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Abstract: This tutorial shows how to perform a meta-
analysis of diagnostic test accuracy studies (DTA) based on a
2 × 2 table available for each included primary study. First,
univariate methods for meta-analysis of sensitivity and
specificity are presented. Then the use of univariate logistic
regression models with and without random effects for e.g.
sensitivity is described. Diagnostic odds ratios (DOR) are
then introduced to combine sensitivity and specificity into
one single measure and to assess publication bias. Finally,
bivariate random effects models using the exact binomial
likelihood to describe within-study variability and a normal
distribution to describe between-study variability are
presented as the method of choice. Based on this model
summary receiver operating characteristic (sROC) curves
are constructed using a regression model logit-true positive
rate (TPR) over logit-false positive rate (FPR). Also it is
demonstrated how to perform the necessary calculations
with the freely available software R. As an example a meta-
analysis of DTA studies using Procalcitonin as a diagnostic
marker for sepsis is presented.

Keywords: area under the curve (AUC); diagnostic test
accuracy (DTA); generalized linear mixed model (GLMM);
meta-analysis; Procalcitonin; sensitivity; specificity; sum-
mary operator curve (sROC).

Introduction

The publication of meta-analyses [1–3] and especially meta-
analyses of diagnostic test accuracy (DTA) studies [4–8] has a
long tradition in Clinical Chemistry and Laboratory Medi-
cine (CCLM). Such meta-analyses play an important role in

health technology assessment [9]. Besides subject matters
also methodological issues are of importance and thus are
published in CCLM [10, 11].

There are numerous methods available for meta-
analyses of DTA studies [12]. Basic requirement is the
availability of a 2 × 2 table for each included primary study.
First, we start with univariate methods for meta-analysis of
sensitivity and specificity. That is, fixed and random effects
univariate meta-analyses using logistic regression without
and with random effects are presented. Next, diagnostic
odds ratios (DOR) are introduced in order to combine
sensitivity and specificity into one measure and to assess
publication bias. Then, we present bivariate random effects
meta-analyses with maximum likelihood (using the exact
binomial likelihood to describe within-study variability) and
a normal distribution to describe between-study variability.
Finally, summary receiver operating characteristic (sROC)
curves are constructed using regression models logit-true
positive rate (TPR) over logit-false positive rate (FPR). Based
on sROC curves the overall diagnostic performance can be
evaluated using the area under the curve (AUC). The neces-
sary calculations can be done with the freely available
software R [13] and are described in detail in this review.

Motivating example

Worldwide, sepsis and its sequelae still remain a frequent
cause of acute illness and death in patients with community
and nosocomial acquired infections [14]. Sepsis may be seen as
systemic inflammatory response due to infection. However, a
gold standard for the proof of infection is missing. Depending
on prior antibiotic therapy, bacteremia is found only in
approximately 30% of patients with sepsis. Furthermore, early
clinical signs of sepsis, like fever, tachycardia, and leucocytosis,
are unspecific and overlap with signs also seen in a multitude
of systemic inflammatory response syndromes (SIRS) in the
absence of infection, especially in surgical patients. Other signs,
such as arterial hypotension, thrombocytopenia, or elevated
lactate levels indicate, too late, the progression to organ
dysfunction. Thus, delay in diagnosis and treatment of sepsis
causes increased mortality.
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In sepsis numerous humoral and cellular systems are
activated, followed by a release of a multitude of mediators
and other molecules that mediate the host response to
infection. Several potential diagnostic indicators measured
in the bloodstream have been evaluated for their clinical
ability to assess the diagnosis and severity of sepsis. One of
these, the 116 amino acid polypeptide procalcitonin (PCT) is
frequently used when it comes to identify bacterial
infections.

In this tutorial we will use Procalcitonin as an example
for a meta-analysis of DTA studies using data from [15]. This
is a meta-analysis of Procalcitonin (PCT) for diagnosis of
sepsis in critically ill patients. Data sources were Medline,
Embase, ISI Web of Knowledge, the Cochrane Library, Sco-
pus, BioMed Central, and Science Direct, from inception to
Feb 21, 2012, and reference lists of identified primary studies.
Articles written in English, German, or French that investi-
gated Procalcitonin for differentiation of septic patients –

those with sepsis, severe sepsis, or septic shock – from those
with a systemic inflammatory response syndrome of non-
infectious origin were included. Excluded studies were
studies of healthy people, patients without probable infec-
tion, and children younger than 28 days. Two independent
investigators extracted patient and study characteristics,
discrepancies were resolved by consensus. The search
returned 3,487 reports, of which 31 fulfilled the inclusion
criteria, accounting for 3,244 patients. Table 1 shows PCT
data for diagnosis of sepsis whichwere extracted from the 31
studies.

Univariate meta-analyses of
sensitivity and specificity

Forest plots for sensitivity and specificity

One way to perform a diagnostic meta-analysis is to analyze
sensitivity and specificity separately as those are key
parameters when evaluating the performance of a binary
diagnostic test [16]. This requires knowledge of a reference
or gold standard which denotes the disease status D. The
potential outcomes of a 2 × 2 table showing the disease status
D in the columns and test results T in the rows are shown in
Table 2. For a detailed description and examples see e.g.
Schlattmann [17].

In a diagnostic meta-analysis we have for each indi-
vidual study (i=1,…,k) study specific sensitivities (true posi-
tive rate, TPR) with Ŝei = TPi

TPi+FNi
. Here TPi are the true

positives and FNi are the false negatives according to a gold
standard. Looking at the study from Ahmadinejad (2009) we

find a sensitivity equal to Ŝe = 63
63+8 = 0.887. Likewise, for

each study specificity (true negative rate, TNR) is given by
Ŝpi = TNi

TNi+FPi. Here TNi are the true negatives and FPi are the
false positives. Again, for the study by Ahmadinejad speci-
ficity is given by spec = 38

38+11 = 0.776.
For a graphical presentation for each study sensitivity

and specificity are calculated togetherwith a 95% confidence
interval and displayed in a so called forest plot. There
are several ways to construct a confidence interval for a

Table : Meta-analysis of procalcitonin (PCT) for diagnosis of sepsis study
data.

Name Year TP FP TN FN Cut-off, g/L

Ahmadinejad      .
Al-Nawas      .
Arkader      

Bell      .
Castelli      .
Clec’h      

Clec’h      .
Dorizzi      

Du      .
Gaini      

Gibot      .
Groselj-Grenc      .
Harbath      .
Hsu      .
Ivancevic      .
Jimeno      .
Kofoed      .
Latour-Perez      .
Meynaar      

Naeini      .
Oshita      .
Pavcnik-Arnol      .
Ruiz-Alvarez      .
Sakr      

Selberg      .
Simon      .
Suprin      

Tsalik      .
Tsangaris      

Tugrul      .
Wanner      .

Table : Potential outcomes of a diagnostic test with known reference
standard.

Disease present D+ Disease absentD− Total

Test positive T+ True positive (TP) False positive (FP) TP + FP
Test negative T− False negative (FN) True negative (TN) FN + TN
Total n n n
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binomial proportion with different statistical properties [18,
19]. Figure 1 shows a forest plot of sensitivity of PCT on the
left hand side and of specificity on the right hand side. In this
plot set we see considerable heterogeneity for sensitivity
ranging from 0.415 to 0.969. Likewise for specificity we find
heterogenous results which range from 0.526 to 1.000.

Fixed and random effects models

Statistically speaking sensitivity and specificity are pro-
portions and can be treated as such in a meta-analysis [20].

Standard fixed effects models for meta-analyses can be
applied [21–23]. One approach is using log transformed odds of
sensitivity and specificity (logit transform). Odds are defined as
odds = p

1−p where p is a probability. If we have a fair coin the

odds for head are 0.5
1−0.5 = 1 meaning that head and tail are

equally likely. A logit transform of sensitivity is given as

logit(Se) = log( Se
1−Se), where log denotes the natural logarithm.

