the organic solvents
used inLC-MS/MSare strong enough toprecipitate all proteins
and detach all vitamin D metabolites from their carriers.

The Vitamin D Standardization and Certification Pro-
gram (VDSCP) from the Centre of Disease Control is another
initiative aiming to align the results of different 25(OH)D

methods to the reference system [73]. Currently, 39 certified
assays are listed at the CDC homepage [74]. However, the
VDSCP certification process is flawed by the fact that it
requires a mean bias of ≤5% obtained on a standard set of
samples, regardless of the scatter that these samples pro-
duce. Wise et al. have proposed the percentage of samples
with a bias ≤10% as a better criterion for accuracy, but so far,
the VDSP certification requirements have not been adapted.

Measurement of 1,25(OH)2D

Although 25(OH)D is by far the most frequently measured
vitaminDmetabolite in clinical practice, 1,25(OH)2D is a useful
marker in some situations and is thus offered by many
medical laboratories. 1,25(OH)2D has a short half-life of
approximately 6 h and circulates at concentrations in the
pmol/L range [75]. Therefore, highly sensitive analytical
methods are indispensable. In addition, the serum concen-
tration of 1,25(OH)2D has a rather high biological variability,
which is due to its short half-life and a production that is
tightly regulated on the basis of the specific demand. Unlike
25(OH)D, the measurement of 1,25(OH)2D is not yet stan-
dardized. In 1974 Brumbaugh PF et al. developed the first
radio-receptor binding assay, where 1,25(OH)2D in the sample
displaced the tritiated ligand from a cytosol-chromatin
receptor preparation isolated from chick small intestine
[76, 77]. This assay yielded a 1,25(OH)2D concentration of
144 pmol/L in plasma from renal patients. Over the following
decades, competitive protein binding assays [78], RIAs [79],
enzyme immune assays (EIAs) [80], HPLC [48, 50, 81], GC-MS
[82] and LC-MS/MS [83] methods were developed. The prin-
ciples and capabilities of the different methods have been
reviewed by Tsugawa [84] and Hollis [85]. Until the recent
introduction of fully automated immunoassays [80, 86], clin-
ical laboratories measured 1,25(OH)2D mostly with commer-
cial RIAs. Nowadays, automated immunoassays are widely
used and represent more than 75% of the participants in the
DEQAS program. In contrast, LC–MS/MS is used by approx.
10% of the participating laboratories. Despite a broad adop-
tion by clinical laboratories, comparability between auto-
mated 1,25(OH)2D immunoassays is not ideal [87]. LC-MS/MS
methods do also show significant variability [64], which is at
least partly due to different calibration procedures [88].
Furthermore, particular strategies are needed todealwith the
very low serum concentration of 1,25(OH)2D. LC-MS/MS
methods typically use a dual column system, where the first
column serves for analyte enrichment and the second one
for separation. In order to enrich 1,25(OH)2D and to reduce
interferences from isobaric compounds, such as 1β-
25-dihydroxy-vitamin D, some methods employ an
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immuno-purification step in their preanalytical sample
preparation procedure [86, 87, 89]. Derivatization with
compounds, such as PTAD (4-phenyl-1,2,4-triazoline-
3,5-dione), is an alternative strategy to increase analytical
sensitivity [90]. In addition to calibration and derivatiza-
tion, the ionization mode is another factor that influences
the analytical performance of LC-MS/MS methods [91].
Electrospray ionization (ESI) is typically used for deriva-
tization methods, whereas atmospheric pressure chemical
ionisation (APCI) works well without prior derivatization.
However, in the absence of proper standardization, it is
impossible to decide if one approach is preferable over
another.

Measurement of 24,25(OH)2D

Although the measurement of 24,25(OH)2D is not yet rec-
ommended for clinical purposes, this metabolite is of in-
creases interest. When used in conjunction with 25(OH)D,
24,25(OH)2D can help to identify patients with reduced
24-hydroxylase activity and functional vitamin D defi-
ciency. The two results can be used for the calculation of the
vitamin D metabolite ratio (VMR), a functional indicator of
vitamin D metabolism [10]. Although 24,25(OH)2D is exclu-
sively measured by LC-MS/MS, results can vary widely
between laboratories [92]. The recent introduction of a
standard reference material [93, 94] and a reference method
[95] are important prerequisites for a better alignment
of 24,25(OH)2D results from different laboratories. Also,
24,25(OH)2D has been included in EQA programs, such as
DEQAS [96]. The efficacy of these measures is shown by a
recent comparison study where two independent LC-MS/MS
methods from different laboratories were found to agree
closely [97]. So far, alternative methods for the measurement
24,25(OH)2D, such as immunoassays, have not been devel-
oped. Reference intervals for 24,25(OH)2Dwere determined in
healthy young army recruits (1.1–13.5 nmol/L; [98]) and
middle-aged adults (0.4–8.9 nmol/L, [99]).

Vitamin D testing in clinical
practice – present and future

25(OH)D

Vitamin D status should be assessed in individuals at
increased risk of deficiency, such as patients with previous
fragility fractures, chronic kidney disease, malabsorption,
and abnormalities of calcium and phosphate metabolism

[100]. While there is solid evidence that the serum 25(OH)D
concentration is inversely associated with total and hip
fracture risk [101, 102], several large meta-analysis demon-
strated that supplementation of vitamin D alone or in com-
bination with calcium does not significantly reduce fracture
risk [103–105]. Current guidelines unanimously recommend
evaluating vitamin D status by measuring the serum 25(OH)
D concentration [106–109]. In addition to the identification
of individuals with vitamin D deficiency, 25(OH)D is the
biomarker of choice when hypervitaminosis D or intoxica-
tion is suspected. The differential diagnosis of rickets, oste-
omalacia, and the monitoring of vitamin D supplementation
also requires the determination of serum 25(OH)D. While
numerous studies support associations between the serum
25(OH)D concentration and a broad range of non-osseous
diseases, such as cardiovascular disease [110, 111], malig-
nancies [112, 113], dementia [114, 115], and autoimmune dis-
ease [116, 117], potential functional relationships are still
matter of ongoing debate and thus 25(OH)D measurement is
not yet recommended for the assessment of such patients
[10]. In particular, it is unclear whether vitamin D deficiency
promotes cardiovascular disease and cancer or if it is the
result of poor health and disease specific alterations of
vitamin D metabolism in such patients. In line with studies
investigating fracture risk, randomized intervention studies
did not find beneficial effects of vitamin D supplementation
on the incidence of invasive cancer or cardiovascular dis-
ease [118, 119]. Since the outbreak of COVID-19 pandemic,
25(OH)D deficiency has also been discussed as a risk factor
for SARS-CoV2 infection, severe disease course and adverse
outcome. However, most existing studies are of poor
quality and a recent meta-analysis did not find significant
relationships between serum 25(OH)D levels and various
outcomes including mortality, intensive care unit admis-
sion and ventilation requirement [120]. Moreover, another
meta-analysis of nine smaller intervention studies showed
that vitamin D supplementation reduced intensive care
unit admissions, but not mortality [121]. Therefore, existing
evidence does not support vitamin D testing or supple-
mentation for the management of SARS-CoV2-infected
patients.

In contrast to the majority of laboratory test results, the
serum 25(OH)D concentration is interpreted on the basis of
fixed cut-offs rather than a reference range. Most guidelines
distinguish between sufficiency, insufficiency, and defi-
ciency [67, 73, 122]. Some guidelines also provide cut-offs
for severe deficiency [123, 124] and toxicity [91, 125, 126].
Although the cut-offs and risk categories vary between
different guidelines, 25(OH)D concentrations <50 nmol/L are
usually considered deficient [102, 127]. Endocrinologists
often prefer a more conservative cut-off of 75 nmol/L. Levels
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of 25(OH)D below 30 nmol/L are associatedwith an increased
risk of rickets and osteomalacia, while concentrations
between 50 and 125 nmol/L are sufficient to maintain bone
health [101]. Toxicity should be considered when 25(OH)D
exceeds 150–500 nmol/L [127]. It is important to recognize
that the commonly used 25(OH)D cut-offs apply to Cauca-
sians and Asians. People with dark skin have 30–40% lower
25(OH)D serum concentrations than Caucasians, but com-
parable or higher bone mineral density (BMD) and lower
fracture risk [128].

