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Abstract: Type 2 diabetes (T2D) is a chronic disease with a 
growing prevalence and a leading cause of death in many 
countries. Several epidemiological studies observed an 
association between T2D and increased risk of many types 
of cancer, such as gynecologic neoplasms (endometrial, 
cervical, ovarian and vulvar cancer). Insulin resistance, 
chronic inflammation and high free ovarian steroid hor-
mones are considered the possible mechanisms behind 
this complex relationship. A higher risk of endometrial 
cancer was observed in T2D, even though this associa-
tion largely attenuated after adjusting for obesity. A clear 
relationship between the incidence of cervical cancer (CC) 
and T2D has still not be determined; however T2D might 
have an impact on prognosis in patients with CC. To date, 
studies on the association between T2D and ovarian can-
cer (OC) are limited. The effect of pre-existing diabetes on 
cancer-specific mortality has been evaluated in several 
studies, with less clear results. Other epidemiological 
and experimental studies focused on the potential role of 
diabetes medications, mainly metformin, in cancer devel-
opment in women. The correct understanding of the link 
between T2D and gynecologic cancer risk and mortality 
is currently imperative to possibly modify screening and 
diagnostic-therapeutic protocols in the future.
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Introduction

Type 2 diabetes (T2D) is a chronic disease with an increas-
ing global prevalence. Currently, 415  million adults are 
estimated to have T2D and 193  million people with dia-
betes are undiagnosed [1]. The global prevalence of T2D 
has nearly doubled since 1980, rising from 4.7% to 8.5% 
in adult populations, due to an increase in associated risk 
factors, such as overweight and obesity [2]. Diabetes and 
its complications, especially cardiovascular disease, are 
leading causes of death in many countries.

There is growing evidence of an association between 
T2D and increased cancer risk, although the accurate 
assessment of this risk in diabetes is complicated by the 
interference of several confounding factors, including 
obesity. In both men and women with T2D, most epide-
miological studies observed an increased risk of cancer 
of the liver, pancreas, gallbladder, breast, endometrium, 
ovary, stomach, kidney, bladder, colon/rectum as well as 
leukemia, myeloma and lymphoma [3]. In this review, the 
main mechanisms of carcinogenesis behind the relation-
ship between T2D and cancer in women (endometrial, cer-
vical and epithelial ovarian cancer [EOC]) and the current 
epidemiological evidence are illustrated. Moreover, the 
potential role of diabetes medications in cancer develop-
ment in women is discussed.

Biological links between T2D 
and gynecological cancers
A broad literature has demonstrated that there is a strong 
association between T2D and cancer development related 
to common pathogenetic features such as hyperglycemia, 
hyperinsulinemia and chronic inflammation [4, 5].

In females with T2D there is an important inci-
dence and prevalence of gynecologic malignancies that 
share several common mechanisms with T2D, including 
increased insulin levels and IGF signaling, and a common 
dysregulation of ovarian steroid hormones [6].
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Several studies have evaluated the effect of increased 
IGF [7]. IGF-I and -II are overexpressed in many cancers, 
which may lead to increased proliferation as well as stim-
ulation of pathways involved in invasion and metastasis 
[8, 9].

The deleterious mitogenic effect of hyperinsulinemia 
is more marked in cancer cells that often overexpress the 
insulin receptor (IR): in response to insulin, cancer cells 
grow more than non-transformed cognate cells [10].

Insulin resistance with subsequent hyperinsulinemia 
is peculiar to T2D: when elevated, insulin can increase the 
hepatic expression of insulin growth factor-1 (IGF-1) and 
then activate the IGF-1 receptor, further stimulating cell 
growth [11, 12].

Moreover, it has been reported that elevated insulin 
levels also lead to a leptin overexpression: increased 
leptin plasma concentrations are believed to be associ-
ated with the occurrence and progression of endometrial 
and ovarian cancer [13–15]. Furthermore, leptin can also 
upregulate vascular endothelial growth factor (VEGF), a 
hallmark of malignant tumor development [16].