Summary estimates of logit-transformed sensitivity and
logit-transformed specificity, respectively are obtained as a
weighted average of the respective logit-transformed pro-
portions of the individual studies. Weights are given by the
inverse of the respective study specific variances. This has the

disadvantage that in the case of zero entries undefined log odds
occur. Thus, in the past years there has been a lively discussion
how to avoid undefined log odds [24–26] by adding e.g. 0.5 to
each cell of the study specific 2 × 2 table in case of zero cells.

To avoid this, we apply logistic regression models
potentially with random effects aka generalized linear
mixed models. That is, we assume that sensitivity and
specificity respectively follow a binomial distribution. Thus,
for each study:

TPi ∼ Binomial(n1i, Sei)
TNi ∼ Binomial(n2i, Spi)

A common effect logistic regression model for sensi-
tivity has the form

log( Sei
1 − Sei

) = β0 (1)

This is a generalized linear model with binomial errors,
linear predictor β0 and logistic link function. The left hand
side shows the natural logarithm of the odds of sensitivity.
The unknown parameter β0 can be estimated using
maximum likelihood using numerous statistical software
packages such as R [13]. Also, this is a so called common effect
model, since it assumes the overall sensitivity in each study
is identical and given by

Forest plot

Sensitivity

Ahmadinejad
Al-Nawas
Arkader
Bell
Castelli
Clec'h
Clec'h
Dorizzi
Du
Gaini
Gibot
Groselj-Grenc
Harbath
Hsu
Ivancevic
Jimeno
Kofoed
Latour-Perez
Meynaar
Naeini
Oshita
Pavcnik-Arnol
Ruiz-Alvarez
Sakr
Selberg
Simon
Suprin
Tsalik
Tsangaris
Tugrul
Wanner

0.89 [0.79, 0.94]
0.60 [0.51, 0.68]
0.86 [0.60, 0.96]
0.76 [0.64, 0.85]
0.62 [0.45, 0.76]
0.81 [0.65, 0.90]
0.90 [0.75, 0.97]
0.82 [0.70, 0.90]
0.80 [0.58, 0.92]
0.76 [0.65, 0.84]
0.83 [0.70, 0.91]
0.83 [0.64, 0.93]
0.97 [0.89, 0.99]
0.56 [0.43, 0.69]
0.83 [0.69, 0.91]
0.41 [0.28, 0.57]
0.80 [0.71, 0.87]
0.74 [0.62, 0.82]
0.97 [0.84, 0.99]
0.88 [0.70, 0.96]
0.68 [0.59, 0.76]
0.57 [0.39, 0.73]
0.83 [0.74, 0.90]
0.69 [0.60, 0.77]
0.86 [0.67, 0.95]
0.68 [0.48, 0.83]
0.65 [0.54, 0.75]
0.68 [0.62, 0.74]
0.70 [0.52, 0.84]
0.73 [0.62, 0.82]
0.76 [0.61, 0.86]

0.28 0.64 0.99

Forest plot

Specificity

Ahmadinejad
Al-Nawas
Arkader
Bell
Castelli
Clec'h
Clec'h
Dorizzi
Du
Gaini
Gibot
Groselj-Grenc
Harbath
Hsu
Ivancevic
Jimeno
Kofoed
Latour-Perez
Meynaar
Naeini
Oshita
Pavcnik-Arnol
Ruiz-Alvarez
Sakr
Selberg
Simon
Suprin
Tsalik
Tsangaris
Tugrul
Wanner

0.78 [0.64, 0.87]
0.79 [0.73, 0.84]
1.00 [0.78, 1.00]
0.90 [0.71, 0.97]
0.87 [0.62, 0.96]
0.95 [0.83, 0.99]
0.75 [0.59, 0.86]
0.81 [0.65, 0.91]
0.74 [0.57, 0.86]
0.53 [0.32, 0.73]
0.69 [0.51, 0.83]
0.75 [0.47, 0.91]
0.78 [0.55, 0.91]
1.00 [0.74, 1.00]
0.77 [0.57, 0.90]
0.92 [0.83, 0.97]
0.58 [0.45, 0.70]
0.88 [0.75, 0.95]
0.80 [0.65, 0.89]
0.96 [0.80, 0.99]
0.80 [0.68, 0.89]
0.89 [0.69, 0.97]
0.64 [0.45, 0.80]
0.56 [0.49, 0.62]
0.55 [0.28, 0.79]
0.74 [0.59, 0.85]
0.70 [0.48, 0.85]
0.63 [0.53, 0.72]
0.91 [0.73, 0.98]
0.80 [0.49, 0.94]
0.77 [0.67, 0.85]

0.28 0.64 1.00

Figure 1: Univariate forest plots for sensitivity and specificity in Procalcitonin studies [15].
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Ŝe =
exp(β̂0)

1 + exp(β̂0) (2)

For the PCT data an application of two univariate com-
mon effects models for sensitivity and specificity yields the
results presented in Table 3. Overall, assuming a common
effect we find a sensitivity equal to 0.735 with 95% CI (0.715,
0.755) and a specificity equal to 0.747 with 95% CI (0.723,
0.769).

A common effect model assumes that the underlying
true sensitivity is the same in each study. The overall vari-
ation and, therefore, the confidence intervals will reflect
only random variation within each study but not any
potential heterogeneity between the studies. Of course, the
same applies for specificity.

Whether pooling of the data in this way is appropriate
should be decided after investigating the heterogeneity of
the study results. If the results vary substantially, no fixed
effects pooled estimator should be presented [27]. As a result
only estimators e.g. for selected subgroups should be calcu-
lated. The previous remark notwithstanding, a fixed effects
meta-analysis is always valuable, since it tests the null-
hypothesis that diagnostic accuracy was identical in all trials
[28]. If the null-hypothesis is rejected then the alternative
may be asserted that at least one study differs.

One way to address heterogeneity is the calculation of
Cochran’s Q-statistic and the I2 measure. This describes the
percentage of the variability in effect estimates that is due to
heterogeneity rather than sampling error (chance). For

sensitivity we find Î
2
=69.8% and for specificity Î

2
=67.4%.

Likewise, the test for heterogeneity turns out to be statisti-
cally significant (sensitivity Q=99.4, df=30, p<0.001, speci-
ficity Q=92.06, df=30, p<0.001).

Thus, the investigation of heterogeneity between studies
is a main task in each meta-analysis [29]. Here a common

effect model is not appropriate. Alternatively, a random
effects model which incorporates variation between studies
should be considered.

A random effects logistic regression model has then the
form

log( Sei
1 − Sei

) = β0 + bi, bi∼N(0, τ2), i = 1,…, k (3)

Again, this is a generalized linear model with binomial
errors, linear predictor β0 and logistic link function. Addi-
tionally, we assume variability between studies given by the
study specific departure bi from the overall intercept β0. For
the bi a normal distribution with expectation zero and
heterogeneity variance τ2 is assumed. The latter indicates
variability between studies, i.e. heterogeneity. Both un-
known parameters again can be estimated using maximum
likelihood. Table 4 shows the result for the PCT data.

Overall, assuming a random effects model we find in
Table 4 a sensitivity equal to 0.768 with 95% CI (0.720, 0.810)
with heterogeneity variance τ̂2=0.36. For specificity, we find
a value equal to 0.793 with 95% CI (0.743, 0.836) and het-
erogeneity variance τ̂2=0.379. Thus, we find substantial het-
erogeneity between studies.

Overall this approach seems to provide useful results in
terms of sensitivity and specificity as e.g. investigated by Simel
andBossuyt [30]. However,wedonot have any information on
the correlation between sensitivity and specificity and the
magnitude of the overall diagnostic performance.