The use of reference intervals for serum 25(OH)D is
hampered by its pronounced seasonal variation of 20–30%
with the highest concentrations in summer and autumn
[129]. Furthermore, own studies in large central European
cohorts have shown that lower reference limits would fall
between 12 and 29 nmol/L and upper reference limits
between 136 and 159 nmol/L. However, there is substantial
evidence that within such reference intervals higher 25(OH)
D concentrations are associated with better bone health and
calcium metabolism [130–132]. For example, PTH continu-
ously decreases with increasing concentrations of 25(OH)D
[133], and in contrast to previous concepts there is no
threshold above which this relationship plateaus. While
these observations are based on statistical analyses of large
cohorts, it is also clear that the serum PTH concentration
varies substantially between individuals with the same
25(OH)D concentration [128, 134, 135]. The inter-individual
variability of PTH is particularly pronounced with serum
25(OH)D concentrations between 20 and 50 nmol/L [134],
which raises the question if all individuals in this range, are
actually vitamin D-deficient and will benefit from supple-
mentation. This point is further strengthened by data from
Priemel et al. showing that only a small fraction of
individuals with 25(OH)D concentrations in this range have
impaired bone calcification [136]. The concept of using
25(OH)D as the sole marker for vitamin D deficiency is
further flawed by the fact that the concentration of this
analyte is influenced by many factors including the con-
centration of its carrier VDBP [137], age [126], body fat con-
tent [138], pregnancy [139] and therapy with antiepileptic
drugs [140]. For example, the expression of CYP2R1, which
encodes 25-hydroxylase, decreases with age, and thus con-
tributes to lower serum 25(OH)D concentrations in this age
group [141]. Also, in obese individuals the serum 25(OH)D
concentration [142, 143] and the 25-hydroxylase activity are
reduced [144]. Furthermore, lipid soluble 25(OH)D may be
sequestered in adipose tissue. Finally, pregnantwomen have
higher VDBP concentrations and express CYP2R1, CYP27B1
and CYP24A1 in the placenta [145].

1,25(OH)2D

1,25(OH)2D is a key regulator of blood calcium levels through
intestinal absorption, renal reabsorption, and release from
bone stores [146]. Furthermore, 1,25(OH)2D modulates oste-
oblast [147] and osteoclast activity [117] in bone. In addition
to its role in bone metabolism, 1,25(OH)2D is also a regulator
of cell proliferation, differentiation, and apoptosis [148]. The
synthesis of 1,25(OH)2D is a tightly regulated enzymatic
process that is driven by calcium and phosphate homeosta-
sis. In order to ensure an adequate cellular supply with
calcium, the 1,25(OH)2D concentration will be kept constant
for as long as a minimum amount of 25(OH)D is available.
Consequently, the serum concentration of 1,25(OH)2D has
little relationship to the bodies vitamin D stores [149, 150]. In
fact, it starts do drop below a 25(OH)D of 20 nmol/L, which
makes it a very insensitive marker for vitamin D deficiency
[151]. Also, supplementation of vitamin D increases serum
25(OH)D, but not 1,25(OH)2D [152, 153]. In patients with renal
insufficiency, 1,25(OH)2D is usually low, but quantitation
is only indicated in the presence of severe, progressive
hyperparathyroidism [154].

While measurement of 1,25(OH)2D is not recommended
for the assessment of patient’s vitamin D status, it is a helpful
marker for the investigation of patients with unexplained
hypercalcaemia, sarcoidosis, granulomatous disorders,
pseudo vitamin D deficiency, rickets, tumour-induced oste-
omalacia, and hyperparathyroidism [155]. Furthermore,
abnormal 1,25(OH)2D levels, may reflect mutations of genes
involved in 1,25(OH)2D metabolism [156], that cause rare
hereditary metabolic bone disease, like hereditary vitamin
D-resistant rickets (VDR), vitamin D-dependent rickets type
1A (CYP27B1), type 1B (CYP2R1) or idiopathic infantile
hypercalcemia (CYP24A1). Mutations of the cell surface
zinc-metallopeptidase PHEX gene (phosphate-regulating
gene with homologies to endopeptidase on the X chromo-
some) cause X-linked hypophosphatemia (XLH), which is
characterized by low-normal 1,25(OH)2D concentrations
[157]. Moreover, measurement of this vitamin D metabolite
can be helpful to differentiate between FGF23-dependent
and – independent phosphopenic rickets [154].

From an analytic point of view, circulating concentra-
tions in the lower pmol/L range and a half-life of only 4–6 h
hamper an accurate quantitation that provide meaningful
results. In contrast to 25(OH)D, where results are interpreted
on the basis of clinical cut-offs, method specific reference
intervals are recommended for 1,25(OH)2D. For a separate
quantitation of 1,25(OH)2D3 and 1,25(OH)2D2 most methods
are not sensitive enough as the circulating level of the latter
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has been reported to be <17 pmol/L [158]. In addition, immu-
noassays may be interfered by chemically related vitamin D
metabolites that cross-react. Blood levels of 1,25(OH)2D in
children are higher than in adultswith highest levels between
0 and 1 year [159].

In clinical practice, several influencing factors require
consideration when requesting and interpreting 1,25(OH)2D.
Antimycotic drugs, such as ketoconazole reduce the circu-
lating 1,25(OH)2D concentration [160, 161], whereas pregnancy
causes an increase [162]. Higher 1,25(OH)2D concentrations
during pregnancy are the result of an increased renal pro-
duction [162] and placental expression of 1α-hydroxylase.
Serum 1,25(OH)2D levels are also higher in African individuals
of all age-groups [163, 164], which may be due to increased
PTH levels in this population [165].

24,25(OH)2D

As the primary catabolite of 25(OH)D, 24,25(OH)2D has
recently moved into the focus of researchers, as it may
provide additionalmetabolic information beyond the simple
assessment of vitamin D stores by 25(OH)D. In the presence
of adequate vitamin D stores, CYP24A1 converts excess
amounts of 25(OH)D into 24,25(OH)2D. Under physiological
conditions the serum concentration of 24,25(OH)2D ranges
between 6 and 9% (unpublished data) from that of 25(OH)D.
Due to the tight correlation with 25(OH)D, the measurement
of 24,25(OH)2D by itself does not contribute relevant infor-
mation that goes beyond 25(OH)D [166, 167]. However, there
is mounting evidence that the simultaneous quantitation
and interpretation of both vitamin D metabolites helps to
identify patients with genetic enzyme defects, such as
CYP24A1 deficiency [97], and to better assess vitaminD status
in particular population groups, such as blacks [167] or
children [168]. CYP24A1 deficiency, also known as idiopathic
infantile hypercalcemia (IIH), typically presents with a
25(OH)D concentration in the desirable range, but a very low
24,25(OH)2D/25(OH)D ratio (VMR) of less than 1% [97]. The
lacking enzymatic activity results in an excessive produc-
tion of 1,25(OH)2D, hypercalcaemia and suppressed PTH.
Several CYP24A1 loss-of function mutations have been
described in IIH. Supplementing IIH patients with vitamin
D may trigger serious adverse effects [169]. Determination
of the VMR also aids the differential diagnosis of hyper-
calcaemia, which can be caused by a broad spectrum of
diseases including hyperparathyroidism, malignancies,
vitamin D intoxication, granulomatous disease, milk
alkaline syndrome and genetic defects, such as CYP24A1
deficiency or Williams-Beuren syndrome with a mutated
SLC34A1 gene [10]. In addition, the VMR can help to better

target expensive genetic testing in patients with a sus-
pected gene defect.

The VMR is a very useful tool for the assessment of
vitamin D status in blacks, which have approximately 40%
lower 25(OH)D concentrations than Caucasians despite
comparable bone health and fracture risk [10, 167]. Genetic
polymorphisms in the VDBP gene reduce the affinity for
25(OH)D and other vitamin D metabolites without affecting
the availability of free or bioavailable vitamin D. Recent data
from Cavalier et al. suggests that VMR assessment in infants,
children and adolescents may improve the diagnosis of
vitamin D deficiency as it provides functional insights in the
patient’s vitamin D metabolism [168].