There is evidence that the rate of insulin secretion 
among individuals may influence the risk and progression 
of cancer: increased insulin levels are associated with 
increased risk of cancer and higher mortality in women 
with cancer, particularly endometrial and ovarian cancers 
[17, 18].

Hyperglycemia is the most prominent clinical sign 
of diabetes: a hyperglycemic environment contributes to 
tumor progression through multiple pathways leading 
to increased proliferative, anti-apoptotic and metastatic 
cancer activity [19–21].

In diabetes, hyperglycemia is responsible for the 
endothelial dysfunction and endothelial cell death and 
aberrant neoangiogenesis [22, 23].

Hyperglycemia-associated AGEs (advanced glycation 
end products) promote pathological activation of protein 
kinase C, which can lead to altered vascular proliferation. 
The interaction of AGEs with their receptors produces oxi-
dative stress and inflammation, which promote cancer 
[24–26].

Additionally, hyperglycemia may favor angiogenesis 
in tumors by upregulating microRNA-467, a suppressor 
of the antiangiogenic protein thrombospondin-1: subse-
quently cancer neoangiogenesis will then favor malignant 
growth [22].

Furthermore, elevated glucose level interferes with 
epigenetic modulations of oncogenic pathways leading to 
“hyperglycemic memory”, a condition that allows hyper-
glycemia-exposed cancer cells to permanently activate 

oncogenic pathways, even after normalization of glucose 
levels [27, 28].

This mechanism is probably caused by glucose-
induced persistent expression of nuclear factor-κB (NF-
κB) a well-established signal for cancer cell proliferation 
[29, 30].

Many studies concerning the association between 
inflammation and cancer in females suggest that the 
inflammatory pathways activated through NF-κB signal-
ing play an important role in the development and pro-
gression of cancers such as endometrial, and epithelial 
ovarian cancers [31–33].

Ovarian steroid hormones, particularly estrogen, can 
activate NF-κB signaling, which induces the gene expres-
sion of inflammatory mediators such as interleukin (IL)-1, 
tumor necrosis factor-α (TNF-α), and metalloproteinases 
(MMPs), thus facilitating inflammatory processes [34].

T2D and insulin resistance are associated with 
decreased serum sex hormone binding globulin, which 
can lead to elevated levels of free estrogen: the evidence 
for elevated estrogen as a carcinogen is well-established 
in EC and a recent murine models suggest that it may also 
play a role in ovarian cancer [35, 36].

Insulin resistance and hyperinsulinemia in T2D 
promote subclinical or low-grade chronic inflammation 
and females with T2D-increased bioavailable ovarian 
steroid hormones show even more enhanced inflamma-
tory effects: a chronic inflammatory state in these patients 
may be the main mechanism associated with cancer 
development and progression.

Finally, adipose metabolic dysregulation is a hall-
mark of T2D and can lead to increased levels of inflamma-
tory cytokines such as IL-6 and TNF-α: they can activate 
molecular pathways involved in cell proliferation, inva-
sion and evasion of antitumor immunity [37, 38].

T2D and endometrial cancer
In developed countries, endometrial cancer (EC) is the 
fourth most common cancer in women. Every year, approx-
imately 88.068 new cases are registered in the European 
Union and more than 90% of cases occur in women older 
than 50  years of age [39]. EC is strongly associated with 
endometrial hyperplasia and estrogen exposure, unop-
posed by progesterone [40].

It has been demonstrated that T2D is an important 
risk factor for EC and this association has been observed 
in most epidemiological studies [41–44].



Anastasi et al.: Type 2 diabetes and gynecological cancer      1415

A meta-analysis of 16  studies (13 case-control and 
three cohort studies) indicated a significantly increased 
risk of EC in T2D patients (RR 2.10, 95% CI: 1.75–2.53) and 
a meta-analysis of 21 prospective cohort studies, involving 
12,195 incident cases of EC, showed that preexisting dia-
betes was associated with increased incidence of EC (RR 
1.81, 95% CI: 1.38–2.37), compared with subjects without 
diabetes [45, 46].