Diagnostic odds ratio (DOR)

So far, we have considered sensitivity and specificity as a pair
for each study. There have been many attempts to merge the
results of a diagnostic study into one single measure. One
proposal is the diagnostic odd ratio (DOR) [11, 31]

Table : PCT and sepsis – two univariate meta-analyses for sensitivity and specificity using common effect logistic regression models.

Parameter Logit-transformed Back-transformed Heterogeneity variance

Coefficient Standard error Estimate % CI bτ

Sensitivity . . . (., .) –

Specificity . . . (., .) –

Table : PCT and sepsis – two univariate meta-analyses for sensitivity and specificity using random effects logistic regression models.

Parameter Logit scale Back-transformed Heterogeneity variance

Mean Standard error Estimate % CI bτ

Sensitivity . . . (., .) .
Specificity . . . (., .) .
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DOR =
Ŝe
1−Ŝe
1−Ŝp
Ŝp

=
TP
FN
FP
TN

= TP × TN
FN × FP

(4)

This is the ratio of the odds of a positive test result for a
personwith the disease divided by the odds for a positive test
result for a healthy person. The value of a DOR ranges from
0 to infinity, where higher values indicate better discrimi-
natory test performance. The synthesis of diagnostic odds
ratios is straightforward and follows standardmeta-analysis
methods. Summary estimates of diagnostic odds ratios are
obtained as a weighted average of the respective log trans-
formedDORs of the individual studies. Theweights are given
by the inverse of the respective study specific variances.

First, investigating heterogeneity between studies we
find substantial heterogeneity (Q=89.00, df=30, p<0.001,
Î2=66.3%. Thus, we apply a random effects mode with an
overall DOR=11.698, 95% CI (8.301, 16.486). Thus, we see
discriminatory potential of Procalcitonin for the diagnosis of
sepsis.

Apart from challenges in interpreting diagnostic odds
ratios, a disadvantage is that it is impossible to weight the
true positive and false positive rates separately. Likewise, it
is impossible to distinguish between tests with high sensi-
tivity and low specificity and tests with low sensitivity and
high specificity. Furthermore no direct investigation of the
correlation between sensitivity and specificity is possible.
Thus, bivariate models are preferable and introduced in
Section 3.2.

Publication bias

Publication bias is amajor form of bias in anymeta-analysis.
That is, if the studies that are included in a review have
results that systematically differ from relevant studies that
are missed, then the findings will be compromised by pub-
lication bias. Thus, researchers are advised to perform a

thorough literature search and to investigate publication
bias. Following Deeks et al. [32] we present the effective
sample size funnel plot together with the associated
regression test of asymmetry. The effective sample size plot
(Figure 2) takes the DOR on the x-axis of the plot and 1/

̅̅̅
ESS

√
on the y-axis. ESS stands for effective sample size and is

proportional to
̅̅̅̅̅
1
n1
+ 1

n2

√
. This test is based on the regression

of log(DOR) against 1/
̅̅̅
ESS

√
, weighting by ESS.

Unfortunately, for our example there is publication bias
present (Test result: t=4.11, df=29, p-value=0.0003). More de-
tails are shown in Section 4.3. As result in a first step a
repeated literature search would take place.

Bivariate diagnostic meta analysis

Plots of sensitivity and specificity in the
summary receiver operator curve (sROC)
space

Procalcitonin is a continuous diagnostic marker. Until now
we have assumed that we are dealing with a binary diag-
nostic test. A frequent cut-off value equals 0.5 g/L. Values
larger or equal than 0.5 g/L indicate a positive test and
smaller values indicate a negative test result and thus we
have transformed the continuous marker Procalcitonin into
a binary test. Obviously, other cut-off values could be used.
For example we could apply a cut off value ≥2.0 g/L. As a
result increasing the cut-off value from 0.5 g/L to 2.0 g/L will
lead to a decreased sensitivity and an increased specificity.
This idea is depicted in Figure 3.

Descriptive statistics of the Procalcitonin data applied in
Schlattmann [17] find a median PCT value equal to 0.2 g/L
with aminimum equal to 0.01 g/L and amaximum of 200 g/L.
Obviously, we could use any value between minimum and
maximum as a cut off value and calculate the corresponding
sensitivity and specificity.
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Figure 2: Diagnostic odds ratio against 1/
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where ESS stands for effective sample size.
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This is done when we create a receiver operator curve
(ROC) [33] which is obtained by calculating the sensitivity
and specificity of every observed data value and plotting
sensitivity against 1-specificity. A test that perfectly dis-
criminates between the two groups would yield a “curve”
that coincided with the left and top sides of the plot since we
would not have any false negative (FN) or false positive (FP)
values. A useless test would give a straight line from the
bottom left corner to the top right. This implies that a true
positive and a false positive test result are equally likely.

The performance of the test can be assessed by using the
area under the receiver operating characteristic curve
(AUC). This areamay be interpreted as the probability that a
random person with the disease has a higher value of the
measurement than a random person without the disease. A
perfect test would have an AUC=1 and a useless test has an
AUC=0.5. This is shown in Figure 4.

In diagnostic meta-analyses often only a single cut-off
value for a specific study is provided. Hence not the study
specific ROC curve is available but only the corresponding
TP; FN, FP and TN as shown in Table 1, where e.g. Ahmadi-
nejad applies a cut-off value of 0.5 g/L.

In order to display variation between studies due to
different cut-off values plots in ROC spacemay be constructed.
Here, a simple scatterplot of sensitivity vs. 1-specificity of each
study is useful. Additional information showing also the vari-
ability within a study is shown in a cross-hair plot [34] which
shows 1-specificity (false positive rate) vs. sensitivity together
with the respective study specific 95% confidence intervals.

In Figure 5 the scatterplot shows variation in cut-off
points as well in accuracy. Looking at the cross-hair plot on
the right side we see also high variability of sensitivities and
false positive rates indicating considerable heterogeneity.

Univariate meta-analyses provide single estimates of
sensitivity and specificity. Here, we might be interested in a
joint pair together with a confidence region. Also we saw that
heterogeneity is common in DTA studies. One reason is

variation in cut-off points used in the individual studies.
Another reason might be due to differences in the respective
patient populations. Thus, we might be interested in a pre-
diction region which shows where future studies might fall.
Finally, the construction of a summary ROC curve across
studies (sROC)might be of interest. These aims canbe reached
using an appropriate model, that is a bivariate statistical
model.

Bivariate generalized linear mixed modes

The logistic models used so far have the disadvantage to
ignore the bivariate structure of the data. Thus, frequently a
bivariate linear random effects model is used for a DTA
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Figure 3: Illustration of the cut-off value prob-
lem for Procalcitonin. Variation of the cut-off
value c leads to an increased specificity and
decreased sensitivity if c is moved to the right,
and vice versa if c is moved to the left.

1 - Specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.641 (0.613–0.668)AUC: 0.641 (0.613–0.668)

Figure 4: Procalcitonin as biomarker for sepsis: Receiver operator curve
and area under the curve. The point shows sensitivity and specificity for a
cut-off value of 0.5 g/L.
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meta-analysis which was introduced by Reitsma et al. [35].
This model uses logit-transformed sensitivity and logit-
transformed specificity simultaneously. Here it is assumed
that the true logit-transformed sensitivities of the individ-
ual studies follow a normal distribution with a common
mean value and between-study variability as in the uni-
variate random effects model. Variation between studies
can be attributed to unobserved heterogeneity due to e.g.
heterogeneous study populations. Likewise, for the true
logit-transformed specificities a normal distribution with a
common mean value and between-study variability is
assumed.

