

Martine J. Hollestelle*, Ann Helen Kristoffersen, René N. Idema, Piet Meijer, Sverre Sandberg, Moniek P.M. de Maat and Aasne K. Aarsand

Systematic review and meta-analysis of withinsubject and between-subject biological variation data of coagulation and fibrinolytic measurands

https://doi.org/10.1515/cclm-2022-1207 Received November 25, 2022; accepted February 10, 2023; published online February 22, 2023

Abstract

Objectives: The diagnosis and monitoring of bleeding and thrombotic disorders depend on correct haemostatic measurements. The availability of high-quality biological variation (BV) data is important in this context. Many studies have reported BV data for these measurands, but results are varied. The present study aims to deliver global withinsubject (CV_I) and between-subject (CV_G) BV estimates for haemostasis measurands by meta-analyses of eligible studies, by assessment with the Biological Variation Data Critical Appraisal Checklist (BIVAC).

Methods: Relevant BV studies were graded by the BIVAC. Weighted estimates for CV_I and CV_G were obtained via meta-analysis of the BV data derived from BIVAC-compliant studies (graded A–C; whereby A represents optimal study design) performed in healthy adults.

*Corresponding author: Martine J. Hollestelle, ECAT Foundation (External Quality Control for Assays and Tests), P.O. Box 107, 2250AC Voorschoten, The Netherlands, Phone: +31.71.3030910, Fax: +31.71.3030919. E-mail: m.vanessen@ecat.nl

Ann Helen Kristoffersen, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; and Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway René N. Idema, Result Laboratory, Amphia Hospital, Breda, The Netherlands

Piet Meijer, ECAT Foundation (External Quality Control for Assays and Tests), Voorschoten, The Netherlands

Sverre Sandberg and Aasne K. Aarsand, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway; and European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group on Biological Variation and Task Group for the Biological Variation Database, Milan, Italy

Moniek P.M. de Maat, Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. https://orcid.org/0000-0001-7749-334X **Results:** In 26 studies BV data were reported for 35 haemostasis measurands. For 9 measurands, only one eligible publication was identified and meta-analysis could not be performed. 74% of the publications were graded as BIVAC C. The CV_{I} and CV_{G} varied extensively between the haemostasis measurands. The highest estimates were observed for PAI-1 antigen (CV_I 48.6%; CV_G 59.8%) and activity (CV_I 34.9%; CV_G 90.2%), while the lowest were observed for activated protein C resistance ratio (CV_I 1.5%; CV_G 4.5%).

Conclusions: This study provides updated BV estimates of CV_I and CV_G with 95% confidence intervals for a wide range of haemostasis measurands. These estimates can be used to form the basis for analytical performance specifications for haemostasis tests used in the diagnostic work-up required in bleeding- and thrombosis events and for risk assessment.

Keywords: analytical performance specifications; biological variation; haemostasis measurands; meta-analysis.

Introduction

Reliable measurements of haemostasis measurands are essential for the diagnostic work-up required for determining the risk of bleeding and thrombosis and for monitoring anticoagulant and bleeding disorder treatment. It is essential to apply relevant analytical performance specifications (APS) in order to ensure correct results that accurately represent the clinical status of the patient. During the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) a revision was made of previously defined models for APS, resulting in three models; (1) clinical outcome, (2) biological variation (BV) of the measurand or (3) state-of-the-art, which relates to the highest level of technically available performance of an assay [1].

APS based on clinical outcome are rare, because of the lack of relevant studies [2]. On the other hand, multiple studies on BV are available, and the BV model is the one most widely used in laboratory medicine to define APS. BV is defined as within-subject (CV_I) and between-subject (CV_G) variation. However, applying BV data for APS and other applications as reference change values, index of individuality and

personalised reference intervals is hampered by variations in the BV data available for many measurands. These variations are likely related to differences in analytical methods applied, statistical approaches, and heterogeneity in study design [3–6]. For some haemostasis measurands, medians of BV estimates derived from different publications are already available in the historical online BV database, last updated in 2014 [7, 8]. However, a previous study demonstrated large variations in the BV data published, thus limiting the application of these data to set APS [9]. More reliable estimates are therefore needed, and we propose to achieve this by appraising publications by the Biological Variation Data Critical Appraisal Checklist (BIVAC) [3], which assesses the presence of essential elements that may affect the veracity and utility of the BV data.

The aims of the present study were to perform a literature review to identify BV studies in healthy persons for coagulation and fibrinolytic analytes, to generate up-to-date CV_I and CV_G data for these measurands by systematically appraising published BV studies by the BIVAC and subsequently combine the data in meta-analyses.

Materials and methods

Bibliographical search

A literature search was performed in PubMed (cut-date August 2022), using the following search words: biological variation, within-subject variation, between-subject variation, in combination with coagulation or haemostasis or together with a specific haemostasis measurand included in this study, as listed in Table 1. In addition, papers cited in a historical online 2014 BV database [7] and other publications derived from the private collection of the authors were included and reviewed. The total number of papers evaluated was 38.

Eligibility criteria and review

Publications fulfilling the following criteria were included in the review: study duration >1 week, study population consisting of healthy individuals, and three or more samples collected per study subject. Four papers were excluded because the study period was too short [10-13], two papers because they had collected only two samples per subject [14, 15] and six studies because they did not include data from healthy individuals [16-21]. No studies on children or the elderly were identified, and only studies performed on adults were therefore possible to include in our review. For all the remaining studies (n=26), details on the study subjects, sampling, pre-analytical handling and analytical methods were recorded, and the studies were appraised by the BIVAC [3]. The BIVAC includes 14 quality items (QI) focusing on the description of the study design and study subjects, preanalytical sample handling, measurement procedure, statistical analysis and reporting of results. QI are scored from A to D, in which A represents optimal study design and D indicates that the data are not considered fit for use. The QI with the lowest scoring determines the overall grading of the study.

Four independent assessors reviewed all the papers. When one study reported BV data for several measurands, appraisal was performed for each data set independently. Differences in how the assessors scored were discussed in detail and in the wider group until consensus was achieved.