A recent population-based and retrospective cohort 
study showed a strong association between T2D and EC, 
with an HR of 1.81 (95% CI: 1.37–2.41). However, more 
studies are needed to examine whether the association 
between T2D and EC is partly or largely dependent on 
obesity [43].

Many studies have suggested that T2D and EC share 
characteristics about the major modifiable determinates: 
mainly obesity and T2D are commonly observed in women 
with EC. Excessive adipose tissue leads to reduced con-
centration of progesterone and sex hormones binding 
globulin (SHBG). A decreased amount of SHBG results 
in an increased amount of bioavailable testosterone and 
estrogen, subsequently promoting carcinogenesis in the 
endometrium [47].

Even though there is consistent evidence based on 
various cohort studies and systematic reviews for an inde-
pendent association between T2D and increased risk of 
incident EC, recently a large, prospective cohort study of 
88,107 post-menopausal women aged 50–79 years found 
no significant association between T2D and EC after 
adjusting for BMI (HR: 1.16, 95% CI: 0.90–1.48). However, 
some modest independent elevated risk remained when 
considering a combination between diabetes diagnosed 
at baseline and during follow-up as time-dependent expo-
sure (HR: 1.31, 95% CI: 1.08–1.59) [48].

Meta-analysis of the currently available clinical evi-
dence supports the association between high serum adi-
ponectin concentration and reduced risk of EC: women 
with EC were more likely to have low adiponectin levels 
than controls, even after adjusting for BMI [49, 50].

The independent and inverse association of adiponec-
tin with EC suggested that insulin resistance is indepen-
dently associated with EC [51].

The effect of T2D on the risk of death from EC is less 
clear [46, 52–55]. A prospective study reported a signifi-
cantly increased age-adjusted risk of death (1.72, 95% 
CI: 1.40–2.12) [54]. An increased risk of all-cause death 
and death from EC was associated with T2D especially 
in women with BMI < 25 kg/m2 [52]. Moreover, it has been 
observed that T2D is associated with poor survival after 
incident EC, independently from tumor stage or grade 

[55]. Conversely, in the previously cited meta-analysis of 
prospective cohort studies, EC mortality did not increase 
in T2D, in comparison with women without diabetes [46]. 
Thus, further studies are needed to draw consistent con-
clusions on this issue.

In vitro studies have shown that triggering insulin, 
IGF-1 and ovarian steroid hormone signaling pathways 
increased proliferation of EC cell lines [56]. This prolif-
eration can be enhanced by PI3K signaling activated by 
an estrogen link with IGF-1R and also by Notch signaling 
activated thanks to the binding of androgen on the andro-
gen receptor. Abnormal activation of the Notch pathway 
promotes proliferation in a variety of cancer cell types, 
including EC: in vitro studies have indeed suggested that 
androgen through the regulation of inflammatory and 
Notch signaling pathways could affect cell viability and 
proliferation [57, 58].

EC may also be connected to chronic inflammation 
typical of T2D: insulin resistance increases C-reactive 
protein, which is an inflammatory biomarker induced by 
IL-6, and is associated with augmented risk of developing 
EC among postmenopausal women [59].

EC has been prospectively associated with many 
inflammation markers including acute phase proteins, 
adipokines, pro- and anti-inflammatory cytokines, angi-
ogenic factors. It has been observed that EC risk has an 
inverse association with anti-inflammatory markers (IL13, 
IL21), other inflammation markers/mediators (CCL3, IL1B, 
IL23), and a robust positive association with VEGFA: these 
associations were independent of BMI and estradiol, 
suggesting that there are other mechanisms influencing 
inflammation and EC development [60]. These concepts 
are summarized in Figure 1.

T2D and epithelial ovarian cancer
EOC is the fifth most common cancer and the fourth most 
common cause of cancer death in women. EOC is predom-
inantly a disease of post-menopausal women with the 
majority (>80%) of cases being diagnosed in women over 
50 years [61].

The exact cause of EOC is unknown, but many risk 
factors have been identified such as low parity, early 
menarche, late menopause and family history but also 
obesity, smoking, and diet with a high content of starch 
and/or fat [62].