Now, this model introduces potential correlation between
the true logit-transformed sensitivity and specificity within
studies by assuming a bivariate normal distribution for the
random effects. Besides variability between studies in the true
underlying sensitivities and specificities, there is also variation
due to sampling. Studies differ in size and thus in variation.
Thus, on the second level of the model study specific variances
of logit-transformedsensitivity and specificity are incorporated
in order to take sampling variability into account.

As a result of this bivariate model approach summary
estimates for sensitivity and specificity are obtained. In
addition, based on the model’s assumption of bivariate
normality an sROC curve can then be constructed from the
parameter estimates of the model. Performing a bivariate
linear random effects model for meta-analysis of diagnostic
accuracy can be done using the ‘reitsma’ function imple-
mented in the freely available R-package ‘mada’ [36].

However, to synthesize data, an exact binomial rendi-
tion [37] of the linear bivariate mixed-effects regression
model developed by van Houwelingen et al. [38] for meta-
analysis of treatment trials, modified for synthesis of diag-
nostic test data builds an alternative. As in the linear mixed
effects model the correlation between sensitivity and spec-
ificity is taken care of. Furthermore, in contrast to a logit
transformation no ad hoc continuity correction to avoid zero

cells in the 2 × 2 table is required. Thus, this model is pref-
erable as shown in simulation studies [39] and empirical
comparisons [40]. Hence, in the following we concentrate on
this bivariate logistic regression model with random effects
(bivariate GLMM).

Since we present our results in ROC space we make a
slight shift of presentation. We now model the false positive
rate, i.e. 1-specificity. As in the case of univariate models we
assume a binomial distribution for sensitivity and
1-specificity respectively. Hence the binomial distribution
depicts within study variability of the i=1,…,k studies:

TPi ∼ Binomial(n1i, Sei)
FPi ∼ Binomial(n2i, 1 − Spi)

A bivariate random effects logistic regressionmodel has
then the form

log( Sei
1 − Sei

) = β0 + μi

log(1 − Spi

Spi
) = β1 + νi

Between study variability is addressed using a bivariate
normal distribution with

( μi
νi
)∼N(( 0

0), Σ)with Σ = ⎛⎝ σ2
μ ρσμσν

ρσμσν σ2
ν

⎞⎠. (5)

Here Σ denotes the covariance matrix of the bivariate
random effects distribution, where σμ2 denotes the between
study variability of sensitivity on the logit scale. Likewise σν2

denotes the between study variability of 1-specificity on the
logit scale, whereas ρ denotes the correlation between
sensitivity and 1-specificity. Estimation can again be done
using maximum likelihood with general statistical software
such as R as shown in Section 4.4.

For our example we obtain the following results shown
in Table 5.
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Figure 5: Scatterplot and cross-hair plot in
ROC-space for the Procalcitonin data.
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Based on the bivariate mixed effects logistic regression
model we obtain an overall sensitivity equal to 0.767 and an
overall specificity equal to 0.792. In terms of heterogeneity
we find a variance between studies for sensitivity on the
logit scale σμ

2 equal to 0.357 and likewise for 1-specificity a
variance σν

2 equal to 0.384. Importantly, we find a positive
correlation, which implies a negative correlation=−0.23 be-
tween sensitivity and specificity. Only in this case the con-
struction of a sROC curve is recommended [41].

Summary receiver operator curve (sROC curve)

According to item 21 of the PRISMA statement for DTAmeta-
analyses, [42], test accuracy, including variability should be
reported. This includes summary results as well as confi-
dence and prediction intervals respectively.

One way to address diagnostic test accuracy is to esti-
mate the receiver operator curve based on the available data
from the different studies. There are several methods
available for sROC curve construction [43]. Here we apply
the regression line of logit transformed sensitivity η based
on logit transformed 1-specifcicity ξ. That is

η = β0 +
ρσμσν

σ2
v

(ξ − β1) (6)

When transformed to the ROC space we obtain the sROC
curve indicating the median sensitivity for a specific false
positive rate. Figure 6 shows the sROC curve, the joint esti-
mate of sensitivity and 1-specificity together with a 95%
confidence and prediction region. This prediction region
indicates the extent of statistical heterogeneity by depicting
a region within which, assuming the model is correct, we
have 95% confidence that the true sensitivity and specificity
of a future study will take place. Obviously, for Procalcitonin
we find substantial heterogeneity.

When evaluating the diagnostic performance of a
biomarker the area under the curve is of interest. To restrict
the computation of the AUC to the observed false positive
rates leads to the partial area under the curve (pAUC). This
summary index is considered to bemore practically relevant
than the area under the entire ROC curve (AUC) because it

avoids extrapolation. For the data at hand we obtain a pAUC
equal to 0.629 and for completeness an AUC=0.799 indicating
helpful diagnostic performance.

Using R

The freely statistical package R [13] may be used to perform
the necessary calculations. The software can be obtained
at https://cran.r-project.org. A useful integrated software
environment is given by RStudiowhich is freely available for
personal use: https://posit.co/. When using RStudio, R scripts
can be used in order execute the relevant R commands.
The following commands are found also as Supplementary
Material in a file named.

Table : PCT and sepsis – bivariate meta-analyses for sensitivity and specificity based on bivariate random effects logistic regression model.

Parameter Logit scale Back-transformed Heterogeneity

Mean Standard error Estimate % CI Σ

Sensitivity . . . (., .) .
-Specificity −. . . (., .) .
Correlation .
Specificity . . . (., .) .
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Figure 6: Procalcitonin as biomarker for sepsis: sROC curve (solid line).
The point shows the joint estimate of sensitivity and 1-specificity together
with a 95% confidence (dashed line) region and 95% prediction region
(dotted line).

DTA_meta_analysis_tutorial.R
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Importing and manipulating data

Make sure you areworking in the right directory. Please give
the path to your directory where you save the file containing
the data. For example:

The data from our example are read from an Excel .csv file
and stored under the name ’PCT’. The command ‘read.csv2’
reads Excel files in .csv format. First comes the name of the
file. Then ‘header=T’ implies that the first line contains the
variable names.

The object ‘PCT’ contains the data and can be modified.
For example the data column TP’ contains the true positives
as explained in Table 2.

The command ’attach’ provides access to the individual
elements of the data object ‘PCT’.
In a first step we create a new variable called ‘n1’ which is a
new column in our data set. To do this the syntax ‘PCT$n1’ is
applied. Important, by using ‘PCT$n1’ a new column ‘n1’ is
added to the dataframe ‘PCT’. This variable contains the total
number of diseased persons per study and is given as the
sum of true positives TP and false negatives FN. In a similar
way we create the variable ‘n2’, i.e. the total number of
healthy individuals. The command ‘head’ shows the first six
lines of the dataframe ‘PCT’.
The symbol ‘#’ indicates a comment which will not be
executed by the program.

Two univariate meta-analyses

Construction of forest plots sensitivity and specificity

Next we load the package ‘mada’ [36] and create a forest plot
of sensitivity and specificity. First, we calculate basic mea-
sures of diagnostic accuracy and save it to the object ‘PCT.d’.
In case of zeros cells we do not make any corrections.

In the next step we construct a forest plot of sensitivity and
specificity using the function ‘forest’ where we submit the
object ‘PCT.d’ as an argument. Another argument is the type of
plot. We start with sensitivity and thus we use type=“sens”.
The plot for specificity is obtained in a similar way.

