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Abstract

Background: Laboratory medicine has reached the era where
promises of artificial intelligence and machine learning (AI/ML)
seem palpable. Currently, the primary responsibility for
risk-benefit assessment in clinical practice resides with the
medical director. Unfortunately, there is no tool or concept that
enables diagnostic quality assessment for the various potential
AI/ML applications. Specifically, we noted that an operational
definition of laboratory diagnostic quality – for the specific
purpose of assessing AI/ML improvements – is currentlymissing.
Methods: A session at the 3rd Strategic Conference of the
European Federation of Laboratory Medicine in 2022 on “AI in
the Laboratory of the Future” prompted an expert roundtable
discussion. Here we present a conceptual diagnostic quality
framework for the specific purpose of assessing AI/ML
implementations.

Results: The presented framework is termed diagnostic
quality model (DQM) and distinguishes AI/ML improve-
ments at the test, procedure, laboratory, or healthcare
ecosystem level. The operational definition illustrates the
nested relationship among these levels. The model can help
to define relevant objectives for implementation and how
levels come together to form coherent diagnostics. The
affected levels are referred to as scope and we provide a
rubric to quantify AI/ML improvements while complying
with existing, mandated regulatory standards. We present
4 relevant clinical scenarios including multi-modal
diagnostics and compare the model to existing quality
management systems.
Conclusions: A diagnostic quality model is essential to
navigate the complexities of clinical AI/ML implementations.
The presented diagnostic quality framework can help to
specify and communicate the key implications of AI/ML so-
lutions in laboratory diagnostics.
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Introduction

Human diseases pose challenges that often exceed human
capabilities [1]. Personalized medicine is increasingly
required for modern laboratory medicine and tissue-based
diagnostics, resulting in an increasing amount of health data
[2, 3]. When these data are of high quality and presented in
the right format, some of the medical challenges can be
solved using the computational power of artificial intelli-
gence (AI) andmachine learning (ML) solutions [3–7]. Simply
put, AI/ML has the potential to revolutionize and optimize
laboratory diagnostics [2–7].

In the laboratory, there are two key considerations when
implementing AI/ML: clinical utility [5, 8–11] and risk man-
agement [12, 13]. While numerous use cases have been
explored [14, 15], the euphoria around AI/ML solutions hinges
upon quality improvements and unequivocal demonstration
of clinical utility [8–11, 16, 17]. It is noteworthy that, at least for
now,AI in the clinical laboratoryhas limitedapplicationswhen
compared to othermedical specialties (e.g., radiology) [3, 18–22]
and clinical utility definitions vary across settings and imple-
mentations [23–29]. Excellent performance metrics alone are
no longer sufficient [30]. AI/ML realization now also requires
explainability, risk of bias tools, and performance monitoring
[2, 18, 31, 32]. Furthermore, algorithms require auditing (and
audit management), compliance management, corrective and
preventive actions, error tracking, document control, and new
approaches to organize competency and proficiency testing
[33], and tackle operational challenges, and privacy concerns
[18, 23, 34–38]. In addition, we recognized three key hurdles: (1)
implementations typically focus only on basic performance
metrics (e.g., specificity, accuracy); (2) validations are usually
focused on a single context (e.g., local hospital), and (3) mean-
ingful integration relies heavily on the awareness of the
complexity and domain knowledge in the laboratory.

The delivery system is characterized by two elements:
(1) AI/ML developers who face the complexity of clinical
laboratories and their regulatory challenges [28, 39] whereas
(2) laboratory directors face the complexity of integrating
high complexity solution into the wet-lab and information
technology (IT) systems [2, 5]. AI/ML solutions work best
when high quality data is continuously available (for im-
provements); however, laboratory IT-processes are not (yet)
interoperable and ready-made guidance documents are not
available [5, 28, 32, 36, 40]. From a patient, care-team, and
quality governance perspective, these computational solu-
tions need to be scrutinized before implementation, just like
any new discovery [37, 39, 41–43]. Even with regulatory
approval [39, 44], implementation requires integration of
new systems or workflows – and modification of existing IT

systems still carries risks [38, 45]. In other words, labora-
tories are facing a major implementation problem: How to
effectively implement AI/ML into clinical practice?