Despite numerous studies have carefully screened the 
ovaries for precursor lesions, none have been found. This 
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has led to the assumption that ovarian cancer develops 
de novo [63]. It has been proposed that a proportion of 
ovarian carcinomas might develop as a result of implanta-
tion of malignant cells from a tubal carcinoma to the ovary 
[64, 65].

Fimbriae are exposed to the iron-induced oxidative 
stress generated from hemolysis of erythrocytes by pelvic 
macrophages during retrograde menstruation (‘inces-
sant menstruation’ hypothesis): redox cycling of iron 
(Fe3+  –  Fe2+) is closely associated with the generation of 
reactive oxygen species that has a genotoxic effect [66, 67].

Studies dealing with the association between T2D and 
EOC are still limited and the impact of diabetes on EOC 
prognosis is not clear. In the Cancer Prevention Study-II 
Nutrition Cohort, a prospective study including 63,440 
postmenopausal women, T2D status and duration were 
not significantly associated with EOC risk (T2D status 
RR = 1.05; 95% CI: 0.75–1.46; T2D duration <10  years 
RR = 1.04; 95% CI: 0.69–1.57; T2D duration >10  years 
RR = 1.06; 95% CI: 0.63–1.79) [68].

Conversely, a meta-analysis of 19  studies (7 case-
control and 11 cohort studies) showed a significant 
increased risk of EOC in women with diabetes (RR = 1.17; 
95% CI: 1.02–1.33) [69].

Many epidemiological studies showed an associa-
tion between obesity and increased risk of EOC, mainly 
in post-menopausal women [70, 71]. Other studies indi-
cated a possible relationship between obesity and higher 

mortality among patients with EOC [72, 73]. In a retrospec-
tive cohort study, patients with EOC and T2D had poorer 
survival compared to patients without diabetes and this 
association is independent from obesity [74].

An elevated risk of EOC among patients undergoing 
hospital treatment for T2D has also been observed and it 
has been noticed that the outcomes of patients with EOC 
in conjunction with comorbid T2D are poor: this could 
relate to the fact that these patients, because of diabetes-
associated complications, could be submitted to a differ-
ent treatment plan, and that T2D comorbidity may result 
in less dose-intense chemotherapeutic regimens such as 
platinum agents or paclitaxel [75–77].

It has recently been suggested in murine models 
that elevated estrogen levels, which are a typical feature 
of obesity, may play a role in EOC carcinogenesis [36]. 
Moreover some epidemiological studies have shown that 
increased androgen and decreased progesterone serum 
levels (hormonal changes which appear in diabetes) may 
be even more important for the risk of developing EOC: 
excess androgenic stimulation of ovarian epithelial cells 
might increase the risk and that it could, conversely, 
be decreased by factors related to greater progesterone 
stimulation [75]. This hormonal setting (increased serum 
androgen levels and decreased serum progesterone levels 
rather than altered serum estrogen levels) appear in dia-
betes and may be one reason for the increased risk of EOC 
in T2D.
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Figure 1: Molecular mechanisms linking type 2 diabetes and endometrial cancer.
T2D, type 2 diabetes; IGFBP-1, insulin-like growth factor binding protein 1; SHBG, sex hormone binding globulin; IGF-1, insulin-like growth 
factor-1.



Anastasi et al.: Type 2 diabetes and gynecological cancer      1417

Although there is no experimental evidence for the 
positive association between insulin and EOC, some 
studies have shown that the increased serum levels of 
IGF-1, IGF-1R and IGFBP-2 were associated with EOC tumo-
rigenesis [18].

Additionally, it has been reported that the ovary dis-
plays insulin sensitivity and steroidogenesis induced by 
insulin and IGFs suggesting that T2D could be an impor-
tant risk factor for ovarian cancer [78].

One study demonstrated that IGF-1 in human ovarian 
OVCAR-3 cells enhanced the expression of KCl cotransport 
(KCC). IGF-1  may promote cancer development and pro-
gression in part through its action on KCl cotransporter: 
IGF-1 binds to IGF-1 receptor on EOC cell activating PI3K 
and Erk1/2 MAPK whose signaling pathways are required 
for IGF-1 stimulating production of KCC isoforms. The KCC 
activity is necessary for IGF-1-dependent EOC invasiveness 
and proliferation in vitro [79].