PCT<-read.csv2(“cclm_procalcitonin.csv”,header=T)

setwd(“M:/Gauss/schlatt/cclm/publi/meta-analysis”)

attach(PCT)

# calculate n1 (diseased persons) and create a new column named n1

# in the dataframe named PCT

PCT$n1<-TP+FN

# calculate n2 (healthy persons) and create a new column

PCT$n2<-FP+TN

# use attach again in order to make the newly created columns directly available

attach(PCT)

# calculate sensitivity and round to 3 digits

PCT$sens<-round(TP/n1,3)

# calculate specificity and round to 3 digits

PCT$spec<-round(TN/n2,3)

head(PCT)

Study Author Year TP FP TN FN Cut_off n2 sens spec

1 1 Ahmadinejad 2009 63 11 38 8 0.50 49 0.887 0.776

2 2 Al-Nawas 1996 73 45 170 49 0.50 215 0.598 0.791

3 3 Arkader 2006 12 0 14 2 2.00 14 0.857 1.000

4 4 Bell 2003 47 2 19 15 15.75 21 0.758 0.905

5 5 Castelli 2004 21 2 13 13 1.20 15 0.618 0.867

6 6 Clec’h 2006 29 2 38 7 1.00 40 0.806 0.950

# load package ’mada’

library(mada)

# Calculate basic measures of diagnostic accuracy (sensi-

tivity, specificity etc. for each study).

PCT.d<-madad(PCT,correction.control="none")

# forest plot of sensitivity and specificity side by side

old.par<-par()

plot.new()

par(fig=c(0, 0.5, 0, 1), new=TRUE)

forest(PCT.d, type="sens", xlab="Sensitivity", snames

=Author)

par(fig=c(0.5, 1, 0, 1), new=TRUE)

forest(PCT.d, type="spec", xlab="Specificity",snames

=Author)

par(old.par)
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This code creates Figure 1. Since we want to show the
plots side by side we store previous graphics environment
parameters as ‘old.par’. After finishing the plot we restore
the previous graphics environment with ‘par(old.par)’.

Meta-analysis for proportions

Next we apply the R package ‘meta’ [44]. This can be used to
perform a meta-analysis treating sensitivity and specificity
as proportions.

This gives the following truncated result:

The common effect model as shown is the model shown
in Eq (1). The result is back-transformed as in Eq (2). Likewise
the random effects refers to the model in Eq (3).

Logistic regression models

Alternatively, the functions ‘glm’ in order to calculate the
parameters of the common effect model in Eq (1) and ‘glmer’
from the library ‘lme4’ of the random effects model in Eq (3)
may be used. In a meta analysis we have for each study the
number of true positives TP and the number of diseased n1.
This denominator needs to be taken into account. In R the
combination of true positives TP and false negatives n1-
TP=FN builds the dependent variable. This is done using the
command ‘cbind(TP,FN)’. In order to perform a logistic
regression model, we declare the dependent variable to
follow a binomial distribution by using the command
‘family=binomial()’.

# Univariate meta-analysis with package meta

library(meta)

# Meta-analysis for sensitivity as a proportion

# Use function metaprop with true positives TP and total

number of diseased n1

m.sens<-metaprop(TP,n1,studlab=paste(Study,Year),

data=PCT)

# show result

summary(m.sens)

proportion 95%-CI

Ahmadinejad 2009 0.8873 [0.7900; 0.9501]

Al-Nawas 1996 0.5984 [0.5058; 0.6861]

Arkader 2006 0.8571 [0.5719; 0.9822]

Bell 2003 0.7581 [0.6326; 0.8578]

Castelli 2004 0.6176 [0.4356; 0.7783]

……

Number of studies combined: k=31

Number of observations: o=1863

Number of events: e=1370

proportion 95%-CI

Common effect model 0.7354 [0.7149; 0.7549]

Random effects model 0.7683 [0.7201; 0.8103]

Test of heterogeneity:

Q d.f. p-value Test

99.40 30<0.0001 Wald-type

127.46 30<0.0001 Likelihood-Ratio

Details on meta-analytical method:

– Random intercept logistic regression model

– Maximum-likelihood estimator for taû 2

– Logit transformation

– Clopper-Pearson confidence interval for individual studies

# Common effect model (logistic regression)

# dependent variable is given by true positives and false

negatives

# Logistic regression intercept only model

sens.common<-glm(cbind(TP,FN) 1,family=binomial(),

data=PCT)

# show result

summary(sens.common)

glm(formula=cbind(TP, FN) 1, family=binomial(), data=PCT)

Deviance Residuals:

Min 1Q Median 3Q Max

−4.3159 −1.2301 0.4208 1.5085 4.8411

Coefficients:

Estimate Std.

Error

z

value

Pr(>|

z|)

(Intercept) 1.02206 0.05252 19.46 <2e-

16***

—

Signif.

codes:

0 ‘***’ 0.001

‘**’

0.01

‘*’

0.05

‘.’

0.1

‘ ’

1

Quantifying heterogeneity:

taû 2=0.3637; tau=0.6031; Î 2=69.8% [56.5%; 79.1%]; H=1.82

[1.52; 2.19]
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We can back-transform this result using the library
‘emmeans’ and the command ‘lsmeans’ where the stored
result of model ‘sens.common’ is given as an argument. The
second argument type=“response” demands transformation
of the result.to the original scale.

The random effects logistic regressionmodel is obtained in a
similar way using the function ‘glmer’ from the library
‘lme4’. Additionally, we have to define randomeffects. This is
done incorporating the additional term ‘(1| Study)’ into the
model which indicates the random effects following a
normal distribution.

The heterogeneity variance τ2 is given as the variance of the
random effects for the intercept and equals 0.36 as shown in
Table 4. Again the overall sensitivity can be back trans-
formed to the original scale using ‘lsmeans’.

For specificity we proceed in a similar way (not shown).

Diagnostic odds ratio (DOR) and publication
bias

For the calculation of the DOR and the assessment of publi-
cation bias we use again the library ‘meta’with the function
‘metabin’. Necessary arguments are the true positives TP, the
number of diseased n1, the false positives FP and the number
of healthy subjects n2.
Based on the stored results in ‘m.dor’ we show the results
with ‘summary(m.dor)’ and construct the funnel plot shown
in Figure 2.

Next we perform the regression test for publication
bias:

Clearly, we find publication bias. In real life this needs
to be investigated further, e.g. by a repeated literature
search.

Bivariate meta-analysis

Plots in ROC space

We start with the R code necessary to create Figure 5. First,
we use the command ‘par(mfrow=c(1,2))’ . This creates two
plots in a row. Then we create a scatterplot using base R
and next a cross hair plot which requires the libarary
‘mada’ [36].

# Obtain estimates on the original scale together with a 95%

confidence interval

# library emmeans is required

library(emmeans)

lsmeans(sens.common, 1,type="response")

lsmean SE df asymp.LCL asymp.UCL

overall 0.735 0.0102 Inf 0.715 0.755

Confidence level used: 0.95

Intervals are back-transformed from the logit scale

# Random effects logistic regression model for sensitivity

# library lme4’ required

library(lme4)

sens.glmm<-glmer(cbind(TP,FN) 1+(1|

Study),family=binomial(),data=PCT)

#show result

summary(sens.glmm)

Generalized linear mixed model fit by maximum likelihood (Lap-

lace Approximation) [’glmerMod’]

Random effects:

Groups Name Variance Std.Dev.

Study (Intercept) 0.36 0.6

Number of obs: 31, groups: Study, 31

Fixed

effects:

Estimate Std.

Error

z

value

Pr(>|

z|)

(Intercept) 1.1980 0.1284 9.327 <2e-16

***

—

library(emmeans)’

# transform back to original scale

lsmeans(sens.glmm, 1,type="response")

1 lsmean SE df asymp.LCL asymp.UCL

overall 0.768 0.0229 Inf 0.72 0.81

Confidence level used: 0.95

Intervals are back-transformed from the logit scale

Schlattmann: Meta-analysis of diagnostic test accuracy studies 787



Bivariate logistic regression model with
random effects

In order to use the bivariate logistic regression model with
random effects we first need to transpose the data from
‘wide’ to ‘long’ format. Furthermore, we need new variables
indicating disease status called ‘healthy’ and ‘diseased’. Also
we need new outcome variables “positive” for positive test
results and “negative” vice versa. We can use the function
‘reshape’where we create a new dataframe under the name
‘long’. Next, the new variable ‘healthy’ as ‘1-diseased’ is
created and the data are sorted by study ‘id’.