As outlined in Figure 1, integration of AI/ML solutions into
clinical practice is a multidimensional task that relies heavily
on the competence of laboratory personnel and in particular
the laboratory directors [36, 46–49]. Communicating the spe-
cific scope, function, and outcomes relies on many factors
(Supplementary Table 1). Specifically, conveying the value
proposition is particularly challenging if the key decision-
makers and stakeholders do not have a laboratory back-
ground. There are several large-scale initiatives underway to
tackle these challenges from various aspects. For example, in
the USA additional FDA oversight or even CLIAmodernization
has been proposed [50]. Regulatory agencies have created
programs, centers, and initiatives, and are actively engaged in
improving approval pathways [51]. Regulatory science initia-
tives [52], industry representation [53], professional societies,
and patient advocacy are also actively working on pathways
for AI/ML to enter the clinical laboratory [41, 52, 53]. It is
important that AI integration should be defined collabora-
tively – merging experiences to overcome unintended conse-
quences. It is imperative to include laboratory professionals
and their domain expertise when, for example defining algo-
rithms that integrate laboratory parameters. Unfortunately,
there is currently no tool or concept that enables conceptual-
ization of diagnostic quality assessments for the various po-
tential AI/ML applications. Until now, an operational
definition of laboratory diagnostic quality – for the specific
purpose of assessingAI/ML improvements –has beenmissing.

Figure 1: Implementation of AI in the clinical laboratory. AI integration is
not just a new assay. In contrast, when integrating a new AI/ML algorithm
into patient care, laboratories face a multidimensional problem.
Additional details provided in Supplementary Table 1. AI, artificial
intelligence; for simplicity, both AI and ML are used synonymously.
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Here, we present a diagnostic quality model that can
serve as an operational framework for the integration of AI/
ML into clinical practice. Communicating and assessing AI/
ML-relateddiagnostic quality improvements have emerged as
a novel responsibility of medical directors. Defining relevant
AI/ML objectives and mapping out the scope of a specific so-
lution must be integrated with existing, mandatory labora-
tory regulatory standards to provide a coherent solution. The
presented diagnostic quality model provides a starting point
to optimize integration of AI/ML into clinical patient care.

Methods

Design, aims, and starting points

The main aim of this project was to derive an operational definition of
diagnostic quality that can be applied to laboratory-based diagnostic
testing before and after a given AI/ML solution has been implemented.
We convened a roundtable discussion with the following main aims:
– derive an initial version of a checklist that can assist clinical lab-

oratory directors;
– review the proposed conceptual model;
– discuss strengths and weaknesses; and
– outline examples on how the model can be applied.

As a starting point, we used a presentation given on May 25th, 2022, at
the 3rd Strategic Conference of the European Federation of Laboratory
Medicine (EFLM) in the session entitled: “AI in the Laboratory of the
Future” [18]. The presentation by one of the authors (JKL) included an
earlier version of the diagnostic quality model. Briefly, the framework
was derived from a combination of the relevant CLIA standards [54],
definitions from the FDA [55], selected professional societies [56–59], and
prior publications [18, 60, 61].

Relevant definitions

Implementation science is the systematic study of methods that support
the application of research findings and other evidence-based knowl-
edge into policy and (clinical) practice [62–64]. We focused on the
translation of computer science tools (i.e., AI/ML models) and their
integration into routine clinical patient care in the laboratory. Despite
various definitions, here, the terms ML/AI are considered synonymous
and refer to models or systems that, when provided with appropriate
input, can take actions to achieve a goal and/or show performance im-
provements over time. An overview of themodel is provided in Figure 2.

Diagnostic test/assay: We defined diagnostic test as the specific
technique (or collection of techniques) to analyze a biological marker
used to detect, diagnose, or monitor a disease. A diagnostic test typically
contains one (or more) technologies, follows one (or multiple) operating
principles, and employs a specificmethod of analysis (e.g., PCR) [65]. The
diagnostic test is the key component(s) of the testing process. It converts
the biomarker into data (or vice versa). To avoid confusion with the
clinical jargon “diagnostic testing” – the term assay and test can be used

Figure 2: Diagnostic qualitymodel (DQM) overview. (A) Themodel distinguishes diagnostic tests, diagnostic procedures, and diagnostic services. (B) The
diagnostic test forms the innermost layer of the DQMmodel and is concerned with the analyte and the modality of detection (first layer, diagnostic test
layer). The diagnostic test layer is part of a specific set of operations collectively referred to as diagnostic procedures (second layer). Each laboratory
typically has numerous diagnostic procedures. The diagnostic procedures interface with the external health care delivery system (third layer, diagnostic
service layer). (C) Clinical integration of an AI model requires careful consideration of the relationship of the model to the diagnostic layers. (D) Examples
of test/procedure/service combinations (top: two specific PCR tests from the same nucleic acid extraction procedure; middle: same PCR from two
different nucleic acids; bottom: specific in- and outpatient services and procedures use the same test). (E) The diagnostic quality can be seen as the
combination of the diagnostic quality of the diagnostic test, procedure, and service. (F) Considering the deployment of AI models, the diagnostic quality
impact of an AI model can be expressed as the absolute (abs.) difference between the quality with or without the AI model. For simplicity of the
conceptualization, the AI model is exemplarily depicted in the diagnostic test layer; however, AI models can be implemented in other and/or multiple
layers (e.g., the service layer; see Figure 3). AI, artificial intelligence; ML, machine learning; PCR, polymerase chain reaction.
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synonymously for test [66]. For example, a clinician orders a diagnostic
test that entails SARS-CoV-2 specific PCR as the key assay (diagnostic test
component).