Other studies have also shown that IGF-1 and IGFBP-2 
in human EOC cell lines resulted in the induction of cel-
lular proliferation and invasion through phosphorylation 
of AKT and ERK1/2 [80, 81].

Considering these findings, IGF-IR may be seen as a 
potential new molecular target in EOC: elevated IGF-I and 
IGF-II levels have indeed been associated with decreased 
survival in EOC. It has been evaluated the antineoplastic 
activity of an IGF-1R inhibitor in EOC and the impact of 

a combination therapy using IGF-1R inhibitor with a poly 
ADP-ribose polymerases (PARP) inhibitor: the results sug-
gested that it might be an effective strategy to circumvent 
resistance to treatment in clinical settings [82–84].

It has been observed that the ovarian carcinogen-
esis inflammation is involved in the relationship between 
increased ovulation and ovarian cancer risk but is also 
related to the chronic inflammatory state typical of T2D: 
epidemiological evidence suggests that inflammation 
may be an underlying mechanism in the development of 
ovarian cancer and multiple inflammation markers, spe-
cifically PCR, IL-2, IL-4, IL-6, IL-12, and IL-13 may be associ-
ated with risk of EOC [85–87].

The role of androgen in stimulating the prolifera-
tion of EOC cells may also be associated with increased 
IL-6 and decreased transforming growth factor-β (TGF-β), 
which were included in the proinflammatory network of 
T2D [88].

The IL-6/STAT3 signaling pathway may mediate FSH-, 
LH- and estrogen-stimulated HOSE cell proliferation. 
Increased IL-6R α expression and constitutive STAT3 acti-
vation may be associated with ovarian cancer. Androgens 
may promote OC progression in part by decreasing TGF-β 
receptor levels, thus blocking the action of TGF-β, a potent 
inhibitor of ovarian epithelial cell growth in culture and 
ascites-derived ovarian cancer cells [89]. These concepts 
are summarized in Figure 2.
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Figure 2: Biological connections between type 2 diabetes and epithelial ovarian cancer features.
T2D, type 2 diabetes; IGF-1, insulin-like growth factor-1; IGFBP2, insulin-like growth factor binding protein 2; IL-6, interleukin-6; 
KCC, KCl cotransporter; AKT/ERK1, AKT/extracellular-regulated kinase; TGF-β, transforming growth factor-β.
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T2D and cervical cancer (CC)
Worldwide, cervical cancer (CC) is the fourth most fre-
quent cancer in women with an estimated 530,000 new 
cases in 2012 representing 7.5% of all female cancer 
deaths. In 2012, approximately 270,000  women died 
from CC: more than 85% of these deaths occurred in low- 
and middle-income regions, as in developed countries 
screening programs make most pre-cancerous lesions 
identifiable at stages when they can easily be treated; 
early treatment prevents up to 80% of CCs in women from 
these countries [90].

A significant correlation between the incidence of 
CC and T2D, as well as the impact of T2D on prognosis 
for patients with CC, still has not been determined, but 
an association between the IGF-1 levels and CC has been 
reported [91].

Hyperglycemia and hyperinsulinemia in patients with 
T2D may reduce the hepatic production of IGF binding 
protein 1 and increase free IGF-1 levels: increased IGF-1 
levels in T2D patients and overexpression of IGF-1R in CC 
cells activates the IGF axis and possibly results in poor 
prognosis [92].

Therefore, it has been hypothesized that CC cells’ 
high-grade expression of IGF-1R could be seen as a predic-
tor for high risk of death and disease recurrence in early 
stage CC [93].

Regarding the impact of T2D on patients who already 
have CC, it has been suggested that T2D may increase the 
risk of cancer recurrence and death for early stage CC 
patients, even after curative treatments. Thus, incorpo-
rating T2D screening should be considered as part of the 
continuum of care for early stage CC patients, and close 
surveillance during routine follow-up in this population 
should be recommended [94].

