Editorial

Markus Herrmann

Towards a personalized assessment of vitamin D status

https://doi.org/10.1515/cclm-2019-1213

The growing interest in vitamin D has stimulated intensive research activities aiming to address unresolved analytical, clinical and physiological aspects of vitamin D [1-4]. This work has led to an increasing awareness that our knowledge about vitamin D metabolism and its assessment in clinical practice harbours substantial limitations. For example, Blacks have a markedly lower average 25(OH) D concentration than Whites [2, 5, 6], but exhibit higher bone mineral density (BMD) and a lower risk of fragility fracture [7–9]. Also, the relationship between 25(OH)D and parathyroid hormone (PTH) seems to differ between races [2]. These findings have led researchers to look for other markers that are capable of providing more accurate information about the adequacy of patients' vitamin D supply. Several studies suggested that free and bioavailable 25(OH)D reflect vitamin D metabolism better than 25(OH) D [2, 10, 11]. However, both markers require the measurement of vitamin D binding protein (VDBP). Early studies quantified VDBP with either monoclonal or polyclonal immunoassays. However, later studies that employed LC-MS/MS based methods have demonstrated that these immunoassay are strongly biased due to common genetic polymorphisms [4]. The limited number of laboratories that offer VDBP measurement by LC-MS/MS and the lack of a reference measurement procedure hamper a wider use of free and bioavailable 25(OH)D in clinical studies. Another potential surrogate marker of vitamin D metabolism is 24,25(OH)₂D, the major product of 25(OH)D catabolism. The circulating concentrations of both metabolites are strongly correlated [12] and can reliably be measured by LC-MS/MS [13–16]. The simultaneous quantitation of 24,25(OH)₃D and 25(OH)D has been proposed as a dynamic measure of vitamin D metabolism that allows distinguishing CYP24A1 deficiency from vitamin D intoxication and granulomatous disease. However, the interpretation of 25(OH)D and 24,25(OH)D results is still a matter of intensive debate. Previous studies have established reference intervals [17, 18] and clinical cut-offs [19-22]. However, the close relationship between 25(OH)D and 24,25(OH)₂D implies that a meaningful interpretation is only possible when both metabolites are considered together. This has led to the idea of a ratio between 24,25(OH), D and 25(OH) D, also known as vitamin D metabolite ratio (VMR) [23]. Theoretically, a higher VMR indicates better supply with vitamin D so that excessive 25(OH)D is catabolized to 24,25(OH)_aD. Several studies have investigated the clinical utility of VMR, but results are inconclusive [3, 24-26]. In addition, the VMR cannot be calculated when 24,25(OH)₃D is below the limit of quantitation. When one measurand has a much lower concentration than the other, calculating the ratio between the two enhances the intrinsic measurement uncertainty. In this issue of Clinical Chemistry and Laboratory Medicine (CCLM) a study by Cavalier et al. has analyzed 24,25(OH)₂D and 25(OH)D simultaneously in 1200 samples from children, adolescents and young adults [27]. Instead of calculating the VMR the authors propose to compare the 24,25(OH)₂D and 25(OH)D concentrations of patients with those of healthy subjects classified according to their 25(OH)D concentration. They assume that a low or undetectable 24,25(OH)₂D concentration has a different meaning in the context of high or low 25(OH)D. Theoretically, a vitamin D-deficient patient cannot afford to waste 25(OH)D and CYP24A1 is down regulated. Consequently, little or no 24,25(OH)₂D is produced. According to Cavalier et al., with lower 25(OH)D concentrations undetectable 24,25(OH)₂D concentrations are increasingly likely and most probably indicate functional vitamin D deficiency. In turn, when 25(OH)D is high, the organism aims to protect itself against hypercalcemia by eliminating excessive amounts of 25(OH)D through 24-hydroxylation. As a result, undetectable 24,25(OH)₂D concentrations are highly unlikely in this context and would rather suggest an enzyme defect than vitamin D deficiency. Cavalier et al. suggest that in clinical practice the concentrations of 24,25(OH) D and 25(OH)D should be reported together with the probability that this constellation occurs in healthy subjects. This information would help physicians judging their patients' metabolic status in a more dynamic fashion and leave the historical concept of vitamin D deficiency on the basis of a universal 25(OH)D cut-off [19-22]. With the established 25(OH)D cut-offs a large portion of the population has vitamin D deficiency or at least insufficiency,