Statistical analysis

The 95% confidence interval (CI) for each BV estimate was calculated for all the studies included as described previously [22, 23], if the required data were provided (mean number of subjects, mean number of samples and estimates of analytical variation [CVA]). Meta-analyses were performed by a weighted mean approach separately for CV_I and CV_G, with BIVAC grades given arbitrary weights with A papers as 4, B papers as 2 and C papers as 1, as previously reported [4]. In the meta-analysis, healthy, non-pregnant subjects between 18 and 75 years were included. For studies reporting results both from the entire study population as well as subgroups for e.g. sex, only the results from the overall group were included. For studies only reporting subgroup estimates, these were combined into a common estimate, prior to inclusion in the metaanalysis. BV data sets with the following characteristics were excluded from the meta-analysis;

- BIVAC grade D; for QI4 analytical method: one data set for Von Willebrand factor (VWF) related antigen due to lack of information on reagent/method (not clear whether factor VIII or VWF was measured) [24] and three data sets for fibrinogen [25], tPA fibrinolytic activity [26] and APTT [27] because of the obsolete methods used,
- CV_I reported as "0" (protein S-free CV_I [28] thrombin time CV_I [29], von Willebrand factor: antigen (VWF:Ag) CV_I [30]),
- (c) no CV_A estimate reported [31, 32],
- more than one CV_I and/or CV_G estimates for the same measurand reported in one publication due to the use of multiple reagents (e.g. factor VIII, both clotting and chromogenic methods), or the same results expressed in different units (e.g. both for PT in seconds and as a percentage). The following data sets were excluded: PT as a percentage [33], PT and INR using the Owren method [27], protein C clotting [34], factor VIII two-stage (male and female) [25] and factor VIII chromogenic method (male and female) [25].

When BV data were reported in the form of variances [24, 28, 30, 35], CVs were calculated as: CV=[$\sqrt{\text{(variance)/mean}} \times 100\%$ and thereafter included. Differences between methods or expression of the same measurand were calculated by two-sided Student's t-tests and p-values less than 0.05 were considered to be statistically significant.

The mean level or concentration reported for each measurand was calculated on the basis of the mean result reported by all the eligible

Results

In the 26 papers included in this review, BV data were reported for 35 measurands. The number of publications varied for the different measurands, with fibrinogen, antithrombin, factor VIII and APTT being assessed in the highest number of studies; 16, 9, 8 and 8 publications, respectively

(Table 1). For 9 measurands, only one study was identified reporting BV data (Table 1) and thus meta-analysis could not be performed. The majority of publications (74%) received a BIVAC grade C, one paper (4%) B and 20% as A. BIVAC C grade was mostly awarded to indicate the lack of outlier analysis (OI8) or variance homogeneity testing (OI10), and/or not reporting the number of results excluded following analysis of outliers and variance homogeneity (QI13). For most studies,

all the data sets received the same BIVAC grade; the few exceptions were caused by an obsolete analytical method being used for specific measurands. Most publications reported results for female and male subjects combined. except for five publications, of which one reported results from two differently performed studies with only men in the one study and only women in the other [25], three publication reported results only for women [27, 36, 37] and one

Table 1: Number of reviewed biological variation papers for coagulation and fibrinolytic measurands and their Biological Variation Data Critical Appraisal Checklist (BIVAC) grade.

Measurands	N	n	Type of subgroups (gender or method)	E	BIVA	C grade	a	Reference	
				A	В	С	D		
APTT	8	9	2 APTT reagents [27] ^b	2	1	5	(1)	[27, 29, 30, 33, 34, 38–40]	
APCR ratio	3	3		0	2	1	0	[37, 47, 48]	
ADAMTS-13-Act	1	1		0	0	1	0	[49]	
ADAMTS-13-Ag	1	1		0	0	1	0	[49]	
Antithrombin-Ag	1	1		0	0	1	0	[24]	
Antithrombin-Act	9	10	Male & female [25]	2	0	7 (8)	0	[24, 25, 29, 30, 33, 34, 37, 38, 46]	
D-dimer	6	6		3	0	3	0	[28, 31, 36, 38, 44, 45]	
Factor II	2	2		0	0	2	0	[24, 48]	
Factor V	2	2		1	0	1	0	[29, 47]	
Factor VII	5	6	Male & female [25]	0	0	5 (6)	0	[24–26, 30, 48]	
Factor VIII	8	13	Male & female [25], 1-stage & 2-stage clot & chromogenic [25]	3	0	5 (10)	0	[24, 25, 27, 30, 34, 38, 47, 48]	
Factor IX	2	2		1	0	1	0	[34, 47]	
Factor X	3	4	Male & female [25]	0	0	3 (4)	0	[24, 25, 29]	
Factor XI	1	1		1	0	0	0	[47]	
Factor XII	1	1		1	0	0	0	[47]	
Fibrinogen-clauss	15	16	Male & female [25]	2	1	11	1 (2)	[24-27, 29, 30, 32-35, 38, 40, 41, 43, 44]	
Fibrinogen-Ag	1	1		0	0	1	0	[42]	
Plasmin inhibitor	3	4	Male & female [25]	0	0	3 (4)	0	[25, 29, 33]	
Plasminogen	3	4	Male & female [25]	0	0	3 (4)	0	[25, 29, 33]	
Protein C-Act	6	7	Clot & chromogenic [34]	3	0	3 (4)	0	[33, 34, 37, 38, 46, 47]	
Protein C-Ag	1	1	-	0	0	1	0	[30]	
Protein S-Act	3	3		1	0	2	0	[33, 34, 37]	
Protein S-total	3	3		0	0	3	0	[28, 34, 46]	
Protein S-free	5	5		2	1	2	0	[28, 34, 37, 38, 47]	
Prothrombin time, second	7	9	2 PT reagents [27], PT expressed in ratio and % [33]	2 (3)	1	4 (5)	0	[27, 29, 33, 34, 38, 40, 41]	
Prothrombin time, INR	4	5	2 PT reagents [27]	2 (3)	0	2	0	[27, 33, 38, 39]	
TAT	3	3	3	Ô	0	3	0	[33, 44, 48]	
Thrombomodulin	1	1		0	0	1	0	[33]	
t-PA Act	2	2		0	0	1	1	[26, 48]	
t-PA Aq	5	5		0	0	5	0	[26, 28, 35, 44, 48]	
PAI-1 Act	4	4		0	0	4	0	[26, 35, 44, 48]	
PAI-1 Ag	5	5		0	0	5	0	[26, 28, 31, 44, 48]	
VWF:RCo	3	4	Male & female [25]	0	0	3 (4)	0	[25, 34, 49]	
VWF:Aq	4	5	Male & female [25]	1	0	3 (4)	0	[25, 27, 34, 49]	
VWF:CB	1	1		0	0	1	0	[34]	

N, number of papers included; n, number of datasets including all subgroups. ^aThe number in parenthesis indicates the number of different datasets, i.e. derived on the basis of population subgroups or by use of several reagents, reported in some of the studies. ^bOnly one APTT method was included in the meta-analysis as the other method was obsolete and graded as a "D". APTT, activated partial thromboplastin time; APCR, activated protein C resistance; Act, activity; Aq, antigen; TAT, thrombin-antithrombin complex; t-PA, tissue plasminogen activator; PAI-1, plasminogen activator inhibitor 1; VWF, von Willebrand factor; RCo, ristocetin cofactor activity; CB, collagen binding.

only for men [26]. The European Biological Variation Study (EuBIVAS) reported results both for all study subjects, as well as for men and women, and women above and below 50 years, separately [38].