# Diagnostic Odds Ratio (DOR)

# Use function ’metabin’ from the package meta

# Arguments are true positives, number of diseased n1,fals positives FP and

# total number of healthy persons n2

m.dor<-metabin(TP,n1,FP,n2,studlab=paste(Author,Year),sm="DOR",data=PCT)

# show result

summary(m.dor)

Number of studies combined: k=31

Number of observations: o=3244

Number of events: e=1720

DOR 95%-CI z p-value

Common effect model 8.1247 [6.8427; 9.6469] 23.91 <0.0001

Random effects model 11.6982 [8.3007; 16.4864] 14.05 <0.0001

Quantifying heterogeneity:

taû 2=0.5203 [0.2108; 1.4446]; tau=0.7213 [0.4592; 1.2019]

Î 2=66.3% [50.9%; 76.9%]; H=1.72 [1.43; 2.08]

Test of heterogeneity:

Q d.f. p-value

89.00 30 <0.0001

# Publication bias

# Show funnel plot with DOR on the x-axis and 1/ESŜ 0.5 on the y-axis

funnel(m.dor)

# regression for publication bias.

metabias(m.dor)

Funnel plot test for diagnostic odds ratios

Test result: t=4.11, df=29, p-value=0.0003

Sample estimates:

bias se.bias intercept se.intercept

18.4114 4.4803 0.5191 0.4709

Details:

– multiplicative residual heterogeneity variance

(taû 2=69.6852)

– predictor: inverse of the squared effective sample size

– weight: effective sample size

– reference: Deeks et al. (2005), J Clin Epid

# attach(PCT)

# Analyses in ROC space

# Show two plots a in a row

par(mfrow=c(1,2))

# scatter plot

(continued)

par(pty="s") # use square format

plot(1-spec,sens,xlim=c(0,1),ylim=c(0,1)

,xlab="False positive rate

(1-Specificity)",ylab="Sensitivity",pch=16)

# Crosshair plot

par(pty="s") # use square format

crosshair(PCT)

# restore to one plot per page

par(mfrow=c(1,1))
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Looking at the first six lines of the dataframe ‘long’ with the
command ‘head(long)’ gives:

The data in long formcontains the necessary information
for the calculation of the bivariate random effects logistic
model. Next, we use the function ‘glmer’ from the library
‘lme4’. Now, our dependent variable is the combination of
positive test results and negative test results in amatrix of the
respective columns of the dataframe ‘long’ using.

Now, apply the covariate “healthy” for healthy subjects
coded ‘1’ if true and ‘0’ otherwise. This covariate quantifies
the mean false positive rate on the logit scale. The covariate
‘diseased’ is coded ‘1’ for diseased subjects and ‘0’ otherwise
and quantifies the mean true positive rate on the logit scale
(i.e. sensitivity).
We do not want an intercept, thus our formula is
‘∼0+healthy + diseased’ for the fixed effects. For bivariate
random effects we use ‘+(0+healthy + diseased| Study)’.
Finally, we assume a binomial distribution thus family=-
binomial). Hence the following code is applied and the result
is stored as ‘pct.glmm2’.

Using the command ‘summary’ with ‘pct.glmm2’ as an
argument shows the results. Let’s start with the covariance
matrix of the random effects:

We are interested in variability between studies, thus
‘Groups name’ refers to ‘Study’. The variance equal to 0.3565
associated to ‘diseased’ is the variability between studies for the
true positive rates σμ2 in Eq (5). Likewise the variance equal to
0.3838 refers to the variability between studies σν

2 for false
positives rates. Finally, ‘rho’ denotes the correlation ρ in Eq (5).
Next we look at the fixed effects:

The estimate of the covariate ‘diseased’ is an estimate of
β0 equal to 1.1892. Likewise the estimate −1.3395 for the co-
variate healthy is an estimate of β1 which denotes the false
positive rate on the logit scale.

In order obtain the estimates on the original scale we
use again the command ‘lsmeans’

# Estimate parameters of the model

pct.glmm2<-glmer(cbind(positive,negative) 0+diseased+healthy+(0+diseased+healthy|Study),

data=long, family=binomial )

# Show results

summary(pct.glmm2)

long<-reshape(PCT, direction="long", varying=list(c("TP" ,

"FP") , c("FN","TN" ) ) ,

timevar="diseased" , times=c(1,0) , v.name-

s=c("positive","negative") )

# create new variable "healthy"

long$healthy<-1-long$diseased

# sort by id

long<-long[order(long$id),]

head(long)

Study Author Year Cut_off n1 n2 sens spec diseased positive negative healthy

1 Ahmadinejad 2009 0.5 71 49 0.887 0.776 1 63 8 0

1 Ahmadinejad 2009 0.5 71 49 0.887 0.776 0 11 38 1

2 Al-Nawas 1996 0.5 122 215 0.598 0.791 1 73 49 0

2 Al-Nawas 1996 0.5 122 215 0.598 0.791 0 45 170 1

3 Arkader 2006 2.0 14 14 0.857 1.000 1 12 2 0

3 Arkader 2006 2.0 14 14 0.857 1.000 0 0 14 1

cbind(positive,negative).

Generalized linear mixed model fit by maximum likelihood (Lap-

lace Approximation) [’glmerMod’]

Family: binomial (logit )

Formula: cbind(positive, negative) 0 + diseased + healthy +

(0 + diseased +

healthy | Study)

Random effects:

Groups Name Variance Std.Dev. Corr

Study diseased 0.3565 0.5971

healthy 0.3838 0.6195 0.23

Fixed

effects:

Estimate

Std.

Error z value Pr(>|z|)

diseased 1.1892 0.1284 9.264 <2e-16

***

healthy −1.3395 0.1443 −9.280 <2e-16

***
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The first line of the output with the covariates ‘diseased’
equal to 1 and healthy equal to ‘0’ refers to sensitivity which
is equal to 0.767. Likewise, the second line shows the false
positive rate equal to 0.208. This completes the results shown
in Table 5.

Summary receiver operator curve (sROC curve) with R

To the authors knowledge for the bivariate random effects
logistic regressionmodel no ready to use libraries or functions
are available in R. Thus, for this article the function ‘plot.sROC’
was written. For a detailed description see the appendix.
The call of the function is simple.

This function takes four arguments. The first one is the
data set inwide format. It is mandatory, that e.g. true positives
are named ‘TP’ in capital letters. The same applies for the other
cells of the 2× 2 table as denoted in Table 2. The next argument
is the result of the bivariate random effects model. Submit
here the currentmodel. In our example the result of themodel
is stored under the name ‘pct.glmm2’. Next ‘conf=T’ implies
that a 95% confidence ellipsoid is desired and ‘predict=T’ im-
plies the same for the 95% prediction region.

The function prints the area under the curve under the
sROC curve as a result and creates a plot as shown in Figure 6.

Other software for meta-analysis of
DTA studies

Admittedly, R is not very user friendly. The command line can
be quite demanding to a beginner of R although the graphical
user interface RStudiomayhelp a bit. Thus, for an overviewon
alternatives which can be used for bivariate GLMM see Wang
and Leefland [45]. For the commercially available software
packages SAS and STATA the learning curve is similarly steep,
but e.g. for SAS ‘proc glimmix’ a macro [46] and STATA the

macro ‘metadta’ are available [47]. Alternatively, an interac-
tive web based application called MetaDTA [48] could be used.
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Appendix: R code of the function
plot.sROC

This function takes four arguments. The first one is the data
set in wide format. It is mandatory, that e.g. true positives
are named ‘TP’ in capital letters. The same applies for the
other cells of the 2 × 2 table as denoted in Table 2. The next
argument is the result of the bivariate random effects model.
Submit here the current model. In our example the result of
the model is stored under the name ‘pct.glmm2’. Next
‘conf=T’ implies that a 95% confidence ellipsoid is desired
and ‘predict=T’ implies the same for the 95% prediction
interval.