The lower the 25(OH)D concentration the more
individuals have been found with undetectable 24,25(OH)2D.
In contrast, virtually all individuals with a 25(OH)D con-
centration above 50 nmol/L had detectable 24,25(OH)2D.
While these results support the current 25(OH)D cut-off of
50 nmol/L for vitamin D deficiency, they also demonstrate
that a substantial number of individuals below this cut-off
are still adequately supplied with 25(OH)D so that they can
afford to catabolize considerable amounts of this inactive
vitaminD storage form. Togetherwith another study by Berg
et al. [167], these findings show that individuals with the
same 24,25(OH)2D concentration can have a 25(OH)D con-
centration that varies by factor 3–4 [167]. In can be specu-
lated that these individuals are not equally vitamin D
sufficient. In summary, the studies discussed before, suggest
that the simultaneous analysis of 24,25(OH)2D and 25(OH)D
by LC-MS/MS may allow a better assessment of a patients
vitamin D status than the measurement of 25(OH)D alone
where the result is interpreted using a fixed cut-off. While
there is strong support for this approach in patients with
genetic enzyme defects and blacks, first evidence also sup-
ports the potential of such an approach in otherwise healthy
Caucasians. Ginsberg et al. have found the VMR, but not
25(OH)D, to be associated with hip fracture risk in older
adults [170]. In addition, higher 24,25(OH)2D concentrations
were associated with a BMD. In chronic kidney disease, the
24,25(OH)2D concentration decrease with decreasing renal
function and is more strongly correlated with PTH than
25(OH)D and 1,25(OH)2D [171]. In the Seattle Kidney Study, a
24,25(OH)2D concentration below the cohort median of
6 nmol/Lwas associatedwith an increased unadjusted risk of
mortality.

In addition to potential diagnostic benefits, it has also
been hypothesized that the VMR may assist to better target
vitamin D supplementation [172]. However, evidence that
supports this concept is lacking. In all existing vitamin D
supplementation studies, baseline values of 24,25(OH)2D or
the VMR were not superior to 25(OH)D in predicting the
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increase of 25(OH)D upon supplementation [150, 173, 174].
Also, the effects on BMD are predicted equallywell by 25(OH)
D and 24,25(OH)2D [175]. However, existing studies are
flawed by the fact that the supplemented vitamin D doses
were rather high, which limits the margin for a differenti-
ated response. Also, baseline 24,25(OH)2D concentrations
were relatively high so that a significant proportion of
individuals was actually not vitamin D deficient. So far, no
study compared the response of vitamin D supplementation
in individuals with and without measurable concentrations
of 24,25(OH)2D, but comparable serum 25(OH)D concentra-
tions. Current guidelines do not yet recommend the mea-
surement of 24,25(OH)2D in clinical practice. However,
existing studies suggest that this practice should be changed,
at least in specific patient groups.

VDBP, free and bioavailable 25(OH)D

Only 0.1% of all 25(OH)D in plasma circulates unbound and
thus can freely enter the cytosol where the VDR is located.
Similar to other steroid hormones, it is believed that this
small fraction is responsible for the majority of vitamin D
related effects [10]. Most of the circulating vitamin D me-
tabolites (approximately 85%) are bound to VDBP, a highly
polymorphic protein with over 100 isoforms that is closely
related to albumin and alpha-fetoprotein [176]. It is pri-
marily synthesized by the liver [177] and expression is
regulated by estrogens, which explains higher levels in
pregnancy [176]. The remaining 15% of 25(OH)D and other
vitamin D metabolites in plasma are bound to albumin,
which has amuch lower affinity for these compounds so that
they can easily dissociate and become metabolically active.
Together with free 25(OH)D, the albumin-bound 25(OH)D
fraction is referred to as bioavailable 25(OH)D [178]. Free
[179] and bioavailable [180] 25(OH)D are calculated from
total 25(OH)D, albumin and VDBP. Support for the free hor-
mone theory comes from observations that lacking VDBP
causes very low serum 25(OH)D and 1,25(OH)2D concentra-
tions, but not necessarily secondary hyperparathyroidism
[177, 181, 182]. In contrast, several studies failed to show
superior associations between free 25(OH)D and bone related
outcomes when compared to total 25(OH)D [180, 183, 184]. For
example, liver cirrhosis patients, who have an increased
osteoporosis risk, are characterized by amarkedly higher free
25(OH)D fraction despite lower VDBP concentrations [185].
Moreover, pregnant women have higher VDBP concentra-
tions, but lower free 25(OH)D levels than non-pregnant con-
trols [186]. Therefore, the free hormone theory is still amatter
of ongoing debate [89]. In addition to lacking evidence from
clinical studies, a wider use of free and bioavailable 25(OH)D

is also hampered by the fact that they require an accurate
quantitation of 25(OH)D and VDBP by LC-MS/MS. Especially
the measurement of VDBP by LC-MS/MS is only available at
some tertiary teaching centres. Due to these limitations and
some other unresolved analytical issues, routine use of free
25(OH)D and bioavailable 25(OH)D is not recommended.
Therefore, additional research is needed to address open
analytical issues and to demonstrate the clinical utility of
these markers.

Conclusions

Over the past five decades, intensive research activities have
led to substantial advances of our chemical, (patho)physio-
logical and analytical knowledge on vitamin D. An assess-
ment of the vitamin D status is recommended for patients
with established metabolic bone disease or individuals at
increased risk of developing such conditions (e.g., nursing
home residents), and the monitoring of vitamin D supple-
mentation. For non-bone-related diseases, existing evidence
does not justify a routine evaluation of vitaminDmetabolism.
Measurement of 25(OH)D in serumor plasma remains the test
of choice for the assessment of patients vitamin D status. The
results should be interpreted on the basis offixed cut-offs that
are based on clinical risk. However, the limitations of this
approach become more and more evident. Recent research
indicates a dynamic evaluation of patients vitaminD status on
the basis of a simultaneous measurement of 25(OH)D and
24,25(OH)2D, and calculation of the VMR,may overcomemany
of these limitations and may thus provide additional infor-
mation that goes beyond a simple assessment of vitamin D
stores as represented by 25(OH)D. The determination of VDBP,
free and bioavailable 25(OH)D is compromised by unresolved
analytical and clinical issues, which hamper a wider use.
Despite substantial progress over the past five decades, it can
be expected that intensive research in the area of vitamin D
will continue for another 50 years, and that this knowledge
will help to better tailor vitamin D analytics and supple-
mentation to patients need.

Acknowledgments: I am indebted to Dr. Maria Donatella
Semeraro for creating the literature database and for
including all references in the text. In addition, thank Prof.
Dr. Wolfgang Herrmann for proofreading the manuscript.
Research funding: None declared.
Author contributions:Markus Herrmann is the sole author
of this manuscript and is responsible for the entire content
of this manuscript including its submission.
Competing interests: Authors state no conflict of interest.

888 Herrmann: Assessment of vitamin D status



Informed consent: Not applicable.
Ethical approval: Not applicable for a review.

References

1. McCollum EV, Simmonds N, Becker JE, Shipley PG. Studies on
experimental rickets: XXI. An experimental demonstration of the
existence of a vitaminwhich promotes calciumdeposition. J Biol Chem
1922;53:293–312.

2. Funk C. The Journal of State Medicine. Volume XX: 341–368, 1912. The
etiology of the deficiency diseases, beri-beri, polyneuritis in birds,
epidemic dropsy, scurvy, experimental scurvy in animals, infantile
scurvy, ship beri-beri, pellagra. Nutr Rev 1975;33:176–7.

3. Steenbock H, Black A. Fat-soluble vitamins: XVII. The induction of
growth-promoting and calcifying properties in a ration by exposure to
ultra-violet light. J Biol Chem 1924;61:405–22.

4. Windaus A, Grundmann W. Über die Konstitution des Vitamins D2. II.
Justus Liebigs Ann Chem 1936;524:295–9.

5. Coursin DB, Donnell GN, Heald FP, Kaye R, Owen GM, Scriver CR, et al.
Vitamin D intake and the hypercalcemic syndrome. Pediatrics 1965;35:
1022–3.

6. McAree T, Jacobs B, Manickavasagar T, Sivalokanathan S, Brennan L,
Bassett P, et al. Vitamin D deficiency in pregnancy – still a public health
issue. Matern Child Nutr 2013;9:23–30.

7. Zerwekh JE. Blood biomarkers of vitaminD status. Am J Clin Nutr 2008;
87:1087S–91S.

8. Herrmann M, Farrell CL, Pusceddu I, Fabregat-Cabello N, Cavalier E.
Assessment of vitamin D status – a changing landscape. Clin Chem
Lab Med 2017;55:3–26.

9. Jenkinson C, Desai R, Slominski AT, Tuckey RC, Hewison M,
Handelsman DJ. Simultaneous measurement of 13 circulating vitamin
D3 and D2 mono and dihydroxy metabolites using liquid
chromatography mass spectrometry. Clin Chem Lab Med 2021;59:
1642–52.

10. Alonso N, Zelzer S, Eibinger G, Herrmann M. Vitamin D metabolites:
analytical challenges and clinical relevance. Calcif Tissue Int 2022:
1–20. https://doi.org/10.1007/s00223-022-00961-5.