Activated partial thromboplastin time (APTT)

Eight papers fulfilled the inclusion criteria and reported data on CV_I and CV_G for APTT in seconds or as ratios [27, 29, 30, 33, 34, 38–40] (Table 1, Figure 1A), from which meta-analysis results were derived (Table 2). Six out of eight publications reported

 CV_I results at 3.3% or lower. Two publications reported values of above 6% (Figure 1A: C-1985 [29] and C-2016 [34]) (Figure 1A).

Prothrombin time (PT)/international normalized ratio (INR)

Seven papers fulfilled the inclusion criteria [27, 29, 33, 34, 38, 40, 41] (Table 1, Figure 1B), all reporting PT results in seconds. $\mathrm{CV_I}$ and $\mathrm{CV_G}$ which were included, ranged from 2.4 to 5.8% and from 2.8 to 5.7%, respectively, with the oldest publication reporting a considerable higher $\mathrm{CV_I}$ than the



Figure 1: Within-subject (CVI) and between-subject (CVG) biological variation estimates for activated partial thromboplastin time (APTT), prothrombin time (PT), PT-International Normalized Ratio (INR), fibrinogen, D-dimer and antithrombin. Mean estimates of CVI (circles) and CVG (triangles) shown as a percentage with 95% confidence intervals for (A) APTT, (B) PT, (C) INR, (D) fibrinogen, (E) D-dimer and (F) antithrombin. On the x-axis, the different data sets are labelled with the BIVAC grade, publication year and the reference number, as given in this review. Data points at the right side of the vertical lines indicate data from studies of the same parameter performed with another analytical method not included in the meta-analysis. Results from excluded studies (red circles and triangles) are marked with "excl" on the x-axis. f; studies including only females, m; studies including only males, %; PT presented in percent, Owren; PT or INR measured with a combined PT reagent with 1:21 dilution, Ag; antigen.

Table 2: Meta-analysis derived within-subject (CV₁) and between-subject (CV_G) estimates with 95% CIs of coagulation and fibrinolytic measurands.

	n _{mean}	Mean (SD)	n _{cv}	CV _I (CI) %	CV _G (CI) %	Historical online 2014 BV database	
						CV _I %	CV _G %
APTT, second	6	ND	8	2.8 (1.7-6.8)	7.2 (4.9–8.9)	2.7	8.6
APCR ratio	3	2.6 (0.3)	3	1.5 (1.3-6.7)	4.5 (3.8-5.4)	NA	NA
ADAMTS-13-Act, U/dL ^a	1	120 (NA)	1	12.7 (9.7-15.8)	9.6 (5.6-16.5)	NA	NA
ADAMTS-13-Ag, μg/L ^a	1	682.0 (NA)	1	9.8 (0.0-13.4)	6.3 (1.9-11.6)	NA	NA
Antithrombin-Ag, U/dL ^a	1	103.0 (NA)	1	7.2 (6.3-8.2)	5.0 (3.4-8.3)	NA	NA
Antithrombin-Act, U/dL	7	108.7 (5.8)	10	3.4 (1.1-7.0)	7.8 (2.6-25.2)	5.2	15.3
D-dimer, ng/mL FEU	3	204.0 (73.2)	5	25.2 (17.4-56.4)	35.4 (26.5-89.5)	23.3	26.5
Factor II, U/dL	2	105.0 (4.2)	2	5.8 (5.7-5.9)	9.7 (7.0-15.4)	NA	NA
Factor V, U/dL	1	95.5 (NA)	2	5.3 (3.6-6.6)	18.7 (14.1-27.5) ^a	3.6	NA
Factor VII, U/dL	4	110.4 (19.0)	6	8.2 (6.9-14.2)	17.8 (16.7-19.4)	6.8	19.4
Factor VIII, U/dL	7	115.7 (18.2)	9	8.7 (4.9-16.0)	22.5 (15.5-31.4)	4.8	19.1
Factor IX, U/dL	2	101.8 (4.0)	2	6.9 (5.8-9.1)	16.3 (15.7–18.2)	NA	NA
Factor X, U/dL	1	90.0 (NA)	4	5.9 (4.6-8.5)	11.4 (8.2–18.2)	5.9	NA
Factor XI, U/dL ^a	1	107.3 (NA)	1	5.1 (4.2-6.3)	11.5 (8.5-17.5)	NA	NA
Factor XII, U/dL ^a	1	142.7 (NA)	1	4.0 (3.0-5.1)	23.3 (17.6-34.5)	NA	NA
Fibrinogen-clauss, g/L	11	2.7 (0.2)	13	10.2 (9.3-11.9)	17.1 (8.5–17.3)	10.7	15.8
Fibrinogen-Ag, g/L ^a	0	NA	1	13.5 (12.1–14.9)	16.2 (12.4–22.7)	NA	NA
Plasmin inhibitor, U/dL	1	115.7 (NA)	4	5.8 (4.8-5.8)	7.1 (5.2–10.8)	6.2	NA
Plasminogen, U/dL	1	111.1 (NA)	4	5.7 (4.2-7.7)	10.5 (7.8-15.8)	7.7	NA
PC-Act, U/dL	6	107.8 (6.3)	6	5.5 (5.3-7.9)	16.9 (9.1-55.2)	5.6	55.2
PC-Ag, µg/mL ^a	1	3.2 (NA)	1	2.2 (0.0-6.2)	13.3 (10.5–17.5)	NA	NA
PS-act, U/dL	3	96.2 (6.5)	3	7.3 (7.1–8.1)	20.3 (18.8-23.8)	NA	NA
PS-total, U/dL	3	103.9 (14.9)	3	6.7 (2.9-7.3)	13.3 (8.9-63.4)	5.8	63.4
PS-free, U/dL	4	96.0 (2.6)	4	4.2 (4.0-8.7)	16.9 (16.2-25.0)	NA	NA
Prothrombin time, second	6	ND	7	2.6 (2.4–5.8)	5.1 (2.8–5.7)	4.0	6.8
Prothrombin time, INR	3	1.06 (0.05)	4	2.5 (2.3–3.0)	4.6 (2.9–6.8)	NA	NA
TAT, ng/mL	3	2.3 (1.1)	3	19.0 (11.0-26.0)	33.3 (20.0-60.5)	NA	NA
Thrombomodulin, TU/mL	1	8.8 (NA)	1	11.4 (9.1–13.2)	16.5 (12.1-25.1)	NA	NA
t-PA Ag, ng/mL	5	6.0 (2.1)	5	13.3 (11.0–30.9)	38.1 (23.9–191.1)	NA	NA
t-PA Act, U/dL ^a	1	56.0 (NA)	1 ^b	32.0 (27.6–37.4)	NA	NA	NA
PAI-1 Ag, ng/mL	4	16.3 (8.6)	4	48.6 (35.6–55.0)	59.8 (26.0-90.0)	NA	NA
PAI-1 Act, U/mL	3	12.6 (10.9)	3	34.9 (30.3–49.0)	90.2 (62.0–181.8)	NA	NA
VWF:RCo, U/dL	2	125.5 (2.1)	4	17.0 (8.1–21.3)	24.6 (18.5–31.2)	NA	NA
VWF:Ag, U/dL	3	99.0 (12.0)	4	12.7 (11.1–19.4)	29.9 (22.6–31.6)	2.5	27.3
VWF:CB, U/dL ^a	1	112.0 (NA)	1	25.6 (23.9–27.5)	28.0 (22.6–36.3)	NA	NA

