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Abstract: Identifying the cause of pleural effusion is
challenging for pulmonologists. Imaging, biopsy, micro-
biology and biochemical analyses are routinely used
for diagnosing pleural effusion. Among these diagnostic
tools, biochemical analyses are promising because they
have the advantages of low cost, minimal invasiveness,
observer independence and short turn-around time. Here,
we reviewed the past, present and future of pleural fluid
biochemical analysis. We reviewed the history of Light’s
criteria and its modifications and the current status of
biomarkers for heart failure, malignant pleural effusion,
tuberculosis pleural effusion and parapneumonic pleural
effusion. In addition, we anticipate the future of pleural
fluid biochemical analysis, including the utility of ma-
chine learning, molecular diagnosis and high-throughput
technologies. Clinical Chemistry and Laboratory Medicine
(CCLM) should address the topic of pleural fluid
biochemical analysis in the future to promote specific
knowledge in the laboratory professional community.

Keywords: biochemical analysis; biomarker; diagnosis;
pleural effusion.

Introduction

Pleural effusion is a common sign that is associated with
various disorders. It can cause symptoms such as cough,
dyspnea and chest pain. Because these symptoms are not
specific to a given disease, the differential diagnosis of
pleural effusion is challenging for clinicians. The causes
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of pleural effusion vary across different countries and
regions. Pneumonia, cancer, tuberculosis and heart failure
(HF) are four frequent causes of pleural effusion [1, 2]. The
first step in pleural effusion management is identifying
its cause. Currently, several diagnostic tools are available
for differentiating pleural effusion, including pleural fluid
cytology, Ziehl-Neelsen staining and bacterial culture,
biochemical analyses and biopsy. However, these tools
have limitations. For example, pleural fluid cytology
has high specificity for malignant pleural effusion (MPE),
but its sensitivity is only 46% [3]. Pleural fluid culture is
the gold standard for parapneumonic pleural effusion
(PPE) but has low sensitivity and a long turn-around time.
Pleural biopsy guided by imaging (e.g., CT or ultrasound)
or thoracoscopy has a high diagnostic yield for pleural
effusion. Nevertheless, it is an invasive tool, and
operation-related complications are problematic [4]. In
addition, special training and equipment are needed
for biopsy, limiting its application in remote areas.

Pleural fluid biochemical analyses are promising diag-
nostic tools for pleural effusion because they have the ad-
vantages of low cost, short turn-around time, and objectivity.
Some review articles have been published to summarize the
diagnostic and prognostic value of pleural fluid biomarkers
for specific etiologies, such as MPE [5-7], PPE [8], tubercu-
losis pleural effusion (TPE) [9, 10] and HF [11], including two
reviews from our team [5, 10]. However, reviews on the his-
tory, current status and future of pleural fluid biochemical
analyses are rare. Here, we performed a review to summarize
the history of pleural fluid biochemical analyses. We also
reviewed the current status and anticipated the future of
pleural fluid biochemical analysis.

The past

Pleural effusion can be categorized into exudate and
transudate based on the cause and underlying patho-
physiology. Transudates arise from increased hydrostatic
pressure or decreased oncotic pressure [12]. In a few
cases, it can also be caused by the passage of ascitic fluid
from the peritoneal cavity to the pleural surface via
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transdiaphragmatic lymphatics (hepatic hydrothorax) or
low pressure in the pleural cavity (atelectasis) [13]. In
contrast, exudates develop due to inflammation in the
pleural cavity. Inflammation can be caused by metastatic
pleural tumors or infectious pathogens (e.g., Mycobacte-
rium tuberculosis (Mtb) and Streptococcus pneumoniae)
[12]. Inflammation increases capillary permeability and
allows serum proteins to enter the pleural cavity. The
management of a transudate requires clinicians to treat the
underlying condition with specific therapies (e.g., di-
uretics), and further investigations are unnecessary. In
contrast, additional examinations and even invasive pro-
cedures are needed to elucidate the etiology of an exudate
[14]. Therefore, identification of the exudative or tran-
sudative nature of the pleural fluid is the initial step in the
diagnostic work-up of pleural effusion [15]. Notably, the
appearance of pleural fluid does not help differentiate
pleural effusion and thus should not be overemphasized
[16]. Biochemical analyses of pleural fluid are of great value
for differentiating between exudates and transudates.