11. Horst RL, Reinhardt TA, Reddy GS. Vitamin D metabolism. In:
Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, 2nd ed. London,
UK: Elsevier Academic Press; 2005.

12. HolickMF. Vitamin D: the underappreciated D-lightful hormone that is
important for skeletal and cellular health. Curr Opin Endocrinol
Diabetes Obes 2002;9:87–98.

13. Willett AM. Vitamin D status and its relationship with parathyroid
hormone and bone mineral status in older adolescents. Proc Nutr Soc
2005;64:193–203.

14. Institute of Medicine Committee to Review Dietary Reference Intakes
for Vitamin D, Calcium. The national academies collection: reports
funded by National Institutes of Health. In: Ross AC, Taylor CL,
Yaktine AL, Del Valle HB, editors. Dietary reference intakes for calcium
and vitamin D. Washington (DC): National Academies Press (US),
National Academy of Sciences; 2011.

15. (ODS) NIoHNOoDS. Vitamin D. Fact sheet for health professionals.
Bethesda: Office of Dietary Supplements National Institutes of Health;
2022. Available from: https://ods.od.nih.gov/factsheets/VitaminD-
HealthProfessional/.

16. Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the
lifecycle: physiology and biomarkers. Am J Clin Nutr 2008;88:500S–6S.

17. Baughman RP, Janovcik J, Ray M, Sweiss N, Lower EE. Calcium and
vitamin D metabolism in sarcoidosis. Sarcoidosis Vasc Diffuse Lung
Dis 2013;30:113–20.

18. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated
metabolism of vitamin D. J Lipid Res 2014;55:13–31.

19. Jenkinson C. The vitamin D metabolome: an update on analysis and
function. Cell Biochem Funct 2019;37:408–23.

20. Sakaki T, Sawada N, Komai K, Shiozawa S, Yamada S, Yamamoto K,
et al. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by
human CYP24. Eur J Biochem 2000;267:6158–65.

21. Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-
24-hydroxylase (CYP24A1): its important role in the degradation of
vitamin D. Arch Biochem Biophys 2012;523:9–18.

22. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical
applications. Chem Biol 2014;21:319–29.

23. LavernyG, PennaG, Vetrano S, Correale C, NebuloniM, Danese S, et al.
Efficacy of a potent and safe vitamin D receptor agonist for the
treatment of inflammatory bowel disease. Immunol Lett 2010;131:
49–58.

24. Shima M, Tanaka H, Norman AW, Yamaoka K, Yoshikawa H,
Takaoka K, et al. 23(S), 25(R)-1, 25-dihydroxyvitamin D3-26,
23-lactone stimulates murine bone formation in vivo. Endocrinology
1990;126:832–6.

25. Plachot JJ, Du Bois MB, Halpern S, Cournot-Witmer G, Garabedian M,
Balsan S. In vitro action of 1, 25-dihydroxycholecalciferol and 24,
25-dihydroxycholecalciferol on matrix organization and mineral
distribution in rabbit growth plate. Metab Bone Dis Relat Res 1982;4:
135–42.

26. Farrell CJ, Soldo J, McWhinney B, Bandodkar S, HerrmannM. Impact of
assay design on test performance: lessons learned from
25-hydroxyvitamin D. Clin Chem Lab Med 2014;52:1579–87.

27. Singh RJ, Taylor RL, Reddy GS, Grebe SK. C-3 epimers can account for a
significant proportion of total circulating 25-hydroxyvitamin D in
infants, complicating accurate measurement and interpretation of
vitamin D status. J Clin Endocrinol Metab 2006;91:3055–61.

28. Aghajafari F, Field CJ, Rabi D, Kaplan BJ, Maggiore JA, O’BeirneM, et al.
Plasma 3-epi-25-hydroxycholecalciferol can alter the assessment of
vitamin D status using the current reference ranges for pregnant
women and their newborns. J Nutr 2016;146:70–5.

29. Mao D, Yuen LY, Ho CS, Wang CC, Tam CH, Chan MH, et al. Maternal
and neonatal 3-epi-25-hydroxyvitamin D concentration and factors
influencing their concentrations. J Endocr Soc 2022;6:bvab170.

30. KamaoM, Hatakeyama S, Sakaki T, Sawada N, Inouye K, Kubodera N,
et al. Measurement and characterization of C-3 epimerization
activity toward vitamin D3. Arch Biochem Biophys 2005;436:
196–205.

31. Jones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A,
et al. 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is
influenced by DBP concentration and genotype. J Clin Endocrinol
Metab 2014;99:3373–81.

32. HolickMF. Vitamin D status: measurement, interpretation, and clinical
application. Ann Epidemiol 2009;19:73–8.

33. Jenkinson C, Taylor AE, Hassan-Smith ZK, Adams JS, Stewart PM,
Hewison M, et al. High throughput LC-MS/MS method for the
simultaneous analysis of multiple vitamin D analytes
in serum. J Chromatogr, B: Anal Technol Biomed Life Sci 2016;
1014:56–63.

34. Zelzer S, Meinitzer A, Enko D, Simstich S, Le Goff C, Cavalier E, et al.
Simultaneous determination of 24,25- and 25,26-dihydroxyvitamin D3
in serum samples with liquid-chromatography mass spectrometry – a

Herrmann: Assessment of vitamin D status 889

https://doi.org/10.1007/s00223-022-00961-5
https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/
https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/


useful tool for the assessment of vitamin Dmetabolism. J Chromatogr,
B: Anal Technol Biomed Life Sci 2020;1158:122394.

35. Lund J, DeLuca HF. Biologically active metabolite of vitamin D3 from
bone, liver, and blood serum. J Lipid Res 1966;7:739–44.

36. Blunt JW, DeLuca HF, Schnoes HK. 25-Hydroxycholecalciferol.
A biologically active metabolite of vitamin D3. Biochemistry 1968;7:
3317–22.

37. DeLuca HF, Lund J, Rosenbloom A, Lobeck CC. Metabolism of tritiated
vitamin D3 in familial vitamin D-resistant rickets with
hypophosphatemia. J Pediatr 1967;70:828–32.

38. Smith JE, GoodmanDS. The turnover and transport of vitamin D and of
a polar metabolite with the properties of 25-hydroxycholecalciferol in
human plasma. J Clin Invest 1971;50:2159–67.

39. Belsey R, Deluca HF, Potts JT Jr. Competitive binding assay for vitamin
D and 25-OH vitamin D. J Clin Endocrinol Metab 1971;33:554–7.

40. Haddad JG, Chyu KJ. Competitive protein-binding radioassay for
25-hydroxycholecalciferol. J Clin Endocrinol Metab 1971;33:992–5.

41. Bayard F, Bec P, Louvet JP. Measurement of plasma
25-hydroxycholecalciferol in man. Eur J Clin Invest 1972;2:195–8.

42. Belsey RE, DeLuca HF, Potts JT Jr. A rapid assay for 25-OH-vitamin D3
without preparative chromatography. J Clin Endocrinol Metab 1974;
38:1046–51.

43. Offermann G, Dittmar F. A direct protein-binding assay for
25-hydroxycalciferol. Horm Metab Res 1974;6:534.

44. Hollis BW, Burton JH, Draper HH. A binding assay for
25-hydroxycalciferols and 24R, 25-dihydroxycalciferols using bovine
plasma globulin. Steroids 1977;30:285–93.

45. Skinner RK, Wills MR. Serum 25-hydroxyvitamin D assay. Evalution of
chromatographic and non-chromatographic procedures. Clin Chim
Acta 1977;80:543–54.

46. PreeceMA, O’Riordan JL, Lawson DE, Edelstein S, Kodicek E. Studies of
the kinetics of competitive protein binding assays of cholecalciferol
and 25-hydroxycholecalciferol. Clin Sci 1972;42:16P–7P.

47. Gilbertson TJ, Stryd RP. High-performance liquid chromatographic
assay for 25-hydroxyvitamin D3 in serum. Clin Chem 1977;23:
1700–4.

48. Jones G. Assay of vitamins D2 and D3, and 25-hydroxyvitamins D2 and
D3 in human plasma by high-performance liquid chromatography.
Clin Chem 1978;24:287–98.

49. Schaefer PC, Goldsmith RS. Quantitation of 25-hydroxycholecalciferol
in human serum by high-pressure liquid chromatography. J Lab Clin
Med 1978;91:104–8.