Early stage CC patients with type 2 DM have a poorer 
oncological outcome than patients without DM [95]. These 
concepts are summarized in Figure 3.

T2D and vulvar cancer (VC)
Vulvar cancer (VC) is the fourth most common gyneco-
logic cancer and accounts for 5% of all malignancies of 
the female genital tract (after uterine corpus, ovarian and 
cervical cancer).

Squamous cell carcinoma (SCC) accounts for approxi-
mately 95% of malignant tumors of the vulva [96]. Two 
causal pathways for vulvar SCC exist: HPV-related and 

non-HPV-related SCC. HPV related SCC arises in younger 
women (63 years) and accounts for 20% of invasive disease 
versus non-HPV-related SCC (70  years), which accounts 
for 80% of invasive disease [97]. Because of the rarity of 
VC, little is known about epidemiologic risk factors. T2D 
seems to correlate to the incidence of VC, but it does not 
appear to be responsible [98].

The association between major features of T2D and 
VC has been discussed in the literature. Several early 
clinical observations suggested that obesity had a dis-
tinctive role in the etiology of invasive SCC and might 
predispose to VC, but some epidemiologic studies have 
not confirmed significant relations. However, the Meta-
bolic Syndrome and Cancer Cohort found that 1 stand-
ard deviation (SD) increase in BMI was associated with a 
36% increased risk of VC, while the The Million Women 
Study found subjects with BMIs of ≥30 kg/m2 to be at 
70% higher risk than those with BMIs <25 kg/m2. There 
is also a direct association of blood glucose with the risk 
of rare gynecological cancers overall and VC: T2D is often 
associated with vulvar dystrophies and chronic derma-
titis and both are suspected risk factors for invasive VC. 
Hypertriglyceridemia which is a common feature in T2D, 
is associated with frequent infections and inflamma-
tion and was strongly associated with increased risk of 
VC [99]. Finally, we found that obesity, elevated concen-
trations of blood glucose and triglycerides, which were 
positively associated with risk of rare female cancers, all 
contribute to the development of hyperinsulinemia and 
the maintenance of low grade systemic inflammatory 
state that could underlie the association of these factors 
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Figure 3: Possible links between type 2 diabetes and cervical 
cancer outcomes.
T2D, type 2 diabetes; IGF-1R, insulin-like growth factor-1 receptor; 
IGFBP-1, insulin-like growth factor binding protein 1; IGF-1, insulin-
like growth factor-1.



Anastasi et al.: Type 2 diabetes and gynecological cancer      1419

and risk of VC even if the exact underlying molecular 
mechanism hasn’t been clarified yet.

Moreover, it has been showed that diabetes is a risk 
factor for short and long-term complication after surgical 
treatment of VC but conversely, T2D does not seem to have 
a role in vulvar SCC prognosis, which is dependent most of 
all by inguinofemoral node status [100, 101].

Diabetes medications and  
gynecologic cancer
Several epidemiological and experimental studies focused 
on the potential role of diabetes medications in cancer 
development in women. In this section we discuss the 
relationship between women cancer risk and insulin and 
insulin analogs, metformin, thiazolidinediones (TZDs) 
and sodium-glucose cotransporter-2 (SGLT2) inhibitors.

Insulin and insulin analogs

As hyperinsulinemia and IGF-1  signaling seem to be 
involved in cancer promotion and progression, high circu-
lating insulin levels in patients requiring insulin injection 
were suspected to increase cancer risk: elevated risk of 
cancer has been reported in patients on any use of insulin 
and in particular of long-acting insulin glargine [102–104].

In the literature the results are contrasting. The ORIGIN 
study (Outcome Reduction with Initial Glargine Interven-
tion), a randomized, placebo-controlled, multi-country trial 
of 12,537 patients followed for a 6.2 years found no evidence 
of increased cancer risk (HR: 1.00; CI: 95%: 0.88–1.13) with 
insulin glargine [105]. This result was confirmed by the ORIG-
INALE (The ORIGIN and Legacy Effects) study, which meas-
ured post-trial effects on 4718 patients originally allocated 
to insulin glargine (2351) versus standard care (2367) during 
an additional 2.7  years: from randomization to the end of 
post-trial follow-up, no differences were found between glar-
gine and standard care groups about any cancer (HR 0.99,  
CI: 95%: 0.88–1.12; p = 0.91) [106].