For measurands where only one study was identified a , the estimate represents that reported by the study with 95% CI. APTT, activated partial thromboplastin time; APCR, activated protein C resistance; Act, activity; Ag, antigen; PC, protein C; PS, protein S; TAT, thrombin-antithrombin complex; t-PA, tissue plasminogen activator; PAI-1, plasminogen activator inhibitor 1; VWF, von Willebrand factor; RCo, ristocetin cofactor activity; CB, collagen binding; ND, not determined because methods are not calibrated; NA, not available; ND, not determined; n_{mean} , number of papers used to calculate the mean concentration; n_{CV} , number of papers included in the meta-analysis of CV_{I} and CV_{G} . b No result for CV_{G} in the study. CI, confidence interval; SD, standard deviation.

others (no CV_G given in that study) (Figure 1B). Meta-analysis delivered a CV_I of 2.6% and CV_G of 5.1% for PT (Table 2).

Four studies reported CV_I and CV_G for INR and fulfilled the inclusion criteria [27, 33, 38, 39]. CV_I and CV_G were similar when expressing the PT in seconds or as INR (Table 2, Figure 1B and C, p>0.05).

Two results derived from two different studies were excluded from the meta-analysis (PT as a percentage [33], PT Owren reagents [27]). For both measurands it was noticed that the mean CV_Gs were higher compared to the other PT CV_Gs data (Figure 1B and C).

Fibrinogen

Sixteen publications described BV results for fibrinogen [24–27, 29, 30, 32–35, 38, 40–44], of which 14 were included in the meta-analysis and where fibrinogen was measured using the Clauss method (Table 1, Figure 1D) [24, 26, 27, 29, 30, 33–35, 38, 40, 41, 43, 44]. Three studies were excluded; one used an immunological (ELISA) method [42], one used an obsolete method [25] and one study did not report \mbox{CV}_A [32]. The data sets included reported \mbox{CV}_I estimates ranging from 9.3 to 11.9% and \mbox{CV}_G estimates ranging from 8.5 to 17.3%,

with meta-analysis results of 10.2 and 17.1%, respectively (Table 2). The study utilising an immunological method reported similar results (CV $_{\rm I}$ 13.5% and CV $_{\rm G}$ 16.2%) [42].

D-dimer

Six publications were available for D-dimer [28, 31, 36, 38, 44, 45], of which one study was excluded because CV_A was not reported [31] (Table 1, Figure 1E). Varying results were reported, with CV_I and CV_G estimates ranging from 17.4 to 56.4% and from 26.5 to 89.5%, respectively. Sakkinen et al. reported about 2 times higher CV_I and CV_G values than the other studies [44] (1999C [44] in Figure 1E). No obvious reason for this discrepancy could be identified. Excluding the Sakkinen et al. study from the meta-analysis, did not change the results (data not shown) [44].

Antithrombin

Nine publications fulfilled the inclusion criteria [24, 25, 29, 30, 33, 34, 37, 38, 46] (Table 1). The majority of the studies measured antithrombin using a chromogenic method (antithrombin activity), and only one used an immunological (ELISA) method (antithrombin antigen) [24]. An average CV_I of 3.4% and CV_G of 7.8% were calculated in the meta-analysis (Table 2). For antithrombin antigen the CV_I and CV_G results were similar to those observed for antithrombin activity (Figure 1F).

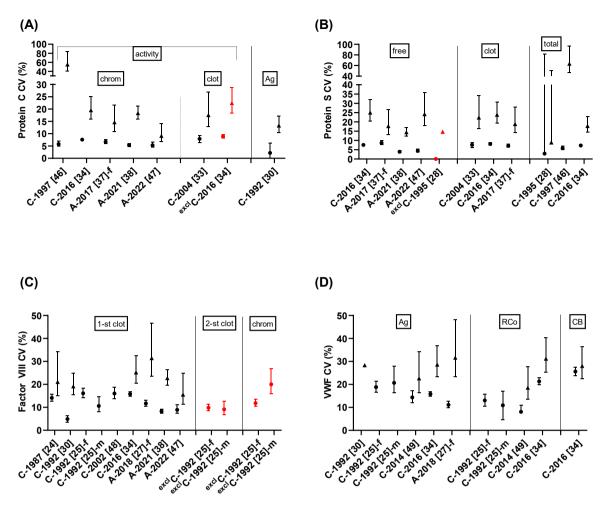
Protein C and S

Eight publications reported BV estimates for protein C and/ or protein S [28, 30, 33, 34, 37, 38, 46, 47] (Table 1). Protein C data were available for chromogenic and clot-based (both activity) and/or immunological (antigen) methods, reporting similar BV results (Figure 2A). When including both protein C activity methods, the meta-analysis delivered estimates of CV_I of 5.5% and CV_G of 16.9%. Only one study reported BV data for protein C antigen, with results similar to those of the activity methods (Table 2 and Figure 2A).

BV data were reported for free protein S (immunological method), total protein S (immunological method) and/or protein S activity (clotting method) in the different studies (Figure 2B). Separate meta-analysis were performed for the different methods; there were no evident differences between the results of the three protein S methods (Table 2 and Figure 2B).