50. Dabek JT, Harkonen M, Wahlroos O, Adlercreutz H. Assay for plasma
25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 by “high-
performance” liquid chromatography. Clin Chem 1981;27:1346–51.

51. Turnbull H, Trafford DJ, Makin HL. A rapid and simple method for the
measurement of plasma 25-hydroxyvitamin D2 and 25-hydroxyvitamin
D3 using Sep-Pak C18 cartridges and a single high-performance liquid
chromatographic step. Clin Chim Acta 1982;120:65–76.

52. Jordan PH, ReadG, Hargreaves T. Determination of 25-hydroxyvitamin
D3 in human serum by fluorescence labelling and high-performance
liquid chromatography. Analyst 1991;116:1347–51.

53. Gemeiner M. Radioimmunologic determination of
25-hydroxycholecalciferol. Mikrochim Acta 1976;66:161–73.

54. Bouillon R, Van Herck E, Jans I, Tan BK, Van Baelen H, De Moor P. Two
direct (nonchromatographic) assays for 25-hydroxyvitamin D. Clin
Chem 1984;30:1731–6.

55. Hummer L, Nilas L, Tjellesen L, Christiansen C. A selective and
simplified radioimmunoassay of 25-hydroxyvitamin D3. Scand J Clin
Lab Invest 1984;44:163–7.

56. Lindback B, Berlin T, Bjorkhem I. Three commercial kits and one liquid-
chromatographic method evaluated for determining
25-hydroxyvitamin D3 in serum. Clin Chem 1987;33:1226–7.

57. Vieth R, Chan A, Pollard A. 125I-RIA kit cannot distinguish vitamin D
deficiency as well as a more specific assay for 25-hydroxyvitamin D.
Clin Biochem 1995;28:175–9.

58. Bjorkhem I, Holmberg I. A novel specific assay of 25-hydroxy vitamin
D. Clin Chim Acta 1976;68:215–21.

59. Seamark DA, Trafford DJ, Makin HL. The estimation of vitamin D and
some metabolites in human plasma by mass fragmentography. Clin
Chim Acta 1980;106:51–62.

60. Holmberg I, Kristiansen T, Sturen M. Determination of
25-hydroxyvitamin D3 in serum by high performance liquid
chromatography and isotope dilution-mass spectrometry. Scand J Clin
Lab Invest 1984;44:275–82.

61. Campbell JA, Squires DM, Babcock JC. Synthesis of
25-hydroxycholecalciferol, the biologically effective metabolite of
vitamin D. Steroids 1969;13:567–77.

62. De Leenheer AP, Cruyl AA. Vitamin D3 in plasma: quantitation bymass
fragmentography. Anal Biochem 1978;91:293–303.

63. Coldwell RD, Trafford DJ, VarleyMJ, Kirk DN, Makin HL. Measurement of
25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 24, 25-dihydroxyvitamin
D2 and 25, 26-dihydroxyvitamin D2 in a single plasma sample by mass
fragmentography. Clin Chim Acta 1989;180:157–68.

64. Wise SA, Camara JE, Burdette CQ, Hahm G, Nalin F, Kuszak AJ, et al.
Interlaboratory comparison of 25-hydroxyvitamin D assays: vitamin D
standardization program (VDSP) intercomparison study 2 – Part 1
liquid chromatography–tandem mass spectrometry (LC–MS/MS)
assays – impact of 3-epi-25-hydroxyvitamin D(3) on assay
performance. Anal Bioanal Chem 2022;414:333–49.

65. Vogeser M, Kyriatsoulis A, Huber E, Kobold U. Candidate reference
method for the quantification of circulating 25-hydroxyvitamin D3 by
liquid chromatography–tandemmass spectrometry. Clin Chem 2004;
50:1415–7.

66. Phinney KW. Development of a standard reference material for
vitamin D in serum. Am J Clin Nutr 2008;88:511S–2S.

67. Tai SS, Bedner M, Phinney KW. Development of a candidate reference
measurement procedure for the determination of 25-hydroxyvitamin
D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution
liquid chromatography-tandemmass spectrometry. Anal Chem 2010;
82:1942–8.

68. Stepman HC, Vanderroost A, Van Uytfanghe K, Thienpont LM.
Candidate reference measurement procedures for serum
25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-
dilution liquid chromatography–tandem mass spectrometry. Clin
Chem 2011;57:441–8.

69. Mineva EM, Schleicher RL, Chaudhary-Webb M, Maw KL, Botelho JC,
Vesper HW, et al. A candidate reference measurement procedure for
quantifying serum concentrations of 25-hydroxyvitamin D(3) and
25-hydroxyvitamin D(2) using isotope-dilution liquid
chromatography-tandem mass spectrometry. Anal Bioanal Chem
2015;407:5615–24.

70. Ersfeld DL, Rao DS, Body JJ, Sackrison JL Jr., Miller AB, Parikh N, et al.
Analytical and clinical validation of the 25 OH vitamin D assay for the
LIAISON automated analyzer. Clin Biochem 2004;37:867–74.

71. Leino A, Turpeinen U, Koskinen P. Automated measurement of 25-OH
vitamin D3 on the Roche Modular E170 analyzer. Clin Chem 2008;54:
2059–62.

72. Farrell CJ, Martin S, McWhinney B, Straub I, Williams P, Herrmann M.
State-of-the-art vitamin D assays: a comparison of automated

890 Herrmann: Assessment of vitamin D status



immunoassays with liquid chromatography-tandem mass
spectrometry methods. Clin Chem 2012;58:531–42.

73. Binkley N, Dawson-Hughes B, Durazo-Arvizu R, Thamm M, Tian L,
Merkel JM, et al. Vitamin Dmeasurement standardization: the way out
of the chaos. J Steroid Biochem Mol Biol 2017;173:117–21.

74. (CDC) CfDCaP. VDSCP: list of certified participants. Atlanta: Centers for
Disease Control and Prevention; 2022. Available from: https://www.
cdc.gov/labstandards/vdscp_participants.html.

75. Davies M, Heys SE, Selby PL, Berry JL, Mawer EB. Increased catabolism
of 25-hydroxyvitamin D in patients with partial gastrectomy and
elevated 1, 25-dihydroxyvitamin D levels. Implications for metabolic
bone disease. J Clin Endocrinol Metab 1997;82:209–12.

76. Brumbaugh PF, Haussler DH, Bressler R, Haussler MR. Radioreceptor
assay for 1 alpha, 25-dihydroxyvitamin D3. Science 1974;183:
1089–91.

77. Hughes MR, Baylink DJ, Jones PG, Haussler MR. Radioligand receptor
assay for 25-hydroxyvitamin D2/D3 and 1 alpha, 25-dihydroxyvitamin
D2/D3. J Clin Invest 1976;58:61–70.

78. Dokoh S, Morita R, FukunagaM, Yamamoto I, Torizuka K. Competitive
protein binding assay for 1, 25-dihydroxy-vitamin D in human plasma.
Endocrinol Jpn 1978;25:431–6.

79. Peacock M, Taylor GA, Brown W. Plasma 1, 25(OH)2 vitamin D
measured by radioimmunoassay and cytosol radioreceptor assay in
normal subjects and patients with primary hyperparathyroidism and
renal failure. Clin Chim Acta 1980;101:93–101.

80. Hussein H, Ibrahim F, Boudou P. Evaluation of a new automated assay
for the measurement of circulating 1, 25-dihydroxyvitamin D levels in
daily practice. Clin Biochem 2015;48:1160–2.

81. Eisman JA, Shepard RM, DeLuca HF. Determination of 25-hydroxyvitamin
D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure
liquid chromatography. Anal Biochem 1977;80:298–305.

82. Oftebro H, Falch JA, Holmberg I, Haug E. Validation of a radioreceptor
assay for 1, 25-dihydroxyvitamin D using selected ion monitoring
GC-MS. Clin Chim Acta 1988;176:157–68.

83. Maunsell Z, Wright DJ, Rainbow SJ. Routine isotope-dilution liquid
chromatography-tandem mass spectrometry assay for simultaneous
measurement of the 25-hydroxy metabolites of vitamins D2 and D3.
Clin Chem 2005;51:1683–90.

84. Tsugawa N, Okano T. Bone and bone related biochemical
examinations. Hormone and hormone related substances. Vitamin D
(25D, 1, 25D); measurements and clinical significances. Clin Calcium
2006;16:920–6.

85. Hollis BW, Horst RL. The assessment of circulating 25(OH)D and 1,
25(OH)2D: where we are and where we are going. J Steroid Biochem
Mol Biol 2007;103:473–6.