History of Light’s criteria

The earliest studies revealed that pleural fluid protein
[17, 18], lactate dehydrogenase (LDH) [18], and the pleural
fluid to serum LDH ratio were useful markers for differen-
tiating exudates and transudates. These findings promote
the proposition of Light’s criteria in 1972 [19]. According
to Light’s criteria, pleural effusion should be categorized
as an exudate if it meets one or more of the following
items: (i) A pleural fluid to serum protein ratio >0.5;
(ii) A pleural fluid to serum LDH >0.6; (iii) A pleural fluid
LDH activity >2/3 the upper limit of serum LDH’s reference
interval. The original aim of Light’s criteria was to maxi-
mize the identification of exudates; thus, the items are
combined in a parallel “or” rule. Light’s criteria have high
diagnostic sensitivity (99%) and specificity (98%) for an
exudate [19]. However, subsequent studies did not obtain
such a high diagnostic accuracy [20-22]. All these studies
revealed that the sensitivity of Light’s criteria is near 100%,
but its specificity is approximately 70% [23]. Light’s
criteria are more accurate than clinical judgment for
differentiating pleural transudates and exudates (84% vs.
93%) [24]. Notably, more than 50% of the misclassified
transudates only met one item of Light’s criteria, and the
values of LDH and protein were near the established
threshold [25]. In patients who meet both a pleural fluid-
to-serum total protein ratio >0.5 and LDH >2/3 of its
reference interval, the presence of an exudate effusion is
conclusive [26]. Inadequate specificity is partially caused
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by diuretics [27, 28]. Under such conditions, an albumin
gradient >12 g/L or a protein gradient >31 g/L is recom-
mended [12, 25, 28]. Pleural fluid N-terminal pro-brain
natriuretic peptide (NT-proBNP) >1,500 pg/mL is also an
alternative tool with high accuracy in misclassified cardiac
effusions [29-32]. Notably, the sensitivity of an albumin
gradient >12 g/L for identifying an exudate is only 67% [12],
indicating that 33% of the exudates will be misidentified as
transudates. Therefore, the albumin gradient should be
used only in patients with marginal exudative effusions
with suspected HF [12].

Modified Light’s criteria

In addition to LDH and protein in pleural fluid and serum,
some biomarkers have been proposed as alternative
diagnostic tools, such as cholesterol [33], NT-proBNP [34],
C-reactive protein (CRP) [35], bilirubin [36], cholinesterase
[37], albumin and protein gradients [24]. Among the
reported markers, cholesterol is the most widely investi-
gated. A meta-analysis revealed that it has a sensitivity of
88% and specificity of 96% [33], which is comparable
to those of pleural fluid LDH, the serum-to-pleural fluid
LDH ratio and the pleural fluid-to-serum protein ratio [38].
Therefore, adding cholesterol is a potential modification
of Light’s criteria.

Table 1 lists some of the modifications for Light’s
criteria. Some modifications were made by adjusting the
threshold of protein, LDH or their ratios [39, 40], while
others introduced pleural fluid cholesterol into their
criteria [41, 42]. Notably, pleural fluid LDH is highly
correlated with the serum-to-pleural fluid LDH ratio [38],
so it is reasonable to hypothesize that one of them can be
moved from Light’s criteria. Two simplified Light’s
criteria, which contain only pleural fluid cholesterol and
LDH, have been proposed [41, 42]. These criteria have
comparable, but not superior, diagnostic accuracy with
Light’s criteria. Nevertheless, it should be noted that
Light’s criteria are near perfect for discriminating between
transudates and exudates. Although clinical diagnosis is
the gold standard for defining transudates and exudates,
it has a small but definite error rate. Although superior
diagnostic criteria were theoretically possible, at least
13,000 subjects are needed to prove the superiority of any
newly proposed criteria over Light’s criteria [43].