Diagnostic procedure: We defined diagnostic procedure as the
relevant laboratory-specific pre- and post-analytical aspects relevant to
a given diagnostic test. A diagnostic procedure entails the laboratory
specific standard operating procedure(s), relevant validation reports,
andmanagement principles applied to this test (e.g., test- and procedure
specific competency assessment and proficiency testing). Note that
certain components of diagnostic procedures can be shared among
multiple diagnostic tests (e.g., nucleic acid extraction for subsequent
testing by PCR or Next-Generation Sequencing (NGS)).

Diagnostic service: We defined diagnostic service as the outward
facing support services related to one or multiple diagnostic tests/pro-
cedures. Diagnostic services entail inclusion of the specific test into the
laboratory’s menu offerings (on- and offboarding), third party review,
contracting, payor, regulatory aspects, and service lines or overarching
test-menu offering (e.g., in- and out of network offering). The diagnostic
service of a laboratory also entails the user experience (e.g., by the care
team, patient, or other laboratory users). The diagnostic service in-
terfaces with the healthcare ecosystem, defined here as the larger-scale
healthcare delivery system (e.g., hospital network, network of referring
institutions, etc.). It is important to emphasize that the final report
represents themain output of the laboratory (external facing value). The
results (core content) thereby refer to the test and procedural layer;
however, the formatting, composition, and data model is core compo-
nent of the diagnostic service layer.

Diagnostic quality model: We refer to diagnostic quality model as
the concept of an inter-related, nested relationship between diagnostic
test, diagnostic procedure, and diagnostic service where each aspect
contributes to the overarching diagnostic quality in the surrounding
healthcare ecosystem. The diagnostic quality model is a conceptual
model that can be used to specify the scope of an AI/ML intervention and
measure diagnostic quality changes.

Scope: We use the term scope to specify the extent of an inter-
vention or process improvement; for example, whether a proposed AI/
ML tool is primarily affecting the diagnostic test performance (or the
diagnostic procedure, diagnostic service, or a combination thereof).

Diagnostic quality: In general terms we follow the established
standard that diagnostic quality refers to how well the staff and prac-
titioners perform tasks related to the test, procedures, and services
including accuracy, completeness, timeliness, and pertinence to the
specific task(s) [67, 68]. However, in the specific context of the diagnostic
quality model, we defined diagnostic quality as the sum of the quality of
the diagnostic test(s), the diagnostic procedure(s), and the diagnostic
service(s). Diagnostic quality improvement was defined as the differ-
ence between the diagnostic quality before and after an intervention
(e.g., implementation of an AI/ML tool).

Multimodality workflow: Theseworkflows entailmultiple diagnostic
modalities. Importantly,AI/MLcanhelpmitigate the increasing complexity
of datamanagement and interpretation across testmodalities. Multimodal
learning involves relating information from multiple sources [69, 70]. We
refer to multimodal prediction tools as AI/ML models that use data from
one modality to predict the results obtained using another downstream
modality. The definition of multimodal models is evolving and can entail
models that learn as one big task (so-called end-to-end models) or models
that require feature extraction followed by learning (so-called decapsu-
lated extra-step multimodal models).

Workflow examples

We chose four clinical applications as examples in which our model could
be applied: First, computer tomographic (CT) data (modality 1) predicting
themutational status obtained usingmolecular diagnostic testing of tissue
samples (modality 2) for triggering an insurance test claim via specialty
pharmacy (Figure 3) [71–74]. Second, a diagnostic AI-aid for Gleason
grading [75, 76] as applied to the multi-biomarker diagnostic workflow of
prostate cancer diagnostics (Figure 4) [77, 78]. Third, we constructed a
workflow for recent companion diagnostics for abemaciclib (biomarker
Ki-67) [79–81] and trastuzumab deruxtecan (biomarker HER2) (Figure 4)
[82, 83]. Finally, a clinical decision support system for SARS-CoV-2/COVID
prediction from demographic and laboratory data [49, 84–87].

Results

Checklist for diagnostic quality when using
AI/ML

The simplest way to define diagnostic quality is through the
absence of diagnostic errors or undesirable diagnostic events
[88]. The National Academy of Medicine defines diagnostic
error as the failure to (a) establish an accurate and timely
explanation of the patient’s health problem(s) or (b) commu-
nicate that explanation to the care team and patient. Simply
put, these are diagnoses that are delayed, wrong or missed
altogether. Diagnostic errors occur in all settings of care,
contribute to ∼10% of patient deaths and are the most
frequent reason for medical liability claims. It is no surprise
that entire branches of the executive side of the government
actively pursue risk and safety assessments (FDA), govern
clinical practice (CMS), and focus on investments in research
to improve diagnostic safety and the reduction in diagnostic
error (ARHQ). Key challenges and areas for potential future
research have been published [89, 90].