Factor VIII (FVIII)

Eight publications reported BV data for FVIII, with all studies including results based on the one-stage clotting method [24, 25, 27, 30, 34, 38, 47, 48]. One study in addition reported results for two-stage clotting and chromogenic methods [25] (Table 1). CV_I and CV_G for the one-stage factor VIII clotting method ranged from 4.9 to 16.0% and from 15.5 to 31.4%, respectively, with meta-analysis CV_I and CV_G results of 8.7 and 22.5%, respectively (Table 2, Figure 2C).


VWF

Five publications reported BV data for VWF, all including results for the VWF antigen (VWF:Ag) [25, 27, 30, 34, 49]. Three studies also reported for VWF ristocetin cofactor activity (VWF:RCo) [25, 34, 49] and one study for VWF collagen binding (VWF:CB) [34] (Table 1). No significant differences were observed between the BV estimates of VWF:Ag vs. VWF:RCo (p>0.05, Figure 2D).

Other haemostasis measurands

Fifteen publications reported BV data for one or more of the following haemostasis measureands: PAI-1 antigen and activity, t-PA antigen and activity, activated protein C resistance ratio (APCR), ADAMTS13 antigen and activity, thrombin-antithrombin complexes (TAT), plasmin inhibitor, plasminogen, thrombomodulin and coagulation factors II, V, VII, IX, X, XI and XII (FII, FV, FVII, FIX, FX, FXI, FXII) (Tables 1 and 2). The BV data reported differed widely. APCR ratio was associated with the lowest variability (CV_I 1.5%) and PAI-1 antigen and PAI-1 activity with high variability (CV_I 59.8 and 90.2%, respectively) (Table 2).

For measurands included in many different studies, such as fibrinogen and antithrombin, there was no clear difference or trend in BV estimates observed, when visually comparing studies with different grading or different year of publication (Figures 1 and 2). Furthermore, no significant differences were observed for measurands measured by different methods, such as PAI-1 antigen vs. activity or protein S free vs. clot activity (p>0.05, Figure 2B and Table 2). The meta-analyses also gave similar results, before and after exclusion of the most extreme CV_I's (e.g. CV_I's for APTT [29, 34] and CV_I for D-dimer [44], data not shown).

Figure 2: Within-subject (CVI) and between-subject (CVG) biological variation estimates for protein C, protein S, factor VIII and von Willebrand factor (VWF). Mean estimates of CVI (circles) and CVG (triangles) shown as a percentage with 95% confidence intervals for (A) protein C, (B) protein S, (C) factor VIII and (D) VWF. On the x-axis, the different data sets are labelled with the BIVAC grade, publication year and the reference number, as given in this review. The vertical lines divide data points where separate meta-analyses were performed, if more than one study was included, due to different analytical methodology. Results excluded in the meta-analysis (red circles and triangles) are marked with "excl" on the x-axis. Protein C activity, both clotting (clot) and chromogenic (chrom) methods, were separated by a half dotted vertical line, but were merged together in the meta-analysis. f; studies including only females, m; studies including only males, chrom; chromogenic methods, clot; clotting methods, Ag; antigen, free; free protein S, total; total protein S, 1-st clot; one-stage clotting method, 2-st clot; two-stage clotting method, RCo; ristocetin cofactor methods, CB; collagen binding methods.

Discussion

Different studies reported varying results for BV components for many measurands, including haemostasis measurands. In this study, we have performed a systematic review of BV studies of more than 1 week duration for haemostasis measurands, assessed their quality using the BIVAC and performed meta-analyses of eligible studies. For some measurands, only one study reporting BV data was identified (Table 1). Thus, it was not possible to perform meta-analysis, and the BV estimates we report for these measurands represent the results of single studies, with the associated 95% CI of that specific data set (Table 2). This emphasises the need for further high-quality studies, in

particular for these 9 markers and also for other haemostasis measurands for which no data as of are yet available, such as thrombin time and factor XIII. The majority of the publications reviewed in our study were given a BIVAC grade C (Table 1), mostly on account of statistical issues related to the lack of outlier and variance homogeneity analysis, as has also been observed in other BV systematic reviews [4–6]. A BIVAC D-grade was given to a few subgroup data sets, mainly on account of obsolete methods being applied. The BIVAC criteria assess the information provided by the authors in their paper and thus depend on a clear description by the authors of how the study was performed. In the present study, the most difficult QIs to score were preanalytical procedures, steady state/trend analysis,

statistical method and number of the samples/results included, as the information on these aspects were not always fully provided or clearly described. The true methodological quality of the study may therefore have been higher than we were able to discern. For haemostasis measurands, adequate pre-analytical handling is particularly important to ensure correct results. We systematically assessed all publications for information related to blood sampling, citrate concentration of the tubes, centrifugation and freezing procedures and storage conditions. Many studies, however, provided little detail on the pre-analytical handling, as reflected by 37% of studies receiving a B or C score for this quality item.

For haemostasis measurands, summarised BV data are only available, to date, in the historical online BV database [8]. Here, median values for the 10 most common haemostasis measurands, based on 9 publications, have been published. Except for VWF:Ag, the CV_I and CV_G point estimates in this database were within the 95% CI of the meta-analysis-derived estimates found in our study. For VWF:Ag, the CVI was significantly lower than the CV_I derived from the metaanalysis. This is likely the effect of the inclusion of additional publications and the exclusion of two studies from our metaanalysis [10, 30], one because of a too short study duration and the other because the CV_I was reported to be 0%. Furthermore, the CV_G of protein C and total protein S published in the historical BV database were higher than the estimates derived from the meta-analysis. This is likely caused by the fact that only one study with data on protein C and protein S, which reported very high CVG estimates, was included in the historical database [46], while the present meta-analysis includes more studies that all reported lower CV_G values.

Large differences in BV data between the various haemostasis measurands were observed, which may have been influenced, for example, by: study design/statistical handling, the type of study population (gender and age-related) and external factors related to acute phase reactions, blood group and hormones. Since most studies identified in our review reported results for populations consisting of individuals of mixed gender and age, it was not possible to perform metaanalyses of the different population age or sex subgroups. However, the EuBIVAS, which is a large-scale multi-centre study assessed different age/sex related subgroups and reported significant differences in CV_T estimates between males and females ≤50 years for APTT, protein C, and protein S free [38]. Indeed, differences in concentration levels related to sex are observed in haemostasis and fibrinolysis in healthy individuals [50] and further studies on BV for haemostasis measurands other than those included in the EuBIVAS are warranted. Furthermore, the EuBIVAS data indicate that sexspecific BV estimates should be considered for e.g. reference

change value application, if sex-specific data are available. No studies in children or the elderly were identified in our literature search and thus our review only includes data from healthy adults (18-75 years). No assessment could therefore be made to account for the impact of age. This demonstrates the need for additional high-quality studies in different population groups. Three studies in pregnant women demonstrated comparable BV results to our results in healthy individuals [27, 36, 37]. Studies reporting within-day estimates were not included in our review. Short-term or within-day BV estimates may be of value in the assessment of rapidly changing clinical situations such as COVID-10 and DIC and should be appraised in future studies.