Perspective from laboratory medicine

Light’s criteria are undoubtedly the milestone in pleural
fluid biochemical analyses. From the perspective of
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Table 1: Light’s criteria and its modifications.
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Light’s criteria and its modifications Criteria Sensitivity Specificity

Light’s criteria [19] Pleural fluid to serum protein ratio >0.5; 98% 70%
Pleural fluid to serum LDH ratio >0.6;
Pleural fluid LDH >2/3 the upper limit of normal serum LDH

Modifications

Romero’s criteria [39] Pleural fluid to serum protein ratio >0.6; 94% 93%
Pleural fluid to serum LDH ratio >0.9;
Pleural fluid LDH >280 IU/L

Costa’s criteria [41] Pleural fluid LDH >200 IU/L; 99% 98%
Pleural fluid cholesterol >1.16 mmol/L

Lepine’s criteria [42] Pleural fluid LDH >0.6 the upper limit of normal serum LDH; 98% 71%
Pleural fluid cholesterol >1.04 mmol/L

Vives’ criteria [40] Pleural fluid to serum protein ratio >0.5; 96% 81%

Pleural fluid to serum LDH ratio >0.9;
Pleural fluid LDH »>380 IU/L

LDH, lactate dehydrogenase.

laboratory medicine, some issues should be strengthened.
First, analytical platforms for LDH and protein analyses
can affect the accuracy of Light’s criteria, and there is a
10% discrepancy among different platforms [44]. The
discrepancy increases to 18% in patients with a pleural
fluid protein level between 25 and 35 g/L [45]. Second,
preanalytical errors should be considered [46]. Pleural
fluid protein and LDH are stable at room temperature for
6 h [47], but the long-term stability of LDH and protein
remains unknown. Third, in Light’s work, the time interval
between serum and pleural fluid specimen collection
was within 30 min [19]. However, it has been reported that
the time interval between serum and pleural fluid spec-
imen collection did not significantly affect the accuracy of
Light’s criteria [48]. Fourth, pleural erythrocyte count
positively correlates with LDH activity, and the specificity
of Light’s criteria decreased in patients with high pleural
erythrocyte count [49, 50]. It is widely accepted that
hemolysis can increase serum LDH [51]. Therefore, it
seems that increased LDH in pleural fluid specimens with
high erythrocyte counts is associated with hemolysis.
Indeed, a high prevalence of hemolysis can be observed
in pleural fluid specimens [52]. A formula proposed to
correct LDH can increase the specificity of Light’s criteria
[49]. Fifth, although the biochemical analyzers used
to measure pleural fluid LDH and protein have only
validated their assays for serum or plasma, the recovery
rates of LDH and protein are near 100%, indicating that
there is no “matrix effect” for pleural fluid LDH and pro-
tein [53-55]. In addition, the intra-assay and interassay
precisions of pleural fluid LDH and protein are compara-
ble to their serum partners [54].

The present

The proposition of Light’s criteria is a landmark work
in differentiating pleural effusion; however, additional
procedures are needed to define the etiology of pleural
effusion. As mentioned above, tuberculosis, HF, malig-
nancy, and pneumonia are four primary causes of pleural
effusion, accounting for 75% of pleural effusion [1, 2]. Many
studies investigating the diagnostic role of pleural fluid
biochemical analyses focus on these four causes. Here, we
summarize the current status of pleural fluid biochemical
analyses in these four disorders.

Biochemical analyses for HF

HF is the primary cause of transudates, accounting for 85%
of the transudates [1, 2]. Nevertheless, Light’s criteria have
low diagnostic accuracy for HF [56]. Currently, circulating
brain natriuretic peptide (BNP) and NT-proBNP are two
guideline-endorsed diagnostic biomarkers for HF [57]. In
patients with pleural effusion, both BNP and NT-proBNP,
either in the blood or pleural fluid, have high diagnostic
accuracy for HF-induced pleural effusion, also termed
cardiac effusion [58]. Evidence from systematic reviews
and meta-analyses indicates that pleural fluid NT-proBNP
has high diagnostic accuracy for HF in patients with
undiagnosed pleural effusion, with both a sensitivity and
a specificity higher than 90% [59-61]. The diagnostic
accuracy of pleural fluid BNP is slightly inferior to that of
NT-proBNP, with a sensitivity of 92% and a specificity of
88% [59]. The recommended threshold of pleural fluid
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NT-proBNP for HF is 1,500 ng/L [62]. Notably, blood
NT-proBNP is highly correlated with pleural fluid
NT-proBNP, with a coefficient >0.95 [63]. Therefore, both
blood and pleural fluid NT-proBNP are useful diagnostic
biomarkers for HF in undiagnosed pleural effusion, and
their diagnostic accuracy is comparable. Because thor-
acocentesis can be avoided, blood NT-proBNP is more
suitable than pleural fluid in patients who cannot tolerate
thoracocentesis. The diagnostic accuracy of pleural fluid
NT-proBNP is affected by age and estimated glomerular
filtration rate (eGFR). A higher threshold should be adop-
ted in patients with old age or decreased eGFR [29]. The
specificity of pleural fluid NT-proBNP for HF decreases
because septic shock and acute kidney injury can elevate
pleural fluid NT-proBNP. These two disorders are common
in critical care settings [64]. In cases when NT-proBNP is
unavailable, a simple scoring system based on albumin
gradient, age, pleural fluid LDH, bilateral effusion on CXR
and protein gradient can assist clinicians in accurately
identifying HF [65].