86. Valcour A, Zierold C, Podgorski AL, Olson GT, Wall JV, DeLuca HF, et al.
A novel, fully-automated, chemiluminescent assay for the detection of
1, 25-dihydroxyvitamin D in biological samples. J Steroid BiochemMol
Biol 2016;164:120–6.

87. Zittermann A, Ernst JB, Becker T, Dreier J, Knabbe C, Gummert JF, et al.
Measurement of circulating 1, 25-dihydroxyvitamin D: comparison of
an automated method with a liquid chromatography tandem mass
spectrometry method. Int J Anal Chem 2016;2016:8501435.

88. Dirks NF, AckermansMT, Lips P, de Jongh RT, VervloetMG, de Jonge R,
et al. The when, what and how of measuring vitamin D metabolism in
clinical medicine. Nutrients 2018;10:482.

89. Strathmann FG, Laha TJ, Hoofnagle AN. Quantification of
1α,25-dihydroxy vitamin D by immunoextraction and liquid
chromatography-tandem mass spectrometry. Clin Chem 2011;57:
1279–85.

90. Zelzer S, Goessler W, Herrmann M. Measurement of vitamin D
metabolites by mass spectrometry, an analytical challenge. J Lab
Precis Med 2018;3:99.

91. Kobold U. Approaches to measurement of vitamin D concentrations –
mass spectrometry. Scand J Clin Lab Invest Suppl 2012;243:54–9.

92. Wise SA, Phinney KW, Tai SS, Camara JE, Myers GL, Durazo-Arvizu R,
et al. Baseline assessment of 25-hydroxyvitaminD assay performance:
a vitamin D standardization program (VDSP) interlaboratory
comparison study. J AOAC Int 2017;100:1244–52.

93. Phinney KW, Tai SS, Bedner M, Camara JE, Chia RRC, Sander LC, et al.
Development of an improved standard reference material for vitamin
D metabolites in human serum. Anal Chem 2017;89:4907–13.

94. Tai SS, Nelson MA, Bedner M, Lang BE, Phinney KW, Sander LC, et al.
Development of standard reference material (SRM) 2973 vitamin D
metabolites in frozen human serum (high level). J AOAC Int 2017;100:
1294–303.

95. Tai SS, Nelson MA. Candidate reference measurement procedure for
the determination of (24R), 25-dihydroxyvitamin D3 in human serum
using isotope-dilution liquid chromatography–tandem mass
spectrometry. Anal Chem 2015;87:7964–70.

96. Carter GD, Ahmed F, Berry J, Cavalier E, Durazo-Arvizu R, Gunter E,
et al. External quality assessment of 24,25-dihydroxyvitamin D3 (24,
25(OH)2D3) assays. J Steroid Biochem Mol Biol 2019;187:130–3.

97. Zelzer S, Le Goff C, Peeters S, Calaprice C, Meinitzer A, Enko D, et al.
Comparison of two LC-MS/MS methods for the quantification of 24,
25-dihydroxyvitamin D3 in patients and external quality assurance
samples. Clin Chem Lab Med 2022;60:74–81.

98. Tang JCY, Nicholls H, Piec I, Washbourne CJ, Dutton JJ, Jackson S, et al.
Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio
with 25-hydroxyvitamin D established using a newly developed
LC-MS/MS method. J Nutr Biochem 2017;46:21–9.

99. Dirks NF, AckermansMT, de Jonge R, Heijboer AC. Reference values for
24,25-dihydroxyvitamin D and the 25-hydroxyvitamin
D/24,25-dihydroxyvitamin D ratio. Clin Chem Lab Med 2019;57:
e259–61.

100. Souberbielle JC, Massart C, Brailly-Tabard S, Cavalier E, Chanson P.
Prevalence and determinants of vitamin D deficiency in healthy
French adults: the variete study. Endocrine 2016;53:543–50.

101. Feng Y, Cheng G, Wang H, Chen B. The associations between serum
25-hydroxyvitamin D level and the risk of total fracture and hip
fracture. Osteoporos Int 2017;28:1641–52.

102. Wang N, Chen Y, Ji J, Chang J, Yu S, Yu B. The relationship between
serum vitamin D and fracture risk in the elderly: a meta-analysis.
J Orthop Surg Res 2020;15:81.

103. Zhao JG, Zeng XT, Wang J, Liu L. Association between calcium or
vitamin D supplementation and fracture incidence in community-
dwelling older adults: a systematic review and meta-analysis. JAMA
2017;318:2466–82.

104. Kahwati LC, Weber RP, Pan H, Gourlay M, LeBlanc E, Coker-
Schwimmer M, et al. Vitamin D, calcium, or combined
supplementation for the primary prevention of fractures in
community-dwelling adults: evidence report and systematic review
for the US preventive services task force. JAMA 2018;319:1600–12.

105. Yao P, Bennett D, MafhamM, Lin X, Chen Z, Armitage J, et al. Vitamin D
and calcium for the prevention of fracture: a systematic review and
meta-analysis. JAMA Netw Open 2019;2:e1917789.

106. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA,
Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D
deficiency: an Endocrine Society clinical practice guideline. J Clin
Endocrinol Metab 2011;96:1911–30.

Herrmann: Assessment of vitamin D status 891

https://www.cdc.gov/labstandards/vdscp_participants.html
https://www.cdc.gov/labstandards/vdscp_participants.html


107. Perez-Lopez FR, Brincat M, Erel CT, Tremollieres F, Gambacciani M,
Lambrinoudaki I, et al. EMAS position statement: vitamin D and
postmenopausal health. Maturitas 2012;71:83–8.

108. Płudowski P, Karczmarewicz E, Bayer M, Carter G, Chlebna-Sokół D,
Czech-Kowalska J, et al. Practical guidelines for the supplementation
of vitamin D and the treatment of deficits in Central Europe –

recommended vitamin D intakes in the general population and
groups at risk of vitamin D deficiency. Endokrynol Pol 2013;64:
319–27.

109. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al.
Global consensus recommendations on prevention andmanagement
of nutritional rickets. J Clin Endocrinol Metab 2016;101:394–415.

110. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, et al.
Independent association of low serum 25-hydroxyvitamin D and
1,25-dihydroxyvitamin d levels with all-cause and cardiovascular
mortality. Arch Intern Med 2008;168:1340–9.

111. Perna L, Schottker B, Holleczek B, Brenner H. Serum
25-hydroxyvitamin D and incidence of fatal and nonfatal
cardiovascular events: a prospective study with repeated
measurements. J Clin Endocrinol Metab 2013;98:4908–15.

112. Pilz S, Dobnig H, Winklhofer-Roob B, Riedmuller G, Fischer JE,
Seelhorst U, et al. Low serum levels of 25-hydroxyvitamin D predict
fatal cancer in patients referred to coronary angiography. Cancer
Epidemiol Biomarkers Prev 2008;17:1228–33.

113. Johnson CR, Dudenkov DV, Mara KC, Fischer PR, Maxson JA,
Thacher TD. Serum 25-hydroxyvitamin D and subsequent cancer
incidence and mortality: a population-based retrospective cohort
study. Mayo Clin Proc 2021;96:2157–67.

114. Annweiler C, Fantino B, Le Gall D, Schott AM, Berrut G, Beauchet O.
Severe vitamin D deficiency is associated with advanced-stage
dementia in geriatric inpatients. J Am Geriatr Soc 2011;59:169–71.

115. Etgen T, Sander D, Bickel H, Sander K, Forstl H. Vitamin D deficiency,
cognitive impairment and dementia: a systematic review and meta-
analysis. Dement Geriatr Cognit Disord 2012;33:297–305.

116. Guan SY, Cai HY, Wang P, Lv TT, Liu LN, Mao YM, et al. Association
between circulating 25-hydroxyvitamin D and systemic lupus
erythematosus: a systematic review and meta-analysis. Int J Rheum
Dis 2019;22:1803–13.

117. Sirbe C, Rednic S, Grama A, Pop TL. An update on the effects of vitamin
D on the immune system and autoimmune diseases. Int JMol Sci 2022;
23:9784.

118. Scragg R, Stewart AW, Waayer D, Lawes CMM, Toop L, Sluyter J, et al.
Effect of monthly high-dose vitamin D supplementation on
cardiovascular disease in the vitamin D assessment study:
a randomized clinical trial. JAMA Cardiol 2017;2:608–16.

119. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al.
Marine n-3 fatty acids and prevention of cardiovascular disease and
cancer. N Engl J Med 2019;380:23–32.