which, in many cases, would trigger vitamin D supplementation even in the absence of risk factors for metabolic bone disease or manifest osteoporosis [20, 28, 29]. Although robust evidence is lacking, some clinicians and researchers believe that every person has an individual set point above which vitamin D supplementation has no beneficial effects. In many persons this set point is probably below the commonly used cut-off of 50 nmol/L for sufficiency [28]. The interpretation of 24,25(OH)₂D and 25(OH)D proposed by Cavalier et al. allows an individual evaluation of patients' metabolic situation.

The data presented by Cavalier show that amongst individuals with a 25(OH)D concentration above 52 nmol/L over 99% exhibit detectable amounts of 24,25(OH)₂D and thus are probably vitamin D sufficient. This finding supports the 50 nmol/L cut-off recommended by the IOF [30]. Finally, this study represents a valuable data set that provides a robust overview about the vitamin D status in Belgian infants, children, adolescents and adults. Of note, more than 50% of these individuals have 25(OH)D concentrations <50 nmol/L. This finding is critical as vitamin D deficiency at this age may interfere with bone growth and mineralization. A particular strength of this study is that analyses have been performed with a VDSP certified LC-MS/MS method.

In summary, the study by Cavalier et al. is a nice example of personalized medicine and may trigger similar approaches for other analytes, such as B-vitamins and homocysteine. It also highlights the valuable contribution that laboratory doctors can provide for patient care.

Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

References

- Farrell CJ, Soldo J, McWhinney B, Bandodkar S, Herrmann M. Impact of assay design on test performance: lessons learned from 25-hydroxyvitamin D. Clin Chem Lab Med 2014;52:1579–87.
- Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl | Med 2013;369:1991–2000.
- Berg AH, Powe CE, Evans MK, Wenger J, Ortiz G, Zonderman AB, et al. 24,25-Dihydroxyvitamin d3 and vitamin D status of community-dwelling black and white Americans. Clin Chem 2015;61:877–84.

- Henderson CM, Lutsey PL, Misialek JR, Laha TJ, Selvin E, Eckfeldt JH, et al. Measurement by a novel LC-MS/MS methodology reveals similar serum concentrations of vitamin D-binding protein in blacks and whites. Clin Chem 2016;62:179–87.
- Gutiérrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int 2011;22:1745–53.
- Ginde AA, Liu MC, Camargo Jr CA. Demographic differences and trends of vitamin D insufficiency in the US population, 1988– 2004. Arch Intern Med 2009;169:626–32.
- Hannan MT, Litman HJ, Araujo AB, McLennan CE, McLean RR, McKinlay JB, et al. Serum 25-hydroxyvitamin D and bone mineral density in a racially and ethnically diverse group of men. J Clin Endocrinol Metab 2008;93:40–6.
- Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 2004;116:634–9.
- Cauley JA, Lui LY, Ensrud KE, Zmuda JM, Stone KL, Hochberg MC, et al. Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA 2005;293:2102–8.
- Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, et al. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 2012;82:84–9.
- Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, et al. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 2011;26:1609–16.
- 12. de Boer IH, Sachs MC, Chonchol M, Himmelfarb J, Hoofnagle AN, Ix JH, et al. Estimated GFR and circulating 24,25-dihydroxyvitamin D3 concentration: a participant-level analysis of 5 cohort studies and clinical trials. Am J Kidney Dis 2014;64:187–97.
- Stepman HC, Vanderroost A, Van Uytfanghe K, Thienpont LM. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 2011;57:441–8.
- Stöckl D, Thienpont L. Specifications for trueness and precision of a reference measurement system for serum/plasma 25-hydroxyvitamin D analysis. Clin Chim Acta 2009;408:8–13.
- 15. Mineva EM, Schleicher RL, Chaudhary-Webb M, Maw KL, Botelho JC, Vesper HW, et al. A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D_3 and 25-hydroxyvitamin D_2 using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015;407:5615–24.
- 16. Tai SS, Nelson MA. Candidate reference measurement procedure for the determination of (24R),25-dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 2015;87:7964–70.
- 17. Dirks NF, Ackermans MT, de Jonge R, Heijboer AC. Reference values for 24,25-dihydroxyvitamin D and the 25-hydroxyvitamin D/24,25-dihydroxyvitamin D ratio. Clin Chem Lab Med 2019;57:e259-61.
- Tang JC, Nicholls H, Piec I, Washbourne CJ, Dutton JJ, Jackson S, et al. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established