Serum mid-regional pro-atrial natriuretic peptide
(MR-proANP) is a promising diagnostic marker for HF
in patients admitted to the emergency department with
dyspnea [66, 67]. Pleural fluid MR-proANP is also
increased in pleural effusion patients with HF [29]. Its
diagnostic accuracy is comparable to that of pleural fluid
NT-proBNP [29]. The coefficient between MR-proANP and
NT-proBNP is 0.79, indicating that combinational use of
MR-proANP and NT-proBNP cannot improve the diag-
nostic yield for HF [29]. The diagnostic accuracy of serum
MR-proANP for HF patients with pleural effusion remains
unknown.

Two studies revealed that serum soluble CD146
(sCD146) is a promising diagnostic marker for HF [68, 69].
Unlike NT-proBNP and MR-proANP, which are released
by ventricular or atrial cardiomyocytes in response to
stress, sCD146 is primarily released by vascular endo-
thelial cells [68]. The diagnostic accuracy of blood sCD146
and NT-proBNP is comparable [69]. It remains unknown
whether pleural fluid sCD146 is a promising diagnostic
marker for HF. In addition, some other biomarkers
have been proposed as diagnostic markers for HF in
undiagnosed pleural effusion patients, such as ischemia-
modified albumin [70, 71]. However, further studies are
needed to validate the findings of the initial studies.

Biochemical analyses for MPE

Diagnosing MPE is a challenge for pulmonologists and
laboratory clinicians. Numerous studies have investigated
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the diagnostic accuracy of serum or pleural fluid tumor
markers for MPE, including neuron-specific enolase (NSE),
carcinoembryonic antigen (CEA), carbohydrate antigen
125 (CA125), carbohydrate antigen 15-3 (CA15-3), carbohy-
drate antigen 19-9 (CA19-9), and a fragment of cytokeratin
19 (CYFRA 21-1) [5]. Evidence from meta-analyses indicates
that the specificities of these tumor markers are >90%, but
their sensitivities are only approximately 50% [72-74].
Notably, in diagnostic test accuracy studies, the sensitivity
and specificity are threshold-dependent [75, 76], and
the thresholds of tumor markers used in previous studies
vary. Theoretically, higher sensitivity can be obtained by
decreasing the threshold of the tumor marker, but the
high sensitivity is at the expense of a lower specificity. To
date, there is no uniform threshold used for pleural fluid
tumor markers. However, an extremely high tumor
marker value has 100% specificity for MPE. For example,
CEA (>45 ng/mL) or CA 15-3 (>77 UI/1) can be used to
confirm MPE because of their 100% specificities [56, 77].

Combinations of these tumor markers can slightly
increase the diagnostic sensitivity, especially the combi-
nations of CEA+CYFRA 21-1 and CA15-3+CYFRA 21-1[6]. A
nomogram is a novel method to investigate the combi-
nation of these tumor markers and other biochemical
analyses (e.g., erythrocyte sedimentation rate, LDH,
ADA). Two previous studies have constructed nomograms
to investigate the diagnostic accuracy of multiple tumor
markers, and the AUCs of the nomograms in the studies
were >0.90 [78, 79].

Serum tumor markers also increased in MPE patients,
but their diagnostic accuracy was inferior to that of their
pleural fluid partners [80—83]. The pleural fluid to serum
ratios of tumor markers have been proposed to increase
the diagnostic accuracy of MPE. Nevertheless, these ratios
do not significantly increase the diagnostic accuracy of
MPE [80-85]. With rigorous statistical methods such as
net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) [86], we found that the
CEA ratio did not provide added diagnostic value over
pleural fluid CEA (our unpublished data). In addition
to the pleural fluid to serum ratio, the tumor marker
gradient has also been investigated in several studies.
Nevertheless, their gradients do not show superior diag-
nostic accuracy over pleural fluid tumor markers [83].
Therefore, the current evidence does not support deter-
mining serum and pleural fluid tumor markers simulta-
neously when pleural fluid tumor markers are available.