Many coagulation and fibrinolytic proteins are acutephase proteins [51], and acute-phase reactions may influence BV estimates, if not adequately controlled in the study. The highest CV_I and/or CV_G were observed for PAI-1, with meta-analysis derived CV_I of 48.6% for PAI-1 antigen and CV_G of 90.2% for PAI-1 activity. PAI-1 is an acute phase reactant, as previously discussed by Nguyen et al. [28]. When performing a BV study, any influence of the acute phase should be minimised by including only healthy persons, assessing for trends and excluding samples or subjects where acute phase influence is likely. We did not observe such high variation for other well-known acute phase reactants as fibrinogen and factor VIII, although the BV estimates for these measurands were slightly higher than other coagulation factors. However, PAI-1 levels are also subject to strong diurnal variation, which may also have an effect on the BV estimates [52]. However, all the studies included described standardized samplings in the morning and this is thus unlikely to be the explanation for the high PAI-1 BV estimates.

High BV estimates were also observed for VWF antigen. which increases during acute phase and also shows diurnal variation [53, 54]. However, most eligible studies reported that samples were collected in the morning and only from healthy individuals. Only one study reported having assessed for individual trends during the study period [27]. It is known that VWF levels are related to blood group [55] and increase with higher age [56], which could potentially explain the higher BV estimate observed for VWF compared to most of the other haemostasis measurands, particularly the between-subject variation. Furthermore, for other measurands an age-related effect has been reported, such as for D-dimer, protein C and protein S, which might have an effect on the BV [57, 58]. As expected no significant differences were observed between VWF:RCo and VWF:Ag. Data for more recent VWF activity methods were not identified (such as: Ristocetin-triggered GPIb-binding assay, gain of function mutant GPIb-binding assay and assays based on

monoclonal antibodies directed against the GPIb binding epitope of VWF to mimic platelets).

The high BV estimates found for D-dimer could be related to the low concentration of D-dimer in healthy individuals (mean concentration: 204.0 ng/mL FEU, Table 2). Furthermore, it has been shown that D-dimer results were heterogeneously distributed in the EuBIVAS, which applied a Bayesian model to deliver BV data [38]. Thus, an average CV_I estimate as delivered by classical statistical models applied in most BV studies will not adequately represent the mean CV_I of the study population for D-dimer. From this it follows that applying a BV model for setting APS for D-dimer must be done with caution [38]. Since high D-dimer levels are used as a tool for e.g. COVID-19 [59], disseminated intravascular coagulation (DIC) [60] and venous thromboembolism (VTE) [61], a clinical outcome model for APS would be preferable, as has also been recommended [62]. However, no outcome studies have yet been published.

In our review, we focused on BV data derived from healthy adults. However, for specific situations, BV data for patients in stable disease settings are of interest. A few studies on BV for INR in patients at steady-state vitamin K antagonist treatment have been published. These studies demonstrated that the CV_I was considerable higher in such patients (ranges of the studies: CV₁=8.0–13.3%) [18–21] compared to data derived from healthy individuals (Table 2). Thus, if APS are set on the basis of the BV estimates for INR derived from healthy adults, these will also be more than adequate for anticoagulated patients.

Two studies with BV data for fibrinogen from patients with cardiovascular disease have been published. One study assessing both healthy volunteers (CV_I: 12.0%, CV_G: 31.8%) and patients with stable angina pectoris (CV_I: 12.5%, CV_G: 39.7%) found comparable BV estimates in both groups [35]. The second study demonstrated similar estimates to those derived from the present meta-analysis in healthy adults (Table 2) $(CV_I: 11.0\%, CV_G: 17.5\%)$ [16], thus, demonstrating that for this clinical situation BV estimates from both groups will result in similar APS.

In an earlier published study, it was shown that APS based on BV data derived from healthy adults and applied to the six-sigma concept on QC data for routine haemostasis factors frequently result in sigma values below the minimum acceptable value of 3.0 [9]. Therefore, the application of BV estimates as strict criteria for haemostasis measurands will be difficult. However, the new criteria could be used as a target on the horizon for further improvement in time.

In conclusion, this study provides a systematic review and updated estimates of CV_I and CV_G with 95% CIs for 35 clinically important haemostasis measurands. These data are of value when setting APS criteria for haemostasis tests used in the diagnostic work-up in bleeding- and thrombosis events and for risk estimation, as well as for other BV applications. More high-quality BV studies are necessary to increase our expertise in BV estimates for different population groups and states of health.

Acknowledgments: We would like to thank the EFLM Task Group for the Biological Variation Database for the development of the tools used in this article and for helpful comments related to grading of articles by the BIVAC.

Research funding: Thanks to the Western Norway Regional Health Authority for supporting Ann Helen Kristoffersen with postdoctoral fellowship.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest. **Informed consent:** Not applicable.

Ethical approval: Not applicable.

References

- 1. Sandberg S, Fraser CG, Horvath AR, Jansen R, Jones G, Oosterhuis W, et al. Defining analytical performance specifications: consensus statement from the 1st strategic conference of the European federation of clinical chemistry and laboratory medicine. Clin Chem Lab Med 2015;53:833-5.
- 2. Horvath AR, Bossuyt PM, Sandberg S, John AS, Monaghan PJ, Verhagen-Kamerbeek WD, et al. Setting analytical performance specifications based on outcome studies - is it possible? Clin Chem Lab Med 2015;53:841-8.
- 3. Aarsand AK, Roraas T, Fernandez-Calle P, Ricos C, Diaz-Garzon J, Jonker N, et al. The biological variation data critical appraisal checklist: a standard for evaluating studies on biological variation. Clin Chem 2018;64:501-14.
- 4. Coskun A, Braga F, Carobene A, Tejedor Ganduxe X, Aarsand AK, Fernandez-Calle P, et al. Systematic review and meta-analysis of withinsubject and between-subject biological variation estimates of 20 haematological parameters. Clin Chem Lab Med 2019;58:25-32.
- 5. Gonzalez-Lao E, Corte Z, Simon M, Ricos C, Coskun A, Braga F, et al. Systematic review of the biological variation data for diabetes related analytes. Clin Chim Acta 2018;488:61-7.
- 6. Diaz-Garzon J, Fernandez-Calle P, Minchinela J, Aarsand AK, Bartlett WA, Aslan B, et al. Biological variation data for lipid cardiovascular risk assessment biomarkers. A systematic review applying the biological variation data critical appraisal checklist (BIVAC). Clin Chim Acta 2019; 495:467-75.
- 7. Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, Jimenez CV, et al. Current databases on biological variation: pros, cons and progress. Scand J Clin Lab Invest 1999;59:491-500.
- 8. Minchinela J, Ricós C, García-Lario JC, Álvarez V, Cava F, Doménech M, et al. Biological variation database, and quality specifications for imprecision, bias and total error (desirable and minimum); 2014. Available from: http://www.westgard.com/biodatabase-2014-update. htm [Accessed 1 Aug 2021].