120. Wang Z, Joshi A, Leopold K, Jackson S, Christensen S, Nayfeh T, et al.
Association of vitamin D deficiency with COVID-19 infection severity:
systematic review and meta-analysis. Clin Endocrinol 2022;96:281–7.

121. Tentolouris N, Samakidou G, Eleftheriadou I, Tentolouris A, Jude EB.
The effect of vitamin D supplementation on mortality and intensive
care unit admission of COVID-19 patients. A systematic review, meta-
analysis andmeta-regression. DiabetesMetab Res Rev 2022;38:e3517.

122. Astecker N, Reddy GS, Herzig G, Vorisek G, Schuster I. 1alpha,
25-dihydroxy-3-epi-vitamin D3 a physiological metabolite of 1alpha,
25-dihydroxyvitamin D3: its production and metabolism in primary
human keratinocytes. Mol Cell Endocrinol 2000;170:91–101.

123. Volmer DA, Mendes LR, Stokes CS. Analysis of vitamin D metabolic
markers by mass spectrometry: current techniques, limitations of the
“gold standard” method, and anticipated future directions. Mass
Spectrom Rev 2015;34:2–23.

124. Wise SA, Camara JE, Sempos CT, Lukas P, Le Goff C, Peeters S, et al.
Vitamin D Standardization Program (VDSP) intralaboratory study for
the assessment of 25-hydroxyvitamin D assay variability and bias.
J Steroid Biochem Mol Biol 2021;212:105917.

125. Zhang SW, Jian W, Sullivan S, Sankaran B, Edom RW, Weng N, et al.
Development and validation of an LC-MS/MS based method for
quantification of 25 hydroxyvitamin D2 and 25 hydroxyvitamin D3 in
human serum and plasma. J Chromatogr, B: Anal Technol Biomed Life
Sci 2014;961:62–70.

126. Giuliani S, Barbieri V, Di Pierro AM, Rossi F, Widmann T, Lucchiari M,
et al. LC-MS/MS based 25(OH)D status in a large Southern European
outpatient cohort: gender- and age-specific differences. Eur J Nutr
2019;58:2511–20.

127. Skuladottir SS, Ramel A, Eymundsdottir H, Hjaltadottir I, Launer LJ,
Cotch MF, et al. Serum 25-hydroxy-vitamin D status and incident hip
fractures in elderly adults: looking beyond bone mineral density.
J Bone Miner Res 2021;36:2351–60.

128. Valcour A, Blocki F, Hawkins DM, Rao SD. Effects of age and serum
25-OH-vitamin D on serum parathyroid hormone levels. J Clin
Endocrinol Metab 2012;97:3989–95.

129. Klingberg E, Olerod G, Konar J, Petzold M, Hammarsten O. Seasonal
variations in serum 25-hydroxy vitamin D levels in a Swedish cohort.
Endocrine 2015;49:800–8.

130. Wielders JP, Wijnberg FA. Preanalytical stability of 25(OH)-vitamin D3
in human blood or serum at room temperature: solid as a rock. Clin
Chem 2009;55:1584–5.

131. Datta P, Philipsen PA, Olsen P, Bogh MK, Johansen P, Schmedes AV,
et al. The half-life of 25(OH)D after UVB exposure depends on gender
and vitamin D receptor polymorphism but mainly on the start level.
Photochem Photobiol Sci 2017;16:985–95.

132. Cavalier E, Fraser CG, Bhattoa HP, Heijboer AC, Makris K, Ulmer CZ,
et al. Analytical performance specifications for 25-hydroxyvitamin D
examinations. Nutrients 2021;13:431.

133. Cavalier E. Long-term stability of 25-hydroxyvitamin D: importance of
the analytical method and of the patient matrix. Clin Chem Lab Med
2021;59:e389–91.

134. Souberbielle JC, Cormier C, Kindermans C, Gao P, Cantor T, Forette F,
et al. Vitamin D status and redefining serum parathyroid hormone
reference range in the elderly. J Clin Endocrinol Metab 2001;86:
3086–90.

135. Atapattu N, Shaw N, Högler W. Relationship between serum
25-hydroxyvitamin D and parathyroid hormone in the search for a
biochemical definition of vitamin D deficiency in children. Pediatr Res
2013;74:552–6.

136. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, et al.
Bone mineralization defects and vitamin D deficiency:
histomorphometric analysis of iliac crest bone biopsies and circulating
25-hydroxyvitamin D in 675 patients. J Bone Miner Res 2010;25:
305–12.

137. Heijboer AC, Blankenstein MA, Kema IP, Buijs MM. Accuracy of 6
routine 25-hydroxyvitamin D assays: influence of vitamin D binding
protein concentration. Clin Chem 2012;58:543–8.

138. van Grootheest G, Milaneschi Y, Lips PT, Heijboer AC, Smit JH,
Penninx BW. Determinants of plasma 25-hydroxyvitamin D levels in
healthy adults in The Netherlands. Neth J Med 2014;72:533–40.

892 Herrmann: Assessment of vitamin D status



139. Haliloglu B, Ilter E, Aksungar FB, Celik A, Coksuer H, Gunduz T, et al.
Bone turnover and maternal 25(OH) vitamin D3 levels during
pregnancy and the postpartum period: should routine vitamin D
supplementation be increased in pregnant women? Eur J Obstet
Gynecol Reprod Biol 2011;158:24–7.

140. Kulak CA, Borba VZ, Bilezikian JP, Silvado CE, Paola L, Boguszewski CL.
Bone mineral density and serum levels of 25 OH vitamin D in chronic
users of antiepileptic drugs. Arq Neuropsiquiatr 2004;62:940–8.

141. Roizen JD, Casella A, Lai M, Long C, Tara Z, Caplan I, et al. Decreased
serum 25-hydroxyvitamin D in aging male mice is associated with
reduced hepatic Cyp2r1 abundance. Endocrinology 2018;159:3083–9.

142. Kremer R, Campbell PP, Reinhardt T, Gilsanz V. Vitamin D status and its
relationship to body fat, final height, and peak bone mass in young
women. J Clin Endocrinol Metab 2009;94:67–73.

143. Li YF, Zheng X, Gao WL, Tao F, Chen Y. Association between serum
vitamin D levels and visceral adipose tissue among adolescents:
a cross-sectional observational study in NHANES 2011–2015. BMC
Pediatr 2022;22:634.

144. Roizen JD, Long C, Casella A, O’Lear L, Caplan I, Lai M, et al. Obesity
decreases hepatic 25-hydroxylase activity causing low serum
25-hydroxyvitamin D. J Bone Miner Res 2019;34:1068–73.

145. Ma R, Gu Y, Zhao S, Sun J, Groome LJ, Wang Y. Expressions of vitamin D
metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in
placentas from normal and preeclamptic pregnancies. Am J Physiol
Endocrinol Metab 2012;303:E928–35.

146. Saponaro F, Saba A, Zucchi R. An update on vitaminDmetabolism. Int J
Mol Sci 2020;21:6573.

147. van de Peppel J, van Leeuwen JP. Vitamin D and gene networks in
human osteoblasts. Front Physiol 2014;5:137.

148. Holick MF. Vitamin D: evolutionary, physiological and health
perspectives. Curr Drug Targets 2011;12:4–18.

149. Vieth R, Ladak Y, Walfish PG. Age-related changes in the
25-hydroxyvitamin D vs. parathyroid hormone relationship suggest a
different reason why older adults require more vitamin D. J Clin
Endocrinol Metab 2003;88:185–91.

150. Vaes AMM, TielandM, de Regt MF, Wittwer J, van Loon LJC, de Groot L.
Dose-response effects of supplementation with calcifediol on serum
25-hydroxyvitamin D status and its metabolites: a randomized
controlled trial in older adults. Clin Nutr 2018;37:808–14.

151. Need AG, O’Loughlin PD, Morris HA, Coates PS, Horowitz M,
Nordin BE. Vitamin D metabolites and calcium absorption in severe
vitamin D deficiency. J Bone Miner Res 2008;23:1859–63.

152. Chapuy MC, Chapuy P, Meunier PJ. Calcium and vitamin D
supplements: effects on calcium metabolism in elderly people. Am
J Clin Nutr 1987;46:324–8.

153. Barger-Lux MJ, Heaney RP, Dowell S, Chen TC, Holick MF. Vitamin D
and its major metabolites: serum levels after graded oral dosing in
healthy men. Osteoporos Int 1998;8:222–30.