In addition to conventional tumor markers, some
novel markers have been reported to be promising in
diagnosing MPE, such as endostatin [87], vascular endo-
thelial growth factor (VEGF) [88, 89], apolipoprotein
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E (Apo-E) [90], tumor-associated macrophages (TAMs) in
pleural fluid [91], cancer ratio [92, 93] and cancer ratio
plus [94, 95]. TAM (CD14'CD206", CD14*CD163*) has
exceptionally high diagnostic accuracy among these
markers. However, TAM is determined by flow cytometry,
which lacks standardization and thus limits its clinical
implications. The cancer ratio is defined as the ratio of
serum LDH to pleural fluid ADA and has high diagnostic
accuracy for MPE (97% sensitivity and 89% specificity),
as indicated by meta-analyses [92, 96]. The strength of
the cancer ratio is low cost, easy to obtain, and well-
standardized. However, our recent study indicated that
the diagnostic accuracy of the cancer ratio decreased with
age (unpublished data).

Biochemical analyses for TPE

TPE is one of the most common extrapulmonary tubercu-
losis forms in adults [97]. The diagnosis of TPE is often
challenging because the gold standards (e.g., Ziehl-Neelsen
staining, pleural fluid Mtb culture, and biopsy) are time-
consuming, invasive and have low sensitivity [98]. The
diagnostic value of many pleural fluid biomarkers for
TPE has been investigated [10]. Among the investigated
biomarkers, adenosine deaminase (ADA) [99], interferon-
gamma (IFN-y) [100], and interleukin 27 (IL-27) [101] are the
most promising.

ADA is an enzyme produced by many types of lym-
phocytes and is involved in the metabolism of purines. It
has consistently demonstrated high accuracy for TPE
since it was first reported in 1978 [102]. Evidence from
meta-analyses indicates that pleural fluid ADA has a
sensitivity range between 86 and 93%, and the specificity
varies between 88 and 93% [99, 103-105]. The ADA
threshold used in most published studies ranges between
35 U/L and 60 U/L [99, 103]. Some meta-analyses from
specific countries (e.g., Spain [106], Brazil [107] and India
[108]) showed that the diagnostic accuracy of ADA is
similar across different regions. Notably, in areas with
low tuberculosis prevalence, pleural fluid ADA =15 U/L
has a sensitivity of 100% and a negative predictive value
(NPV) of 100% [109]. Extremely high pleural fluid ADA
(>100 IU/L) is frequently observed in patients with
empyema or lymphoma rather than TPE [110]. The pleural
fluid ADA level is negatively correlated with age [111, 112].
However, findings from studies with age stratification
designs are not always consistent [111, 113, 114], and
further studies are needed to address the effect of age on
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the diagnostic accuracy of ADA. In addition, pleural fluid
ADA has no diagnostic value in pediatrics [115].

IFN-y is a cytokine produced by activated CD4" T
helper cells in the pleural compartment and can increase
the mycobactericidal activity of macrophages [116]. Many
studies have investigated the diagnostic value of pleural
fluid IFN-y for TPE since the first report, which was pub-
lished in 1988 [117]. Three meta-analyses summarized
the diagnostic accuracy of pleural fluid IFN-y for TPE
[100, 104, 118]. All these meta-analyses indicated that
the sensitivity and specificity of IFN-y were >90%. Similar
to ADA, the diagnostic accuracy of IFN-y is also affected
by age [113, 114].

The diagnostic value of pleural fluid IL-27 was first
reported by Shi et al. in 2012 [119]. To date, four meta-
analyses have reported the diagnostic value of pleural
fluid IL-27 for TPE [101, 120-122]. The most recent and
comprehensive study, which included eleven studies
with 1,454 patients in the analysis, showed that pleural
fluid IL-27 had a sensitivity of 95% and specificity of
91% [101]. These results indicate that IL-27 has extremely
high diagnostic accuracy for TPE. Although IL-27, IFN-y
and ADA have comparable and extremely high diagnostic
accuracy for TPE, ADA is preferred because of its low
cost. In addition, the ADA assay is well standardized,
and the results from different laboratories are compara-
ble. In contrast, IL-27 and IFN-y were measured by
enzyme-linked immunosorbent assays (ELISAs), which
are expensive and lack standardization [123].