If e.g. no prediction interval is wanted change this to
‘predict=F’. The function prints the value of the extrapolated
AUC and the partial pAUC based on the observed false
positive rate as a result.

In order to use the function either mark the whole body
of the function and use the ’run’ button in RStudio.
Alternatively, mark the whole body of the function and
paste it into the R console.

The function is part of the Supplementary Material and
the R script is named.

lsmeans(pct.glmm2, diseased,type="response")

diseased %in% healthy

diseased healthy lsmean SE df asymp.LCL asymp.UCL

1 0 0.767 0.0230 Inf 0.719 0.809

0 1 0.208 0.0237 Inf 0.165 0.258

# Create sROC curve with confidence and prediction ellipsoid

plot.sROC(PCT,pct.glmm2,conf=T,predict=T)
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plot_sROC.R

# required packages

# package for generalized linear mixed models

library(lme4)

# post processing of model resuts

library(emmeans)

# needed for logit and expit transformation for plots in ROC space

library(rje)

plot.sROC<-function(data,model,conf=T,predict=T)

{

# calculate sensitivity

sens<-data$TP/(data$TP+data$FN)

# calculate false positive rate (1-specificity)

fpr<-data$FP/(data$TN+data$FP)

# find maximum of false positive rate on logit scale

max.fpr<-logit(max(fpr))

# find minimum of false positive rate on logit scale or set it closeto zero

min.fpr<-ifelse(min(fpr)<0.00025,logit(0.00025),logit(min(fpr)))

# extract regression coefficients

coef<-fixef(model)

# mean logit sensitivity (TPR)

eta<-coef[1]

# mean logit false positive rate

xi<-coef[2]

# variance covariance matrix of random effects

vc<-VarCorr(model)

# extract data and store as data.frame

# print(vc,comp=c("Std.Dev."))

temp<-as.data.frame(vc)

# covariance of random effects

cov<-temp$vcov[3]

# random effects variance of logit 1-specificity

varxi<-temp$vcov[2]

# random effects variance of logit sensitivity

vareta<-temp$vcov[1]

# save Variance-Covariance Matrix of random effects as matrix

Sigma<-matrix(c(vareta,cov,cov,varxi),nrow=2,byrow=T)

# sRoc curve eta on xi

# estimate slope of eta on xi regression line

beta<-cov/varxi

# estimate intercept of eta on xi regression line

alpha<-eta-cov/varxi*xi

# generate x axis: logit false positives from observed min to max

x<-seq(min.fpr,max.fpr,by=0.01)

# generate regression line in logit ROC-space

line<-alpha+beta*x

# total n of regression line
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(continued)

nn<-length(line)

# transform to scale of TPR and FPR in ROC space

s<-expit(line)

# partial Area under the curve using trapezoidal rule for numerical integration

pAUC<-(s[1]/2 + sum(s[2:(nn-1)]) + s[nn]/2)/nn

# plot FPR and TPR together with sROC curve in ROC space

par(pty="s") # use a square plotting region

# plot FPR and TPR

plot(fpr,sens,pch=16,xlim=c(0,1),ylim=c(0,1), xlab="False Positive Rate",

ylab="Sensitivity")

# add grid

grid(lwd=2)

# show line where FPR equal to TPR (useless test)

abline(0,1,lty=2)

# plot summary estimates of FPR and TPR

points(expit(xi),expit(eta),pch=13)

# plot sROC curve in ROC space

lines(expit(x),s,lwd=2)

# confidence ellipsoid if desired (conf=T)

if(conf==T)

{

# extract variance covariance matrix of model coefficients (fixed effects)

rvar<-vcov(model)

# calculate correlation

r<-rvar[2,1][1,2]/(sqrt(rvar[1,1])*sqrt(rvar[2,2]))

# critical value Chi-Square distribution with two df

c<-sqrt(qchisq(0.95,2))

# generate values from zero to 2*pi (pi=3.1415.)

t<-seq(0,2*pi,0.001)

# y axis mean TPR+c* error*cos(t)

mueta<-eta+c*sqrt(rvar[1,1])*cos(t)

# axis mean FPR+c*standard error+cos(t+acos(r))

muxi<-xi+c*sqrt(rvar[2,2])*cos(t+acos(r))

# Transform to scale of sensitivity and specificity and plot SROC curve

lines(expit(muxi),expit(mueta),lwd=2,lty=2)

}

# prediction ellipsoid (if desired)

if(predict==T)

{

# create new matrix as sum of covariance matrix of coefficients

# and covariance matrix of random effects

rvar<-rvar+Sigma

# Same calculations as for the confidence ellipsoid

r<-rvar[2,1][1,2]/(sqrt(rvar[1,1])*sqrt(rvar[2,2]))

c<-sqrt(qchisq(0.95,2))

t<-seq(0,2*pi,0.001)

792 Schlattmann: Meta-analysis of diagnostic test accuracy studies



References

1. Lippi G, Mattiuzzi C, Cervellin G. C-reactive protein and migraine. Facts
or speculations? Clin Chem Lab Med 2014;52:1265–72.

2. Braga F, Pasqualetti S, Ferraro S, Panteghini M. Hyperuricemia as risk
factor for coronary heart disease incidence andmortality in the general
population: a systematic review andmeta-analysis. Clin Chem LabMed
2016;54:7–15.

3. Heilmann E, Gregoriano C, Wirz Y, Luyt CE, Wolff M, Chastre J, et al.
Association of kidney function with effectiveness of procalcitonin-
guided antibiotic treatment: a patient-level meta-analysis
from randomized controlled trials. Clin Chem Lab Med 2021;59:
441–53.

4. Yang H, Gu Y, Chen C, Xu C, Xi Bao Y. Diagnostic value of pro-gastrin-
releasing peptide for small cell lung cancer: a meta-analysis. Clin Chem
Lab Med 2011;49:1039–46.

5. van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YAL,
van der Flier WM, et al. Tau and p-tau as CSF biomarkers in dementia: a
meta-analysis. Clin Chem Lab Med 2011;49:353–66.

6. Yu S, jie Yang H, qin Xie S, Bao YX. Diagnostic value of HE4 for ovarian
cancer: a meta-analysis. Clin Chem Lab Med 2012;50:1439–46.

7. Agnello L, Vidali M, Giglio RV, Gambino CM, Ciaccio AM, Sasso BL, et al.
Prostate health index (PHI) as a reliable biomarker for prostate cancer: a
systematic review and meta-analysis. Clin Chem Lab Med 2022;60:
1261–77.

8. Lippi G, Henry BM, Adeli K. Diagnostic performance of the fully
automated Roche Elecsys SARS-CoV-2 antigen
electrochemiluminescence immunoassay: a pooled analysis. Clin Chem
Lab Med 2022;60:655–61.

9. Ferraro S, Biganzoli EM, Castaldi S, Plebani M. Health Technology
Assessment to assess value of biomarkers in the decision-making
process. Clin Chem Lab Med 2022;60:647–54.

10. Oosterhuis WP, Niessen RWLM, Bossuyt PMM. The science of
systematic reviewing studies of diagnostic tests. Clin Chem Lab Med
2000;38:577–88.