154. Taylor-Miller T, Allgrove J. Endocrine diseases of newborn:
epidemiology, pathogenesis, therapeutic options, and outcome
“current insights into disorders of calcium and phosphate in the
newborn”. Front Pediatr 2021;9:600490.

155. Altieri B, Cavalier E, Bhattoa HP, Perez-Lopez FR, Lopez-Baena MT,
Perez-Roncero GR, et al. Vitamin D testing: advantages and limits of
the current assays. Eur J Clin Nutr 2020;74:231–47.

156. Goltzman D. Functions of vitamin D in bone. Histochem Cell Biol 2018;
149:305–12.

157. Schmitt CP, Mehls O. The enigma of hyperparathyroidism in
hypophosphatemic rickets. Pediatr Nephrol 2004;19:473–7.

158. Dirks NF, Martens F, Vanderschueren D, Billen J, Pauwels S,
Ackermans MT, et al. Determination of human reference values for
serum total 1,25-dihydroxyvitamin D using an extensively validated 2D
ID-UPLC-MS/MSmethod. J Steroid BiochemMol Biol 2016;164:127–33.

159. Higgins V, Truong D, White-Al Habeeb NMA, Fung AWS, Hoffman B,
Adeli K. Pediatric reference intervals for 1,25-dihydroxyvitaminD using
the DiaSorin LIAISON XL assay in the healthy CALIPER cohort. Clin
Chem Lab Med 2018;56:964–72.

160. Glass AR, Cerletty JM, Elliott W, Lemann J Jr., Gray RW, Eil C.
Ketoconazole reduces elevated serum levels of
1,25-dihydroxyvitamin D in hypercalcemic sarcoidosis. J Endocrinol
Invest 1990;13:407–13.

161. Saggese G, Bertelloni S, Baroncelli GI, Di Nero G. Ketoconazole
decreases the serum ionized calcium and 1,25-dihydroxyvitamin D
levels in tuberculosis-associated hypercalcemia. Am J Dis Child 1993;
147:270–3.

162. Ganguly A, Tamblyn JA, Finn-Sell S, Chan SY, Westwood M, Gupta J,
et al. Vitamin D, the placenta and early pregnancy: effects on
trophoblast function. J Endocrinol 2018;236:R93–103.

163. Kleerekoper M, Nelson DA, Peterson EL, Flynn MJ, Pawluszka AS,
Jacobsen G, et al. Reference data for bone mass, calciotropic
hormones, and biochemical markers of bone remodeling in older
(55–75) postmenopausal white and black women. J Bone Miner Res
1994;9:1267–76.

164. Bikle DD, Ettinger B, Sidney S, Tekawa IS, Tolan K. Differences in
calciummetabolismbetween black andwhitemen andwomen.Miner
Electrolyte Metab 1999;25:178–84.

165. Aloia J, Mikhail M, Dhaliwal R, Shieh A, Usera G, Stolberg A, et al. Free
25(OH)D and the vitamin D paradox in African Americans. J Clin
Endocrinol Metab 2015;100:3356–63.

166. de Boer IH, Sachs MC, Chonchol M, Himmelfarb J, Hoofnagle AN, Ix JH,
et al. Estimated GFR and circulating 24,25-dihydroxyvitamin D3
concentration: a participant-level analysis of five cohort studies and
clinical trials. Am J Kidney Dis 2014;64:187–97.

167. Berg AH, Powe CE, Evans MK, Wenger J, Ortiz G, Zonderman AB, et al.
24,25-Dihydroxyvitamin d3 and vitamin D status of community-
dwelling black and white Americans. Clin Chem 2015;61:877–84.

168. Cavalier E, Huyghebaert L, Rousselle O, Bekaert AC, Kovacs S,
Vranken L, et al. Simultaneous measurement of 25(OH)-vitamin D and
24,25(OH)2-vitamin D to define cut-offs for CYP24A1 mutation and
vitamin D deficiency in a population of 1,200 young subjects. Clin
Chem Lab Med 2020;58:197–201.

169. Schlingmann KP, KaufmannM, Weber S, Irwin A, Goos C, John U, et al.
Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl
J Med 2011;365:410–21.

170. Ginsberg C, Katz R, de Boer IH, KestenbaumBR, Chonchol M, ShlipakMG,
et al. The 24,25 to 25-hydroxyvitamin D ratio and fracture risk in older
adults: the cardiovascular health study. Bone 2018;107:124–30.

171. Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN, Ruzinski J,
Young B, et al. The serum 24,25-dihydroxyvitamin D concentration, a
marker of vitamin D catabolism, is reduced in chronic kidney disease.
Kidney Int 2012;82:693–700.

172. Wagner D, Hanwell HE, Schnabl K, Yazdanpanah M, Kimball S, Fu L,
et al. The ratio of serum 24,25-dihydroxyvitamin D(3) to
25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3)
response to vitamin D(3) supplementation. J Steroid BiochemMol Biol
2011;126:72–7.

173. Lehmann U, Riedel A, Hirche F, Brandsch C, Girndt M, Ulrich C, et al.
Vitamin D3 supplementation: response and predictors of vitamin D3

Herrmann: Assessment of vitamin D status 893



metabolites – a randomized controlled trial. Clin Nutr 2016;35:
351–8.

174. Francic V, Ursem SR, Dirks NF, Keppel MH, Theiler-Schwetz V,
Trummer C, et al. The effect of vitamin D supplementation on its
metabolism and the vitamin D metabolite ratio. Nutrients 2019;11:
2539.

175. Aloia J, Fazzari M, Shieh A, Dhaliwal R, Mikhail M, Hoofnagle AN, et al.
The vitamin D metabolite ratio (VMR) as a predictor of functional
biomarkers of bone health. Clin Endocrinol 2017;86:674–9.

176. Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin
D levels in different physiological and pathophysiological conditions.
Front Endocrinol 2019;10:317.

177. Cooke NE, McLeod JF, Wang XK, Ray K. Vitamin D binding protein:
genomic structure, functional domains, and mRNA expression in
tissues. J Steroid Biochem Mol Biol 1991;40:787–93.

178. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, et al.
Bioavailable vitamin D is more tightly linked to mineral metabolism
than total vitamin D in incident hemodialysis patients. Kidney Int 2012;
82:84–9.

179. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG.
Assessment of the free fraction of 25-hydroxyvitamin D in serum and
its regulation by albumin and the vitamin D-binding protein. J Clin
Endocrinol Metab 1986;63:954–9.

180. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al.
Vitamin D-binding protein and vitamin D status of black Americans
and white Americans. N Engl J Med 2013;369:1991–2000.

181. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An
endocytic pathway essential for renal uptake and activation of the
steroid 25-(OH) vitamin D3. Cell 1999;96:507–15.

182. Henderson CM, Fink SL, Bassyouni H, Argiropoulos B, Brown L, Laha TJ,
et al. Vitamin D-binding protein deficiency and homozygous deletion
of the GC gene. N Engl J Med 2019;380:1150–7.

183. LeFevreML, Force USPST. Screening for vitamin D deficiency in adults:
U.S. Preventive Services Task Force recommendation statement. Ann
Intern Med 2015;162:133–40.

184. Bikle DD. The free hormone hypothesis: when, why, and how to
measure the free hormone levels to assess vitamin D, thyroid, sex
hormone, and cortisol status. JBMR Plus 2021;5:e10418.

185. Bikle DD, Halloran BP, Gee E, Ryzen E, Haddad JG. Free
25-hydroxyvitamin D levels are normal in subjects with liver disease
and reduced total 25-hydroxyvitamin D levels. J Clin Invest 1986;78:
748–52.

186. Schwartz JB, Gallagher JC, Jorde R, Berg V, Walsh J, Eastell R, et al.
Determination of free 25(OH)D concentrations and their relationships
to total 25(OH)D in multiple clinical populations. J Clin Endocrinol
Metab 2018;103:3278–88.

894 Herrmann: Assessment of vitamin D status


	Assessing vitamin D metabolism – four decades of experience
	Historical aspects
	Biochemistry
	Synthesis of vitamin D
	Catabolism of vitamin D
	C3-epimerisation of vitamin D

	Measurement of vitamin D metabolites
	General analytical aspects
	Historical aspects of vitamin D testing
	Measurement of 25(OH)D by LC-MS/MS
	Measurement of 25(OH)D by automated immunoassays
	Measurement of 1,25(OH)2D
	Measurement of 24,25(OH)2D

	Vitamin D testing in clinical practice – present and future
	25(OH)D
	1,25(OH)2D
	24,25(OH)2D
	VDBP, free and bioavailable 25(OH)D

	Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