Notably, interferon-gamma release assays (IGRAs)
have been proposed as a potential diagnostic tool for
TPE. There are two types of IGRAs, named T-SPOT. TB
(Oxford Immunotec) and QuantiFERON-TB Gold (QIA-
GEN). In both IGRAs, antigens from Mtbh were used to
stimulate lymphocytes from the patient’s blood or pleural
fluid. IFN-y in the culture media was determined by ELISA
or enzyme-linked immunospot (ELISPOT) assay. The
diagnostic accuracy of IGRAs for TPE is insufficient, as
indicated by meta-analyses [124—126]. According to the
most recently published meta-analysis, the sensitivity
and specificity of IGRA are 88 and 79%, respectively [126],
which are obviously lower than those of ADA, IFN-y and
IL-27. In addition to its low diagnostic accuracy, other
disadvantages, including high cost, long turn-around
time, and labor consumption, limit its utility in diag-
nosing TPE.

Other biomarkers have been proposed as potential
diagnostic markers for TPE, such as interleukin 32 (IL-32)
[127], C1q [128], C-X-C motif chemokine receptor 3 (CXCR3)



926 —— Zhengand Hu: Pleural fluid analysis

ligands (e.g., CXCL9, CXCL10, CXCL11) [129, 130] and
soluble interleukin-2 receptor (sIL-2R) [131]. The initial
studies revealed that the diagnostic accuracy of these
biomarkers is promising; however, further studies are
needed to validate the findings reported in these studies.
In addition, nucleic acid amplification tests (NAATSs) are
also promising diagnostic tools for TPE. Its specificity is
close to 100%, but its sensitivity is only approximately
30% [132].

Biochemical analyses for PPE

PPE is a common complication associated with pneumonia
[133]. Approximately 18% of community-acquired pneu-
monia (CAP) patients will develop PPE during their
disease courses [134]. The in-hospital mortality rate of
PPE is approximately 10% [134, 135]. There are three types
of or progression phases of PPE: uncomplicated para-
pneumonic effusion (UPPE), complicated parapneumonic
effusion (CPPE) and empyema [136, 137]. In UPPE, the
pleural cavity is free of infection, and approximate anti-
biotic treatment can cure it [136]. In CPPE and empyema,
pathogens translocate from the lung to the pleural cavity,
and drainage or surgery is needed because antibiotics
alone are insufficient [136]. Empyema is characterized by
the presence of frank pus in the pleural cavity. Typically,
CPPE is described as high LDH activity (>1000 U/L),
decreased pleural fluid glucose (<2.2 mmol/L), low pleural
fluid pH (<7.2) and positive pleural fluid bacterial culture
[136]. The diagnosis and stratification of PPE are two
major roles of biochemical analysis in PPE.

Pleural fluid pH is the most accurate indicator of
CPPE, as indicated by a meta-analysis [138]. It is also
endorsed by the guidelines released by the British Society
of Chest Physicians [62], the European Respiratory Society
(ERS) and the European Society of Thoracic Surgeons
(ESTS) [139]. Pleural fluid pH should be measured by
blood gas analyzer rather than pH meter or indicator strip
[140, 141]. There is no need to measure pH in purulent
samples because it has the potential to damage the blood
gas analyzer [141, 142]. Several factors can affect the value
of pleural fluid pH, including the presence of air and
residual lidocaine or heparin in the collection syringe [143].
Notably, pleural fluid pH is unstable after collection.
Pleural fluid specimens stored at room temperature
should be analyzed within an hour after collection [143,
144]. When stored in slushed ice, samples should be
analyzed within 2 h and 15 min [144].

