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Supplementary Materials and Methods
Linear mixed-effects model
Since a single menstrual cycle of a woman is a periodic phenomenon, it is reasonable to model the menstrual cycle by a periodic model which allows non-linear trends to be captured. This model is given by

where  denotes the AMH result measured at University Hospital Basel for woman  of cycle  at standardized time , and  denotes the natural logarithm of the corresponding AMH result. The fixed effects in this model are the regression coefficients  and the random effects are the coefficients , which are linearly related. Further, the standardized time  is transformed by sine and cosine functions with  denoting a mathematical constant (approx. 3.14159); the frequency  means that the series of AMH results of a woman  within her cycle  makes a sine (cosine) cycle every 28th standardized day and the frequency  makes a sine (cosine) cycle every 14th standardized day. The combination of these sine and cosine transformations (sinusoids) describe a Fourier series of second degree and allow the modelling of a non-linear periodic phenomenon like the variation of (logarithmic) AMH results within a menstrual cycle. The choice of a Fourier series of second degree gives enough flexibility for modelling the different AMH results series within the cycle of a woman. For more details about periodic regression, see Shumway and Stoffer 2017, introductory Chapter 4.1. The term  describes the mesor (on a logarithmic scale) for cycle  of woman  (shown in Figure 3). The amplitude of cycle  of woman  (shown in Figure 3) can be derived by numerically finding the maximum and minimum of the cycle using the regression model based on the estimated fixed and random regression coefficients of cycle  of woman . Further, it is assumed that the random coefficients follow a multivariate normal distribution with zero mean estimated by restricted maximum likelihood techniques. The residuals are denoted by  and are assumed to follow a normal distribution with mean 0 and variance . The residuals quantify variation not explained by the sine and cosine transformed standardized time variables, like biological influences or measurement uncertainty of the AMH results (analytical variability). The variance  can be transformed back to the original AMH unit in form of a coefficient of variation (CV) in percentage, which is given by 

In order to separate the biological variability from the analytical variability, the duplicate (remeasurements) and triplicate (original measurement and duplicate remeasurements) AMH results can be used and the following mixed effects model can be fitted:

where  denotes the replicate. Note that the residual variability  of the above model is now split into , which estimates the unexplained biological variability (variability not explained by the non-linearly transformed variables), and , which denotes the residuals of the replicates, thus quantifying the analytical variability. It is assumed that both  and  follow a normal distribution each with mean 0 and variances  and . By analogy, the variances can be transformed back to the original AMH unit in form of a CV, which are given by 

and

In the case of using triplicates, the coefficient of variation  represents reproducibility since several days, instrument types, and sites are involved as sources of analytical variability. In the case of using duplicates from the same laboratory, the coefficient of variation  represents the repeatability estimate since two sequential determinations of AMH results are involved as a source of analytical variability.
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