Diagnostic quality is however more than the absence of
errors, missed, or incorrect diagnoses [48, 49, 66, 68, 91, 92].
Numerous authors have tackled the concept of diagnostic
quality from various angles [67, 93–97]. Notable examples are
synoptic reporting [98, 99], harmonization efforts [52, 100], as
well as proven approaches for evidence-based disease clas-
sification [100]. This compiled preliminary checklist provides
an overview of relevant aspects that can influence the diag-
nostic quality (Table 1). When reviewing the checklist, it be-
comes clear that integrationofAI/ML– or anynew technology
for that matter – does not solely rely on the specific perfor-
mance metrics of the algorithm(s). Specifically, the overall
integration, function, and objectives are equally relevant.
Furthermore, the integration requires careful consideration
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of all aspects affecting the specific diagnostic aim and related
safety in the laboratory. At first glance, some aspects appear
deceptively simple; however, taken together, nearly everyone
will recognize the involved complexity (Table 1). Based on
these considerations, we observed that an operational defi-
nition of diagnostic quality for the specific purpose of
assessing AI/ML improvements is currently missing.

Towards an operational definition of
diagnostic quality

An operational definition is “ready for use” and specifies
concrete, replicable procedures designed to represent a
construct that complies with the desired function and
routine activities. Furthermore, operational definitions are
typically not laboratory specific. We therefore consider an
operational definition for diagnostic quality useful because
it provides a framework that is flexible enough for local

adoption to be permissible. From the perspective of a labo-
ratory director considering integration of AI/ML, the risk
and benefit assessment must align with existing laboratory-
specific test, procedural, and service lines. The first element
of integration is to distinguish an AI/ML model that pri-
marily affect the test from those that affect the procedure or
service-level (Figure 2A). We propose a nested model of
diagnostic test quality (Figure 2B) that can be applied when
implementing AI/ML models (Figure 2C). The nesting of
levels is critically important because each level contrib-
utes unique yet valuable combinations of components.
From an innovation perspective, the sum of tests, pro-
cedures, and services can be regarded as an asset and
resource because each existing level can serve as a blue-
print for new implementations. In contrast, from a
healthcare ecosystem perspective, the service layer is the
primary interface zone.

An important consideration is that the model accounts
for existing synergies in the laboratory (Figure 2D). Multiple
tests use the same (or similar) diagnostic procedures (e.g.,

Figure 3: Multimodality workflow. The main aim is to apply the diagnostic quality model to the complexity of a multi-modality learning model. Depicted
is an integrated diagnostic service where an AI algorithm predicts molecular testing results based on imaging findings on CT to trigger an administrative
process (i.e., test claim). The AI/MLmodel is implemented in the service layer. Workflow: (1) the target population is exposed tomodality A (note the three
layers service, procedure, and test). (2) Themodel result is used to trigger prior authorization for molecular diagnostic testing and prior authorizations via
specialty pharmacyworkflows. (3) The deployedmodel with an initial performance is running on the dataset frommodality A. (4) Themolecular diagnostic
testing results representmodality B that serves as continuous input for the AI model running onmodality A (note the three layers service, procedure, and
test). (5) The deployed model undergoes recurrent model optimization and is used to trigger test claims via specialty pharmacy (administrative
process = service layer). (6) The signed orders (e.g., diagnostic or treatment decisions) rely on multiple factors where the AI-triggered test claim and
coverage streamlining represent one component. (7) Diagnostic quality assessment across both modalities for a primary outcome measure of choice.
Note how each layer of the diagnostic quality model (for each modality) contributes to the overall functionality of the multi-modal workflow. AUC, area
under the curve (representative performancemeasure); CT, computerized tomography; CPT, current procedural terminology; NSCLC, non-small cell lung
cancer; PCR, polymerase chain reaction.

548 Lennerz et al.: Diagnostic quality model for AI/ML implementation



Table : Checklist of diagnostic quality aspects for AI/ML implementations.

Diagnostic quality aspects Key questions for the laboratory director

Care team and patient perspective What is the benefit?

Baseline What is our current state (i.e., best practice)?
Responsibility Who is: affected, responsible, and accountable?
Assurance of patient safety How can we explain risks and benefits to a patient or provider?
Applicability and bias Is there a way to assess bias of age, sex/gender, minorities, …?
Beneficence Can we assure availability to populations despite socioeconomic variabilities?

Data and measurements Can we obtain relevant information?