As shown in studies since 1988, serum and pleural
fluid C-reactive protein (CRP) have potential diagnostic

DE GRUYTER

value for PPE [145-147]. However, the evidence from a
meta-analysis published in 2012 revealed that the pooled
sensitivity and specificity of serum CRP were 54% and 77%,
respectively [148]. A recently published meta-analysis
showed that the sensitivity and specificity were 77% and
71%, respectively [149]. These results suggest that serum
CRP is not a good diagnostic marker for PPE. The diag-
nostic accuracy of pleural fluid CRP seems to be higher
than that of serum CRP (80% sensitivity and 82% speci-
ficity) [149]. In addition, pleural fluid CRP has moderate
accuracy for discriminating UPPE from CPPE [150, 151]. A
recent meta-analysis showed that the pooled sensitivity
and specificity of pleural fluid CRP for distinguishing
uncomplicated from complicated PPE were 65% and 85%,
respectively [149]. Serum CRP can also distinguish UPPE
from CPPE, but its performance varies across available
studies [150, 152, 153].

Procalcitonin (PCT) is the precursor of calcitonin,
which is mainly synthesized by thyroid C cells [154]. During
the development of infectious disease, pathogens and
inflammatory factors can induce the expression of PCT
in thyroid C cells and other cells, which results in high
blood PCT [155]. Therefore, blood PCT is a promising
diagnostic marker for bacterial infectious diseases, such
as sepsis and pneumonia [156, 157]. PPE is caused by
pneumonia, and blood PCT theoretically has diagnostic
value for PPE. The diagnostic value of blood PCT for PPE
has been investigated by many studies [158-160]. The
pooled sensitivity and specificity of blood PCT for
PPE were 78% and 74%, respectively [161], indicating the
unsatisfactory diagnostic value of PCT for PPE. Pleural
fluid PCT has also been proposed as a diagnostic marker
for PPE, but its pooled sensitivity and specificity are only
62% and 71%, respectively, as revealed by meta-analysis
[161]. Therefore, the diagnostic value of pleural fluid PCT
is inferior to that of serum PCT. This conclusion is also
supported by findings from head-to-head comparison
studies [159, 160, 162]. Blood PCT is positively correlated
with pleural fluid PCT [160], suggesting that pleural
fluid PCT is derived from blood PCT, and pleural fluid PCT
does not provide additional diagnostic value beyond
serum PCT. The diagnostic accuracy of serum and pleural
fluid PCT does not outperform CRP, as indicated by a
head-to-head comparison study [159]. Some studies
showed that pleural fluid and serum PCT levels in UPPE,
CPPE and empyema were similar [146, 163], indicating
that PCT cannot be used for PPE stratification.

Other parameters, including soluble triggering
receptor expressed on myeloid cells 1 (STREM-1) [164], IL-6
[165, 166], IL-8 [151], presepsin [167], lipopolysaccharide-
binding protein (LBP) [146], serum amyloid A (SAA)
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[168], pentraxin-3 (PTX3) [169], and soluble urokinase
plasminogen activator receptor (suPAR) [170], are poten-
tial biomarkers for PPE diagnosis or stratification. Among
those biomarkers, sSTREM-1 in the pleural fluid has mod-
erate diagnostic accuracy for PPE. The pooled sensitivity
and specificity of pleural fluid sTREM-1 were 78% and
84%, respectively [164]. However, no evidence suggests
that pleural fluid sTREM-1 is beneficial for the stratifica-
tion of PPE. In addition, whether serum sTREM-1
contributes to the diagnosis and stratification of PPE is
unknown.

The future
Machine learning

Machine learning is a subset of artificial intelligence.
It enables the computer to have intelligence by creating
algorithms with large and complex data [171]. Machine
learning has shown promising value in clinical diagnostics
[172]. The clinical utility of machine learning in patients
with undiagnosed pleural effusion has been investigated
in some studies, such as treatment selection [173] and
imaging [174]. Using machine learning algorithms with
conventional biomarkers and other clinical characteristics
(e.g., imaging, symptoms, signs, history, demography)
can significantly improve the diagnostic accuracy of
biomarkers in undiagnosed pleural effusion patients
[175-178]. For example, in a study that investigated the
diagnostic markers for TPE, the clinical characteristics of
patients were incorporated into machine learning algo-
rithms, including a logistic regression model, support
vector machine (SVM), random forest (RF), and k-nearest
neighbor (KNN). The AUC of the RF was 0.97, which
is significantly higher than that of pleural fluid ADA
(0.89) [175].