11. Cleophas TJ, Zwinderman AH. Meta-analyses of diagnostic studies. Clin
Chem Lab Med 2009;47:1351–4.

12. Dahabreh IJ, Trikalinos TA, Lau J, Schmid C. An empirical assessment of
bivariate methods for meta-analysis of test accuracy [internet].
Rockville, MD, USA: Agency for Healthcare Research and Quality; 2012.

13. R Core Team. R. A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing; 2021. Available
from: https://www.R-project.org/.

14. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T,
Schlattmann P, et al. Assessment of global incidence and mortality of
hospital-treated sepsis. Current estimates and limitations. Am J Respir
Crit Care Med 2016;193:259–72.

15. Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a
diagnostic marker for sepsis: a systematic review and meta-analysis.
Lancet Infect Dis 2013;13:426–35.

16. Altman DG, Bland JM. Statistics notes: diagnostic tests 1: sensitivity and
specificity. BMJ 1994;308:1552.

17. Schlattmann P. Statistics in diagnostic medicine. Clin Chem Lab Med
2022;31:801–7.

18. Vollset SE. Confidence intervals for a binomial proportion. Stat Med
1993;12:809–24.

19. Agresti A, Coull BA. Approximate is better than “exact” for
interval estimation of binomial proportions. Am Statistician 1998;
52:119–26.

20. Schwarzer G, Carpenter J, Rücker G. Meta-analysis with R. Heidelberg,
New York: Springer; 2014.

21. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and
procedures. BMJ 1997;315:1533–7.

22. Sutton AJ, Higgins JP. Recent developments in meta-analysis. Stat Med
2008;27:625–50.

23. Schlattmann P. Medical applicatons of finite mixture models.
Heidelberg, New York: Springer; 2009.

24. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and
avoidance of continuity corrections in meta-analysis of sparse data.
Stat Med 2004;23:1351–75.

(continued)

mueta<-eta+c*sqrt(rvar [1,1])*cos(t)

muxi<-xi+c*sqrt(rvar [2,2])*cos(t+acos(r))

lines(expit(muxi),expit(mueta),lty=5)

}

# full AUC

x<-seq(logit(0.01),logit(0.99),by=0.01)

# generate regression line in logit ROC-space

line<-alpha+beta*x

# total n of regression line

nn<-length(line)

# transform to scale of TPR and FPR in ROC space

s<-expit(line)

# partial Area under the curve using trapezoidal rule for numerical integration

AUC<-(s [1]/2 + sum(s[2:(nn-1)]) + s[nn]/2)/nn

# print AUC and pAUC

cat("AUC=",AUC,"pAUC",pAUC,"\n")

}

Schlattmann: Meta-analysis of diagnostic test accuracy studies 793

https://www.R-project.org/


25. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A. Much ado about
nothing: a comparison of the performance of meta-analytical methods
with rare events. Stat Med 2007;26:53–77.

26. Rucker G, Schwarzer G, Carpenter J, Olkin I. Why add anything to
nothing? The arcsine difference as a measure of treatment effect in
meta-analysis with zero cells. Stat Med 2009;28:721–38.

27. Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-
analyses. BMJ 2011;342:d549.

28. Senn S. Trying to be precise about vagueness. Stat Med 2007;26:1417–30.
29. Thompson S. Why sources of heterogeneity in meta-analysis should be

investigated. BMJ 1994;309:1351–5.
30. Simel DL, Bossuyt PMM. Differences between univariate and bivariate

models for summarizing diagnostic accuracy may not be large. J Clin
Epidemiol 2009;62:1292–300.

31. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic
odds ratio: a single indicator of test performance. J Clin Epidemiol 2003;
56:1129–35.

32. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication
bias and other sample size effects in systematic reviews of diagnostic
test accuracy was assessed. J Clin Epidemiol 2005;58:882–93.

33. Altman DG, Bland JM. Statistics Notes: diagnostic tests 3: receiver
operating characteristic plots. BMJ 1994;309:188.

34. Phillips B, Stewart LA, Sutton AJ. ‘Cross hairs’ plots for diagnostic meta-
analysis. Res Synth Methods 2010;1:308–15.

35. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM,
Zwinderman AH. Bivariate analysis of sensitivity and specificity
produces informative summary measures in diagnostic reviews. J Clin
Epidemiol 2005;58:982–90.

36. Dobler P. mada: meta-analysis of diagnostic accuracy; 2022. R package
version0.5.11. Available from: https://CRAN.R-project.org/package=mada.

37. Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity
with sparse data: a generalized linear mixed model approach. J Clin
Epidemiol 2006;59:1331–2. author reply 1332–3.

38. van Houwelingen HC, Arends LR, Stijnen T. Advancedmethods inmeta-
analysis: multivariate approach and meta-regression. Stat Med 2002;
21:589–624.

39. Hamza TH, Reitsma JB, Stijnen T. Meta-analysis of diagnostic studies: a
comparison of random intercept, normal-normal, and binomial-
normal bivariate summary ROC approaches. Med Decis Making 2008;
28:639–49.

40. Rosenberger KJ, Chu H, Lin L. Empirical comparisons of meta-analysis
methods for diagnostic studies: a meta-epidemiological study. BMJ
Open 2022;12:e055336.

41. Chappell FM, Raab GM, Wardlaw JM. When are summary ROC
curves appropriate for diagnostic meta-analyses? Stat Med 2009;28:
2653–68.

42. Salameh JP, Bossuyt PM, McGrath TA, Thombs BD, Hyde CJ, Macaskill P,
et al. Preferred reporting items for systematic review andmeta-analysis of
diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration,
and checklist. BMJ 2020;370:m2632.

43. Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH,
Hunink MG, Stijnen T. Bivariate random effects meta-analysis of ROC
curves. Med Decis Making 2008;28:621–38.

44. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis
with R: a practical tutorial. Evid Base Ment Health 2019;22:
153–60.

45. Wang J, Leeflang M. Recommended software/packages for meta-
analysis of diagnostic accuracy. J Lab Precis Med 2019;4:22.

46. Menke J. Bivariate random-effects meta-analysis of sensitivity
and specificity with SAS PROC GLIMMIX. Methods Inf Med 2010;
49:62–4.

47. Nyaga VN, Arbyn M. Metadta: a Stata command for meta-analysis and
meta-regression of diagnostic test accuracy data – a tutorial. Arch Publ
Health 2022;80:95.

48. Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ.
Development of an interactive web-based tool to conduct and
interrogate meta-analysis of diagnostic test accuracy studies:
MetaDTA. BMC Med Res Methodol 2019;19:81.

Supplementary Material: This article contains supplementary material
(https://doi.org/10.1515/cclm-2022-1256).

794 Schlattmann: Meta-analysis of diagnostic test accuracy studies

https://CRAN.R-project.org/package=mada
https://doi.org/10.1515/cclm-2022-1256

	Tutorial: statistical methods for the meta-analysis of diagnostic test accuracy studies
	Introduction
	Motivating example

	Univariate meta-analyses of sensitivity and specificity
	Forest plots for sensitivity and specificity
	Fixed and random effects models
	Diagnostic odds ratio (DOR)
	Publication bias

	Bivariate diagnostic meta analysis
	Plots of sensitivity and specificity in the summary receiver operator curve (sROC) space
	Bivariate generalized linear mixed modes
	Summary receiver operator curve (sROC curve)


	Using R
	Importing and manipulating data
	Two univariate meta-analyses
	Construction of forest plots sensitivity and specificity
	Meta-analysis for proportions
	Logistic regression models

	Diagnostic odds ratio (DOR) and publication bias
	Bivariate meta-analysis
	Plots in ROC space

	Bivariate logistic regression model with random effects
	Summary receiver operator curve (sROC curve) with R


	Other software for meta-analysis of DTA studies
	Acknowledgments
	Appendix: R code of the function plot.sROC
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