A tumor-promoting effect of glargine was found in in 
vitro studies on human endometrioid EC cells: glargine 
stimulated cell proliferation, displayed an anti-apoptotic 
effect, had a positive effect on cell cycle progression in 
endometrioid EC cell lines, and induced a dual activation 
of the IR and IGF1R [107].

Conversely, it is important to note that many studies 
found that glargine did not increase carcinogenic risk, 

and a neutral link between glargine and overall/cancer-
specific outcomes was also suggested [108–110].

Metformin

Metformin is an insulin sensitizer which improves insulin 
sensitivity and reduces insulin circulating levels. It has 
additionally been identified to decrease carcinogenic risk 
and inhibit cancer cell growth [111].

The anticancer action of metformin involves the 
enhancement of phosphorylation of liver kinase B1, the 
inhibition of the mammalian target of rapamycin (mTOR) 
pathway through adenosine monophosphate-activated 
protein kinase (AMPK) activation [112].

Metformin is anticipated to exert antitumor effects in 
gynecological cancer, and its efficacy for the treatment of 
endometrial and ovarian cancer has been suggested in 
preclinical studies and clinical trials. Although the effect 
of metformin on CC remains to be examined in clinical 
trials, its antitumor effects have been reported in preclini-
cal studies [113].

It has been demonstrated that an antidiabetic dose 
of metformin suppressed EC cell growth in vivo due to its 
effect on humoral factor(s) and among these, IGF-1 and 
leptin, but not insulin, were potentially responsible [114].

In vitro studies have demonstrated that metformin 
inhibits the growth of cancer cells in a dose-dependent 
way inducing cell cycle arrest and apoptosis and deter-
mining a decrease of EC cells migration and invasion [115].

Metformin was reported to inhibit the proliferation of 
EC cell lines by activating AMPK which negatively regu-
lates aerobic glycolysis in cancer cells and suppresses 
tumor growth in vivo [116].

AMPK also negatively regulates mTOR, the mamma-
lian target of rapamycin whose signaling is activated in 
many cancer types [117].

Endometrial cancer is characterized by genetic aber-
ration including activation of mTOR and loss of PTEN, a 
tumor suppressor gene which regulates the cell cycle and 
survival through its signal transduction pathway and 
whose loss enhances stimulation of the mTOR pathway 
[118, 119].

A synergism between metformin and paclitaxel in vitro 
in animal models has also been demonstrated and it was 
found a synergistic action of metformin with medroxypro-
gesterone acetate and in downregulation of GloI expres-
sion, an important enzyme related to glycometabolism 
whose overexpression is related to progestin resistance in 
EC cells [120, 121].
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The results of studies on EC survival and metformin 
use in diabetic women are still contrasting. Many in vitro 
studies reported that metformin was cytotoxic to the 
ovarian cancer cells activating the AMPK pathway in a 
time- and dose-dependent manner [122–124].

It has been shown that p53 is involved in mediat-
ing the energy-conserving response to AMPK activation 
and that loss of p53  heightens the metformin-induced 
energy stress on cancer cells, metformin may have 
increased efficacy in p53-deficient tumors, like ovarian  
cancer [125].

Two studies have also reported that metformin 
induces apoptosis in ovarian cancer cells and it has been 
shown that it inhibits ovarian cancer cell adhesion, inva-
sion and migration [126–128].

Inhibition of angiogenesis was suggested and a recent 
report indicates that, in ovarian cancer, metformin inhib-
its adipocyte-induced proliferation and migration of 
cancer cells [129].

Preclinical reports, as well as in vivo and in vitro studies 
in ovarian cancer indicate that metformin increases the 
response to carboplatin and paclitaxel chemotherapy, and 
it has been widely demonstrated that metformin improves 
the response to cisplatin and that a combination of met-
formin and cisplatin inhibits the growth of ovarian cancer 
stem cells in vitro and in mouse models [130, 131].