- Hollestelle MJ, Ruinemans-Koerts J, Idema RN, Meijer P, de Maat MPM. Determination of sigma score based on biological variation for haemostasis assays: fit-for-purpose for daily practice? Clin Chem Lab Med 2019;57:1235–41.
- Van Hoydonck PG, Schouten EG, Temme EH. Reproducibility of blood markers of oxidative status and endothelial function in healthy individuals. Clin Chem 2003;49:963–5.
- Shou W, Chen Q, Wu W, Cui W. Biological variations of lupus anticoagulant, antithrombin, protein C, protein S, and von Willebrand factor assays. Semin Thromb Hemost 2016;42:87–92.
- Chen Q, Shou W, Wu W, Guo Y, Zhang Y, Huang C, et al. Biological and analytical variations of 16 parameters related to coagulation screening tests and the activity of coagulation factors. Semin Thromb Hemost 2015;41:336–41.
- Riese H, Vrijkotte TGM, Meijer P, Kluft C, De Geus EJC. Covariance of metabolic and haemostatic risk indicators in men and women. Fibrinolysis Proteolysis 2001;14:1–12.
- Salomaa V, Rasi V, Stengard J, Vahtera E, Pekkanen J, Vartiainen E, et al. Intra- and interindividual variability of hemostatic factors and traditional cardiovascular risk factors in a three-year follow-up. Thromb Haemostasis 1998;79:969–74.
- Lacher DA, Hughes JP, Carroll MD. Estimate of biological variation of laboratory analytes based on the third national health and nutrition examination survey. Clin Chem 2005;51:450–2.
- Baumert J, Karakas M, Greven S, Ruckerl R, Peters A, Koenig W. Variability of fibrinogen measurements in post-myocardial infarction patients. Results from the AIRGENE study center Augsburg. Thromb Haemostasis 2012;107:895–902.
- Solvik UO, Roraas T, Petersen PH, Stavelin A, Monsen G, Sandberg S. The influence of coagulation factors on the in-treatment biological variation of international normalized ratio for patients on warfarin. Scand J Clin Lab Invest 2014;74:470–6.
- Lassen JF, Brandslund I, Antonsen S. International normalized ratio for prothrombin times in patients taking oral anticoagulants: critical difference and probability of significant change in consecutive measurements. Clin Chem 1995:41:444–7.
- van den Besselaar AM, Fogar P, Pengo V, Palareti G, Braham S, Moia M, et al. Biological variation of INR in stable patients on long-term anticoagulation with warfarin. Thromb Res 2012;130:535–7.
- Van Geest-Daalderop JH, Kraaijenhagen RJ, Van Der Meer FJ,
 Van Den Besselaar AM. Intraindividual variation of the international
 normalized ratio in patients monitored with a recombinant human
 thromboplastin. J Thromb Haemostasis 2010;8:1641–2.
- van Geest-Daalderop JH, Pequeriaux NC, van den Besselaar AM. Variability
 of INR in patients on stable long-term treatment with phenprocoumon and
 acenocoumarol and implications for analytical quality requirements.
 Thromb Haemostasis 2009;102:588–92.
- Roraas T, Stove B, Petersen PH, Sandberg S. Biological variation: the effect of different distributions on estimated within-person variation and reference change values. Clin Chem 2016;62:725–36.
- Roraas T, Petersen PH, Sandberg S. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin Chem 2012;58:1306–13.
- Thompson SG, Martin JC, Meade TW. Sources of variability in coagulation factor assays. Thromb Haemostasis 1987;58:1073–7.
- Blomback M, Eneroth P, Landgren BM, Lagerstrom M, Anderson O. On the intraindividual and gender variability of haemostatic components. Thromb Haemostasis 1992;67:70–5.

- Marckmann P, Sandstrom B, Jespersen J. The variability of and associations between measures of blood coagulation, fibrinolysis and blood lipids. Atherosclerosis 1992;96:235–44.
- Kristoffersen AH, Petersen PH, Bjorge L, Roraas T, Sandberg S. Withinsubject biological variation of activated partial thromboplastin time, prothrombin time, fibrinogen, factor VIII and von Willebrand factor in pregnant women. Clin Chem Lab Med 2018;56:1297–308.
- Nguyen ND, Ghaddar H, Stinson V, Chambless LE, Wu KK. ARIC hemostasis study-IV. Intraindividual variability and reliability of hemostatic factors. The atherosclerosis risk in communities (ARIC). Thromb Haemostasis 1995;73:256–60.
- Costongs GM, Bas BM, Janson PC, Hermans J, Brombacher PJ, van Wersch JW. Short-term and long-term intra-individual variations and critical differences of coagulation parameters. J Clin Chem Clin Biochem 1985:23:405–10.
- Chambless LE, McMahon R, Wu K, Folsom A, Finch A, Shen YL. Shortterm intraindividual variability in hemostasis factors. The ARIC study. Atherosclerosis risk in communities intraindividual variability study. Ann Epidemiol 1992;2:723–33.
- Engelberger RP, Limacher A, Kucher N, Baumann F, Silbernagel G, Benghozi R, et al. Biological variation of established and novel biomarkers for atherosclerosis: results from a prospective, parallelgroup cohort study. Clin Chim Acta 2015;447:16–22.
- Alexander KS, Kazmierczak SC, Snyder CK, Oberdorf JA, Farrell DH. Prognostic utility of biochemical markers of cardiovascular risk: impact of biological variability. Clin Chem Lab Med 2013;51: 1875–82.
- Wada Y, Kurihara M, Toyofuku M, Kawamura M, Iida H, Kayamori Y, et al. Analytical goals for coagulation tests based on biological variation. Clin Chem Lab Med 2004;42:79–83.
- de Maat MP, van Schie M, Kluft C, Leebeek FW, Meijer P. Biological variation of hemostasis variables in thrombosis and bleeding: consequences for performance specifications. Clin Chem 2016;62: 1639–46.
- de Maat MP, de Bart AC, Hennis BC, Meijer P, Havelaar AC, Mulder PG, et al. Interindividual and intraindividual variability in plasma fibrinogen, TPA antigen, PAI activity, and CRP in healthy, young volunteers and patients with angina pectoris. Arterioscler Thromb Vasc Biol 1996;16:1156–62.
- 36. Kristoffersen AH, Petersen PH, Sandberg S. A model for calculating the within-subject biological variation and likelihood ratios for analytes with a time-dependent change in concentrations; exemplified with the use of D-dimer in suspected venous thromboembolism in healthy pregnant women. Ann Clin Biochem 2012;49:561–9.
- 37. Kristoffersen AH, Petersen PH, Roraas T, Sandberg S. Estimates of within-subject biological variation of protein C, antithrombin, protein S free, protein S activity, and activated protein C resistance in pregnant women. Clin Chem 2017;63:898–907.
- Aarsand AK, Kristoffersen AH, Sandberg S, Stove B, Coskun A, Fernandez-Calle P, et al. The European biological variation study (EuBIVAS): biological variation data for coagulation markers estimated by a bayesian model. Clin Chem 2021;67:1259–70.
- Dot D, Miro J, Fuentes-Arderiu X. Within-subject and between-subject biological variation of prothrombin time and activated partial thromboplastin time. Ann Clin Biochem 1992;29:422–5.
- Falay M, Senes M, Korkmaz S, Turhan T, Okay M, Ozturk BA, et al. Biological variation estimates of prothrombin time, activated partial thromboplastin time, and fibrinogen in 28 healthy individuals. Int J Lab Hematol 2018;40:721–5.