Methods of measurement Do we have reliable methods?
Data sources and harmonization of data Are data from two sources comparable? Are the methods harmonized/replicable?
Data characterization Have the data been characterized at the instrument, method, unit level?
Data standardization Is data capture following a standard (e.g., LOINC, DICOM, etc.)?
Uncertainty measure Is the data accompanied by a measure of uncertainty?
Electronic monitoring Can we continuously monitor the data?
Prioritization of results How are we prioritizing results?

Ground truth assessment What do we consider the ground truth and why?

Identification of errors Can we derive a specific definition of an error?
Diagnosis How do we distinguish over and underdiagnosis?
Demographic disparities Can we gain understanding of relative contributions?

Figure 4: Multimodality workflowexamples. (A) Diagnostic care continuumof prostate cancer patients depicted in four different healthcare settings. The
depicted AI tool can help with Gleason grading (diagnostic as opposed to predictive biomarker). (B) Diagnostic breast cancer workflow from
mammography to biopsy and histologic diagnosis (depicted in two healthcare settings). The depicted AI tool can assist in quantifying the receptor status
(diagnostic biomarker). (C) Integration of multiple demographic and laboratory findings into an AI-based prediction tool for SARS-CoV-2/COVID status
and prognosis (depicted in one healthcare setting). The AI tool serves as the integrator and decision support tool (predictive biomarker). AI, artificial
intelligence tool; Bx, biopsy; COVID, corona virus disease; DRE, digital rectal examination; lab, laboratory; mpMRI, multiparametric magnetic resonance
imaging; PSA, prostate specific antigen.
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the procedure for nucleic acid extraction is the same for
multiple PCR and NGS tests). Similarly, multiple diagnostic
procedures may use the same diagnostic tests (e.g., the
nucleic acid extraction from bile vs. bone marrow or other
sources may differ but use the same downstream test). Or
multiple diagnostic proceduresmay exist as different service
lines (e.g., outpatient vs. inpatient testing services). These
considerations are important for troubleshooting – for
example, is the root cause at the diagnostic test level, or is it a
broader procedural issue? Awareness of the relationship of
test, procedure, and service is therefore an integral part of
diagnostic quality.

How to concretelymeasure diagnostic AI/ML
quality improvements?

The conceptual starting point is the consideration that the AI
model is integrated into the existing healthcare ecosystems.
In the simplest case, the AI model (a computer program)
becomes part of a specific diagnostic test (or a component of
a test). The integration of the model as part of the diagnostic
test is considered the first layer (=diagnostic test level). Once
accomplished, the model becomes an integral part of this
specific laboratory testing process (also known as the labo-
ratory procedures). The diagnostic procedure (that now

Table : (continued)

Diagnostic quality aspects Key questions for the laboratory director

Health information technology (IT) What aspects of our IT solutions is involved?

Information-gathering Do we know how to gather the input data?
Information synthesis Do we have a data synthesis plan?
Detecting safety risks Are we aware of all data security and safety concerns?
Laboratory information system (LIS) Can we integrate this into our existing LIS?
EHR integration If so, how is this presented to the clinician?

Organizational factors Are there limiting organizational factors?

Teamwork Who should be on the team?
Leadership Do we have leadership support at the laboratory and institutional level?
Development methodology Have we matched the development method to the problem?
Strategies, interventions, timeline Do we know key strategic and delivery deadlines?
Personnel Do we have the relevant personnel resources?
Competency How do we assess competency in use?
Effort and capabilities Do we have the effort and relevant development capabilities?
Synergy How does the AI/ML tool work with preceding/following laboratory procedures?
Integration with existing QMS Are operational quality elements (e.g., training, adverse event reporting, etc.) ready?

Regulatory aspects Is there a dedicated team for regulatory questions?

Analytical validity (AV) Is our performance assessment plan complete?
Clinical validity (CV) Can we support clinical validity claims with data?
Patient safety Can we document any patient safety concerns?
Intended use What is the specific purpose of the AI/ML tool?
Indication for use Can we define the target population?
Proficiency testing Do we have access to an existing proficiency test or alternative approach?
AI/ML performance monitoring Can we continuously monitor the AI/ML tool performance?
Performance drift How do we identify drifts in predictions and ground truth?

Reimbursement Is this AI/ML tool financially sustainable

Implementation cost Do we have funding/budget for this implementation?
Ongoing cost Do we have a micro-costing analysis?
Clinical utility (CU) Can we make CU claims? What are the outcome benefits?
Applicable diagnoses Do we have a list of ICD codes that are applicable?
Billing code Is there a procedural code / billing code?
Payor policies Do we have existing or future payor policy strategies?