Furthermore, it has been recently demonstrated that 
metformin may significantly reduce the risk of CC, espe-
cially when the cumulative duration is more than 2 years 
[132].

In T2D patients with CC metformin use has been asso-
ciated with improved disease free survival (but not overall 
survival) and a lower cervical cancer-specific and overall 
mortality among older women with diabetes has been sug-
gested in association with cumulative metformin use after 
CC diagnosis [133].

A suppression of CC cell growth with metformin treat-
ment has been revealed in three studies using cell lines: 
in CC cells, metformin activates AMPK and cause mTOR 
underexpression, which has been associated with poor 
prognosis in CC [134–136].

Twenty percent of CCs have LKB1  mutations: met-
formin may augment LKB1 tumor suppressive effects, 
inhibit cell growth and decrease tumor cell viability via 
activation of LKB1AMPK signaling in CC [137].

Differently from other gynecological cancers, met-
formin in CC has an anti-proliferative effect by inducing 
apoptosis and autophagy rather than causing cell cycle 
arrest [138].

Lately in vitro studies on CC focused on Wnt/β-catenin 
signaling, inhibition of FOXM1  signaling, and inhibition 

of heme oxygenase-1 expression, which sensitizes CC cells 
to paclitaxel [139–141].

Other medications

Thiazolidinediones (TZDs)

TZDs are insulin-sensitizing drugs which reduce insulin-
resistance: some authors found a decreased risk of car-
cinogenesis in TZD users [142, 143]. Particularly it has been 
observed that troglitazone decreased proliferation and 
inhibited the growth of ovarian cancer cells [144]. Con-
versely, another study presented an association between 
TZD and increased risk of cancer especially in T2D females 
[145].

Anyway the effects of these medications on cancer 
promotion and progression are inconsistent in in vitro and 
animal models [146]. Also epidemiological studies did not 
find a consistent association between TZDs and reduced 
risk of gynecologic cancer [147].

SGLT2 inhibitors

SGLT2 inhibitors are a new class of antidiabetic agents 
which lower blood glucose by reducing renal glucose 
reabsorption and increasing urinary glucose excretion.

Few papers have looked at SGLT expression in 
malignancies and only one published study has demon-
strated functional glucose uptake through the SGLTs in 
tumors [148].

However, animal studies did not find an association 
between treatment with dapagliflozin and cancer risk. 
The relationship between SGLT2 inhibition and cancer is 
still inconclusive and studies with larger sample size and 
longer exposure are needed [149].

Conclusions
Currently, there is good evidence in epidemiological studies 
of a higher prevalence and incidence of female cancer in dia-
betes. T2D and gynecological cancers share common mecha-
nisms, such as enhanced insulin and IGF signaling, and 
chronic inflammation. Ovarian steroid hormones have also 
been related to cancer initiation and progression and free 
steroid hormones seem to be increased in women with T2D.

The association between cancer in women and T2D 
is partly related to obesity. In particular, the link between 
EC and T2D regardless of obesity is less clear. Thus, future 
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research should focus on this aspect and more studies are 
needed to clarify the effect of other confounders, such 
as some diabetic medication. Accordingly, the American 
Association of Clinical Endocrinologists and the Ameri-
can College of Endocrinology affirmed the importance of 
further research on these issues in a joint consensus.

According to the literature, T2D women have an 
increased risk for developing gynecological cancers there-
fore we suggest planning surveillance programs for this 
population: they could include the dosage of biomarkers 
related to gynecological tumors as recent studies strongly 
demonstrated their capability to detect these malignances 
in the early stages, when more treatment options are  
available to improve patients survival [150, 151].

More studies should also investigate the real impact 
of diabetes on the prognosis of female neoplasms, in order 
to possibly better customize the diagnostic and therapeu-
tic algorithms in patients with T2D and cancer and for 
improving the managing of specific cancers according to 
the personalized profile of each woman with T2D.
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