- 41. Rudez G, Meijer P, Spronk HM, Leebeek FW, ten Cate H, Kluft C, et al. Biological variation in inflammatory and hemostatic markers. J Thromb Haemostasis 2009;7:1247-55.
- 42. Maes M, Scharpe S, Cooreman W, Wauters A, Neels H, Verkerk R, et al. Components of biological, including seasonal, variation in hematological measurements and plasma fibrinogen concentrations in normal humans. Experientia 1995;51:141-9.
- 43. Rosenson RS, Tangney CC, Hafner IM, Intraindividual variability of fibrinogen levels and cardiovascular risk profile. Arterioscler Thromb 1994;14:1928-32.
- 44. Sakkinen PA, Macy EM, Callas PW, Cornell ES, Hayes TE, Kuller LH, et al. Analytical and biologic variability in measures of hemostasis, fibrinolysis, and inflammation: assessment and implications for epidemiology. Am J Epidemiol 1999;149:261-7.
- 45. Ercan S. Ercan Karadag M. Establishing biological variation for plasma D-dimer from 25 healthy individuals. Scand J Clin Lab Invest 2021;81:
- 46. Melzi d'Eril G, Anesi A, Rizzo V, Trotti R. Biological variation in protein C, protein S and antithrombin concentrations in plasma of healthy subjects. Eur J Clin Chem Clin Biochem 1997;35:257-60.
- 47. Brochier A, Mairesse A, Saussoy P, Gavard C, Desmet S, Hermans C, et al. Short-term biological variation study of plasma hemophilia and thrombophilia parameters in a population of apparently healthy caucasian adults. Clin Chem Lab Med 2022;60:1409-15.
- 48. Horne MK 3rd, McCloskey DJ, Cullinane AM, Merryman PK, Rick ME, Hortin GL, et al. Parameters of coagulant and fibrinolytic capacity and activity in postmenopausal women: within-subject variability. Thromb Res 2002;107:229-33.
- 49. Kilercik M, Coskun A, Serteser M, Inan D, Unsal I. Biological variations of ADAMTS13 and von Willebrand factor in human adults. Biochem Med 2014;24:138-45.
- 50. Hvas AM, Favaloro EJ. Gender related issues in thrombosis and hemostasis. Expet Rev Hematol 2017;10:941-9.
- 51. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl | Med 1999;340:448-54.
- 52. Andreotti F. Davies Gl. Hackett DR. Khan MI. De Bart AC. Aber VR. et al. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 1988;62:635-7.

- 53. Timm A, Fahrenkrug J, Jorgensen HL, Sennels HP, Goetze JP. Diurnal variation of von Willebrand factor in plasma: the Bispebjerg study of diurnal variations. Eur J Haematol 2014;93:48-53.
- 54. van Mourik JA, Boertjes R, Huisveld IA, Fijnvandraat K, Pajkrt D, van Genderen PJ, et al. Von Willebrand factor propeptide in vascular disorders: a tool to distinguish between acute and chronic endothelial cell perturbation. Blood 1999;94:179-85.
- 55. Ward SE, O'Sullivan IM, O'Donnell IS. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2020;136:2864-74.
- 56. Favaloro EJ, Soltani S, McDonald J, Grezchnik E, Easton L, Favaloro JW. Reassessment of ABO blood group, sex, and age on laboratory parameters used to diagnose von Willebrand disorder: potential influence on the diagnosis vs. the potential association with risk of thrombosis. Am I Clin Pathol 2005:124:910-7.
- 57. Lippi G, Favaloro EJ, Cervellin G. A review of the value of D-dimer testing for prediction of recurrent venous thromboembolism with increasing age. Semin Thromb Hemost 2014;40:634-9.
- 58. Favaloro EJ, Soltani S, McDonald J, Grezchnik E, Easton L. Laboratory identification of familial thrombophilia: do the pitfalls exceed the benefits? A reassessment of ABO-blood group, gender, age, and other laboratory parameters on the potential influence on a diagnosis of protein C, protein S, and antithrombin deficiency and the potential high risk of a false positive diagnosis. Lab Hematol 2005;11:174-84.
- 59. Lippi G, Mullier F, Favaloro EJ. D-dimer: old dogmas, new (COVID-19) tricks. Clin Chem Lab Med 2022;1-10. https://doi.org/10.1515/cclm-2022-
- 60. Favaloro EJ. Laboratory testing in disseminated intravascular coagulation. Semin Thromb Hemost 2010;36:458-67.
- 61. Lim W, Le Gal G, Bates SM, Righini M, Haramati LB, Lang E, et al. American society of hematology 2018 guidelines for management of venous thromboembolism: diagnosis of venous thromboembolism. Blood Adv 2018;2:3226-56.
- 62. Ceriotti F, Fernandez-Calle P, Klee GG, Nordin G, Sandberg S, Streichert T. et al. Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM strategic conference. Clin Chem Lab Med 2017;55: 189-94.