AI, artificial intelligence; AV, analytical validity; CV, clinical validity; CU, clinical utility; DICOM, digital imaging and communications in medicine; EHR,
electronic health record; ICD, international classification of disease; IT, information technology; LIS, laboratory information system; LOINC, logical
observation identifiers names and codes; ML, machine learning; and QMS, quality management system. The list is preliminary and can help before and
during implementation; audits/monitoring/take-down of AI/ML tools require separate checklists.
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entails an AI model) is the second layer (=diagnostic pro-
cedure level). With very few exceptions, most laboratories
have multiple or numerous diagnostic testing procedures,
and these may entail multiple models with their individual
use cases, value propositions, and performance metrics
(=value add). Each of these testing procedures is facing
outward – externally – towards the treating physician, care
team, and the patient, which can be considered a diagnostic
service (=diagnostic service level). The diagnostic service
offered by the laboratory (to a hospital or to outside part-
ners) is considered the third level.

In this conceptualization, the diagnostic quality is a
composite of diagnostic test, diagnostic procedure, and diag-
nostic service (Figure 2E). Consequently, the quality impact of
AI models should be considered a function of the improve-
ments related to the diagnostic test(s), the diagnostic pro-
cedure(s) and the diagnostic service(s) with their various
intended use cases and value propositions. Practically
speaking, when choosing a primary endpoint (outcome
measure) for a quality improvement initiative (e.g., turn-
around time), the contributions of each level can be quanti-
fied before and after AI implementation. The absolute
difference between the two concatenated measures repre-
sents the net change (e.g., in turnaround time; Figure 2F).
Secondary endpoint measurement follows a similar logic.
Thereby, our model provides a conceptual outline (rubric) to
quantify quality improvements related to AI/ML imple-
mentations (Figure 2C, E, and F). It is important to recognize
that this approach can account for the fact that interventions
at one level (e.g., error reduction, efficiency gains) can impact
quality through interference at other levels. An outline of
ways our model can be applied is provided (Table 2).

Multimodality diagnostic workflows

The diagnostic quality model can successfully be applied to
individual improvement initiatives [60, 61] including AI/ML
approaches that serve as decision support tools [101].
Applicability to four more challenging scenarios revealed a
few noteworthy findings. The first chosen setting, a multi-
modal radiology/molecular prediction tool (Figure 3), illus-
trates that various diagnostic quality models can be chained
together. While this is nothing unusual in laboratory medi-
cine or pathology, the allocation of data source (feature) and
ground truth (label) can be easily visualized. Furthermore,
the three-level model – even when in concatenation– can
help to map and assign the complexity of quality control
procedures and incorporation of performance and

acceptance metrics. Specifically, in this example (Figure 3),
the output of themodel is not used to replace the genetic test
results (diagnostic test) – rather it is used to trigger an in-
surance test claim via specialty pharmacy (service layer).

As additional multimodal workflow examples we
selected prostate cancer diagnostics including recently rec-
ommended multiparametric MRI (mpMRI) before biopsy
and an AI-based diagnostic aid [26, 75, 77, 78, 102, 103], a
breast cancer diagnostic workflow including AI-based
quantification of Ki-67 [79–81] and HER2-low [82, 83], and a
multianalyte/demographic approach to predict SARS-CoV-2/
COVID status and outcomes [49, 84–87, 104]. The simplified
diagnostic quality models are provided in Figure 4. The
localization of the AI-tool – in these examples at the diag-
nostic test level – enables the identification of the relevant
diagnostic procedures, services, and ecosystems appropriate
to the implementation. Key element for each laboratory (and
laboratory director) is to establish the baseline performance
without AI/ML as a comparator. Establishing performance
metrics can then follow recognized regulatory standards
and documentation in the quality management system.

Table : Selected applications of the diagnostic quality model.

Domain Model can be used…

Problem-solving ... to help understand or solve a specific problem or
challenge by outlining the different affected layers
and structuring the analysis or structure of the AI tool.

Decision-
making

... to informor guide decisions by enabling portrayal of
different options to enable selection of best course of
action.
... to portray different integration options that enable
assessment of benefits and costs during decision-
making.

Communication ... to help explain or convey the idea (during the
ideation stage) or provide information to new team
members more efficiently.
... help to explain and communicate changes of
related systems over time.

Concrete tasks ... to visualize which laboratory documents and tasks
are primarily affected by the AI tool.
... to distribute code, standard operating procedure,
and validation report tasks to team members.

Research ... to serve as a starting point for exploring the topic of
quality measurements related to AI implementations
... to investigate characteristics of concatenated AI or
ensemble AI approaches.

Education ... as a building block for understandingmore complex
ideas.
... as an alternative way to explain how complex lab-
oratory operations are organized.

AI, artificial intelligence.
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Diagnostic quality model vs. quality
management system – what is the
difference?

A laboratory qualitymanagement system (QMS) is a systematic,
integrated libraryofactivities that establishandcontrol allwork
processes. The functions of a QMS extend beyond a single
patient or sample and include management of resources, eval-
uations, audits, and coordination of all activities. The key dis-
tinguishing features are provided in Table 3. Briefly, the QMS
has a broader scope than the diagnostic qualitymodel andhelps
to manage and investigate the entire laboratory. We consider a
diagnostic quality model that focuses on AI/ML implementa-
tions as a specific, operational component of the QMS.