Molecular diagnosis

Currently, most pleural fluid biomarkers are protein,
enzyme or cancer antigens. Recently, the diagnostic
accuracy of cell-free nucleic acids in undiagnosed pleural
effusion patients has attracted much attention [179].
Serum or pleural fluid cell-free microRNAs, mRNAs,
and long noncoding RNAs (IncRNAs) are the primary cell-
free nucleic acids investigated. By using microarray
or sequencing, several molecular markers have been
identified [180, 181]. Some pilot studies with small sample
sizes have revealed that these molecular markers
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represent promising diagnostic markers for pleural effu-
sion [182, 183]. Further studies are needed to validate their
diagnostic accuracy.

High-throughput technologies

As mentioned above, a single biomarker is insufficient for
differentiating the causes of pleural effusion. Therefore,
high-throughput technologies are promising. First, high-
throughput technologies generate significant opportunities
for identifying novel biomarkers for differentiating pleural
effusion. Second, high-throughput data can be incorporated
into mathematical models, which yields good diagnostic
accuracy for a given disease. Genomics, transcriptomics,
proteomics, and metabolomics are the most popular high-
throughput technologies. These technologies can generate
massive data in a short period of time with a small volume
of the specimen. The primary studies indicated that these
technologies have high diagnostic accuracy in differencing
pleural effusion. Here, we introduced several examples.
By comparing the protein profile of CPPE and UPPE
with isobaric tags for relative and absolute quantification

Table 2: Diagnostic accuracy of biomarkers in undiagnosed pleural
effusion: evidence from meta-analyses.

Biomarker Disease Sensitivity, Specificity, Reference
% %
Pleural fluid  HF 94-95 91-94 [59-61]
NT-proBNP
Blood HF 92 88 [59]
NT-proBNP
ADA TPE 65-94 89-92 [99, 105, 106,
108, 126, 188]
Interferon-y TPE 89-93 96-97 [118, 188, 189]
Interleukin-27 TPE 92-94 90-92 [120, 122]
IGRA, pleural TPE 72-90 78-87 [124-126, 190]
fluid
IGRA, blood TPE 77-80 71-72 [124, 125]
CEA MPE 46-55 94-97 [72,73,191]
CA15-3 MPE 51-58 93-98 [72,192,193]
CA19-9 MPE 25-38 96-98 [72,192]
NSE MPE 53-61 85-88 [72, 74]
CA 125 MPE 48-58 85-93 [72,192]
CYFRA 21-1 MPE 47-63 92-93 [72,191,192]
Cancer ratio  MPE 91-97 67-89 [92, 96]
Pleural PPE 80 82 [149]
fluid CRP
Blood CRP PPE 54-77 71-77 [148, 149]
Pleural fluid  PPE 62-67 70-71 [148, 161]
procalcitonin
Blood PPE 65-78 68-74 [148, 161]

procalcitonin
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reagents (iTRAQ)-based mass spectrometry analysis, four
useful biomarkers (bactericidal permeability-increasing
protein, neutrophil gelatinase-associated lipocalin,
azurocidin and calprotectin) for differentiating CPPE and
UPPE were identified. These biomarkers are promising for
differentiating between UPPE and CPPE, with AUCs >0.90
when used alone [184]. With high-resolution nuclear
magnetic resonance (NMR) spectrometry, lipoprotein was
highly accurate for distinguishing exudates from transu-
dates, with an AUC of 0.96 [185]. In addition, label-free
surface-enhanced Raman spectroscopy (SERS) has also
been suggested to be a promising diagnostic tool for MPE,
with an AUC of 0.99 [186]. Next-generation sequencing
(NGS) analysis can identify pathogens more accurately
than pleural fluid culture and thus serves as a valuable
tool that could facilitate the treatment of PPE with anti-
biotics [187].

Conclusions

To date, numerous diagnostic markers have been investi-
gated. Table 2 summarizes the evidence from systematic
reviews and meta-analyses. Generally, pleural fluid
NT-proBNP and ADA have high diagnostic accuracy for
HF and TPE, respectively. These two biomarkers have
been endorsed by the guidelines released by the British
Thoracic Society [62]. However, the diagnostic markers
for PPE and MPE are far from perfect. Therefore, novel
biomarkers and analytical methods are needed to improve
the diagnostic yield of undiagnosed pleural effusion.
Clinical Chemistry and Laboratory Medicine (CCLM)
should address the topic of pleural fluid biochemical
analysis in the future to promote specific knowledge in
the laboratory professional community.
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