- using a newly developed LC-MS/MS method. J Nutr Biochem
- 19. Cesareo R, Attanasio R, Caputo M, Castello R, Chiodini I, Falchetti A, et al. Italian Association of Clinical Endocrinologists (AME) and Italian Chapter of the American Association of Clinical Endocrinologists (AACE) Position Statement: Clinical Management of Vitamin D Deficiency in Adults. Nutrients 2018;10:pii: E546.
- 20. Schramm S, Lahner H, Jöckel KH, Erbel R, Führer D, Moebus S, et al. Impact of season and different vitamin D thresholds on prevalence of vitamin D deficiency in epidemiological cohorts-a note of caution. Endocrine 2017;56:658-66.
- 21. Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, et al. Assessment criteria for vitamin D deficiency/ insufficiency in Japan: proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 2017;35:1-5.
- 22. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911-30.
- 23. Wagner D, Hanwell HE, Schnabl K, Yazdanpanah M, Kimball S, Fu L, et al. The ratio of serum 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3) response to vitamin D(3) supplementation. J Steroid Biochem Mol Biol 2011;126:72-7.
- 24. Kaufmann M, Gallagher JC, Peacock M, Schlingmann KP, Konrad M, DeLuca HF, et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/ MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab 2014;99:2567-74.

- 25. Ginsberg C, Katz R, de Boer IH, Kestenbaum BR, Chonchol M, Shlipak MG, et al. The 24,25 to 25-hydroxyvitamin D ratio and fracture risk in older adults: the cardiovascular health study. Bone 2017;107:124-30.
- 26. Ketha H, Thacher TD, Oberhelman SS, Fischer PR, Singh RJ, Kumar R. Comparison of the effect of daily versus bolus dose maternal vitamin D, supplementation on the 24,25dihydroxyvitamin D, to 25-hydroxyvitamin D, ratio. Bone 2018:110:321-5.
- 27. Cavalier E, Huyghebaert L, Rousselle O, Bekaert A-C, Kovacs S, Vranken L, et al. Simultaneous measurement of 25(OH)-vitamin D and 24,25(OH)2-vitamin D to define cut-offs for CYP24A1 mutation and vitamin D deficiency in a population of 1200 young subjects. Clin Chem Lab Med 2020;58:197-201.
- 28. Giuliani S, Barbieri V, Di Pierro AM, Rossi F, Widmann T, Lucchiari M, et al. LC-MS/MS based 25(OH)D status in a large Southern European outpatient cohort: gender- and age-specific differences. Eur J Nutr 2019;58:2511-20.
- 29. Herrmann M, Sullivan DR, Veillard AS, McCorquodale T, Straub IR, Scott R, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care 2015;38:521-8.
- 30. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press, 2010.

Prof. Dr. med. habil. FRCPA Markus Herrmann, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15/1, 8036 Graz, Austria, Phone: +43 (0) 316 385 131 45, Fax: +43 (0) 316 385 134 30, E-mail: markus.herrmann@medunigraz.at