Discussion

We present a conceptual framework termed diagnostic
quality model – or DQM for short. The model distinguishes
AI/ML improvements at the diagnostic test, diagnostic pro-
cedure, diagnostic service, and healthcare ecosystem level.
The operational definition of diagnostic quality (as the sum

of the quality at the diagnostic test, procedural, and service
level) emphasizes the nested relationship among these three
key levels within a laboratory and healthcare ecosystem. By
defining scope at the relevant levels, the model can help to
define the relevant steps for implementation and how
different levels must come together to form coherent, high-
quality diagnostics. We provide a simple rubric to quantify
AI/ML improvements while complying with existing and
mandated regulatory standards. We present several specific
clinical scenarios – including multi-modal diagnostics – and
provide a comparison of the diagnostic quality model to
existing quality management systems.

AI/ML does not exist in a vacuum. The quality frame-
work presented enables us to assess the impact of AI/ML on a
process (ormultiple processes) to ensure we aremaximizing
the value over time and are not negatively impacting other
layers. For example, AI implementation might increase
diagnostic accuracy by 2%; however, integration of results
and human exploration of the underlying reasons may in-
crease turnaround time by 200%. Because we can get stuck
in siloed thinking, seeing the horizontal and vertical conse-
quences of tasks and work units reveals tremendous in-
efficiencies in medical practices. Thus, the presented
framework enables extrapolating value gains. For example,

Table : Distinction between diagnostic quality model (DQM) and quality management system (QMS).

DQM QMS

Focus Individual diagnostic level Laboratory-level
Key
components

DQM model QMS ( components)
( nested components) Organization; Personnel; Equipment;
Diagnostic test Purchasing + inventory; Process control; IT;
Diagnostic procedure Documents + records; Org. Mgmt.; Assessment;
Diagnostic service Quality improvement; Customer service; Facilities & safety

Key emphasis Balanced emphasis on all layers (test/procedure/
service) to maximize diagnostic quality

Covering all aspects of qualitymanagement tomaximize overall laboratory quality;
(includes all diagnostic tests/procedures/services)

Focus Diagnostic assay or AI-tool Laboratory operations
Example Document content and function; step-by-step activ-

ities necessary to complete task
Document control: creation, format, review, distribution, versioning, disposal,
access, permissions, compliance, audits

Scope Narrow scope:
– Realizing QMS aspects at test, procedure, and

service level
– Specific diagnostic aspects:
Intended use, indications,
instructions for use (SOP),
performance measures, mitigation strategies

Extended scope:
Accreditation organization; case management;
clinical resource management; insurance;
managed care; patient safety; physician advisor;
credentialing; quality assurance; health equity;
regulatory environment; risk management;
transactions of care; utilization management;
compensation; quality improvement

Personnel Staff-level: specialization, knowledge about process
flows and intersections

Staff-level: end-to-end view of the diagnostic journey

Leadership: synergy of qualifications across test/
procedure/service layers

Leadership: extrapolation of AI/ML results for utilization in larger laboratory/
institutional context

Education Less difficult Difficult
Boundary Boundaries of diagnostic test, procedure, and service Laboratory, division, or department

AI, artificial intelligence; IT, information technology; ML, machine learning; Org. Mgmt., organizational management; SOP, standard operating procedure.
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efficiency gains in one diagnostic procedure may prompt
leveraging the same AI/ML, with appropriate modifications,
to other diagnostic procedures under the same diagnostic
service. The fact that physicians and laboratorians need to
collate ever greater amounts of information to generate a
diagnosis is a key hurdle in realizing the promise of
personalized medicine. One approach to overcome this
hurdle is to clearly define relevant objectives for AI/ML
implementations to define coherent diagnostics.

Laboratory safety and process improvements are among
the most complicated aspects a medical director needs to
manage. Numerous initiatives tackle diagnostic quality at the
international, national, regional, local, and individual test
levels [39, 51, 105–107]. The terms safety culture and system-
level thinking are clearly aimed to ensure appropriate function
for patients and clinicians; however, developing and sustaining
the systems for reliable diagnostics require time, effort, and
dedicated resources [27, 39, 52, 57, 80, 92, 95, 97, 108, 109]. Despite
limitations in creativity, ML/AI tools are reliable and exceed
human capabilities in terms of computational power and
consistency. Thus, there is great interest in integration of AL/
ML tools in the laboratory. Our conceptual framework is novel
because it attempts the balancing act of recognizing (and
valuing) the existing standards while defining the relevant
layers for process improvements. The layer of AI/ML integra-
tion is consequential. For example, when AI/ML tools trigger
administrative processes in the service layer (e.g., test claims in
Figure 3) the risk for the patient is substantially lower than
when implementing an AI/ML tool at the diagnostic test layer
(Figure 4). One classic approach for examining quality im-
provements aremorbidity andmortality (M&M)meetings that
have an established history and culture to ensure compre-
hensive review [110–112]. We consider the presented quality
model applicable – especially given recent approaches to
modernize M&M conferences [113]. The relationship of test,
procedure and service is highly relevant for diagnostic quality
because failure in one may deteriorate the overarching
(perceived or real) quality. For example, awell-functioning test
with a poorly constructed report will be confusing. Similarly, a
visually appealing report and great customer service for a test
with little clinical relevance is equallymisaligned. Importantly,
the principle can be applied to assess whether interventions at
one layer do negatively affect patient care as awhole [29, 48, 53,
86]. It is the well-balanced, conscious effort to align (and opti-
mize) the quality in all aspects of testing that results in diag-
nostic excellence. We provide a conceptual framework to map
out the scope and help navigate existing, mandatory standards
with AI/ML improvements.

The outlined framework can be used for educational
purposes. Themodelmight behelpful for smaller laboratories
without dedicated QMS personnel. Themodel is not restricted

to AI/ML improvements. Akin to any machine or computer-
assisted device in the laboratory one can distinguish software
running on the machine (“test”), software related to the
operations (“process”), and interfaces or web-services
provided to outside customers, patients, and providers
(“service” layer). IT and AI tools have similar layers, and the
presented conceptual model can account for these layers. The
aim of the checklist (Table 1) is to ensure consistency and
completeness when assessing an AI tool as a new diagnostic
technology. Note, the list is preliminary and can help before
and during implementation; audits/monitoring/take-down of
AI/ML tools will require separate checklists.

Numerous limitations apply. First, a conceptual frame-
work cannot be considered a delivery system. Thus, no
framework can accomplish high-quality work. In other words,
we consider it a key limitation that we only have circum-
stantial and personal evidence that considering this frame-
work helps conceptualizing process improvement initiatives.
Second, the framework cannot replace qualified personnel or
competent decision making in an ongoing operation. Third,
numerous professional organizations created tools, guidelines,
and checklists [26, 29, 31, 57, 64, 83, 106, 114]. For example, the
Association for Molecular Pathology has introduced the
concept laboratory-developed procedure (as opposed to test)
[57]. However, we apply certain terms differently – to
emphasize the importance of delivering excellent diagnostic
services. Numerous other standards exist (e.g., for reporting
diagnostic accuracy) [25, 29, 57, 64]; however, we endorse
assigning specify quality metrics at the test, procedure, and
service level as key performance indicators. Specifically,
standardization and harmonization of laboratory data is crit-
ically important [115–117]. Briefly, standardization refers to the
process of establishing technical standards and guidelines that
aim for and enable interoperability. In contrast, harmoniza-
tion can involve standardization, but it may also involve other
forms of coordination (e.g., local policies ormutual recognition
agreements) referring to any process that enables establishing
equivalence of reported values among differentmeasurement
procedures [115]. Of note, two special CCLM issues were
entirely dedicated to the topic of harmonization [117]. Irre-
spective of the applied approach, integration into the local
procedures of a given laboratory requires thoughtful consid-
eration of benefits and risks – especially given the importance
of value-based care paradigms and limitation of resources.
Fourth, the distinction between QMS and DQM is difficult, and
we provide a direct comparison (Table 3). Fifth, the integrated
diagnostic framework does not account for the development
methodology. For example, some laboratories apply agile
development principles [61, 118, 119], while others use more
traditional management principles. However, irrespective of
the applied development method, the nested relationship
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among test, procedure, andservice applies.Weprovide several
possibleways to apply theDQMmodel (Table 2) and at the very
least the conceptual framework can serve as an educational
tool to illustrate the fascinating and complex world of labo-
ratory testing. Finally, precise measurements of the quality
impact of a specific AI implementation will remain chal-
lenging. Changes imposed by the implementation of AI in one
layer may affect other layers – and consequently the relative
contribution of each layer to the specific quality endpoint
should be considered. Irrespective of the specific endpoint, we
recommend concatenating the quality endpoints of all three
layers (test, procedure, and service) to ensure a net benefit. In
our experience, cost and value-add contributions can cancel
each other out and it is a combination of factors (gains, savings,
and strategic benefits) can create utility.

In conclusion, advantages of new technologies require
careful alignment with existing practices. Unintentional
consequences of well-intended improvements must be
avoided, and our diagnostic quality model is one approach to
navigate the complexities of clinical AI/ML implementations.
The presented diagnostic quality framework can help to
specify and communicate the key implications of AI/ML so-
lutions in laboratory diagnostics.
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