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Abstract: Crohn’s disease (CrD) and ulcerative colitis (UC)
are the main inflammatory bowel diseases (IBD). IBD-
specific humoral markers of autoimmunity in the form of
autoantibodies have been reported first in the late 1950s
by demonstrating the occurrence of autoimmunity in UC,
while humoral autoimmunity in CrD can be traced back to
the 1970s. Ever since, the pathophysiological role of auto-
immune responses in IBDs has remained poorly under-
stood. Notwithstanding, autoreactive responses play a
major role in inflammation leading to overt IBD. In CrD,
approximately 40% of patients and <20% of patients with
UC demonstrate loss of tolerance to antigens of the exo-
crine pancreas. Glycoprotein 2 (GP2) has been identified
as a major autoantigenic target of the so-called pancreatic
antibodies. The previously unsolved contradiction of pan-
creatic autoreactivity and intestinal inflammation in IBD
was elucidated by demonstrating the expression of GP2 at
the site thereof. Intriguingly, GP2 has been reported to be
a receptor on microfold cells of intestinal Peyer’s patches,
which are believed to represent the origin of CrD inflamma-
tion. The development of immunoassays for the detection
of antibodies to GP2 has paved the way to investigate the
association of such antibodies with the clinical phenotype
in CrD. Given the recently discovered immunomodulating
role of GP2 in innate and adaptive intestinal immunity,
this association can shed further light on the pathophysi-
ology of IBD. In this context, the association of anti-GP2
autoantibodies as novel CrD-specific markers with the
clinical phenotype in CrD will be discussed in this review.
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Autoimmunity in Crohn’s disease

Crohn’s disease (CrD) and ulcerative colitis (UC) are the
most frequently diagnosed inflammatory bowel diseases
(IBDs) with a prevalence ranging from 0.01% up to 0.44%
depending on age and demographic factors [1-3]. In a recent
systematic review, the highest annual incidence of CrD has
been determined at 12.7 per 100,000 person-years in Europe,
5.0 person-years in Asia and the Middle East, and 20.2 per
100,000 person-years in North America [4]. The time-trend
analyses of this review revealed an increasing incidence of
statistical significance for 75% of CrD studies. Interestingly,
a comparable figure (60%) has been found for UC suggest-
ing an overall increasing incidence and prevalence of IBDs
with time. The reasons for this rise are currently unclear.
Therefore, it is not surprising that both IBDs account for
a substantial percentage of the overall direct and indirect
costs spent on the healthcare system as recently reported
by the Centers for Disease Control and Prevention (CDC)
for the US. In fact, as many as 1.4 million persons in the
USA suffer from IBDs (http://www.cdc.gov/ibd/#epidIBD)
and these diseases represent one of the five most prevalent
gastrointestinal disease burdens. Altogether, IBD account
for more than 700,000 physician visits and 100,000 hos-
pitalizations with an overall healthcare cost of more than
$1.7 billion. Based on the data estimations, up to 75% of
patients with CrD and 25% of those with UC will develop
complications requiring surgery in the course of disease.
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CrD is a lifelong disease characterized by various
clinical symptoms including abdominal pain, weight loss,
and bloody or non-bloody diarrhea [5]. The transmural
inflammation characteristic for patients with CrD affects
all layers of the bowel wall and adventitia [1]. In contrast
to UC, CrD-related tissue lesions are not confined to the
rectum and colon and can be detected in the whole diges-
tive tract [6] often with the involvement of the terminal
ileum [1, 7]. Tissue lesions in CrD can manifest as fissures,
abscesses, strictures, or fistulas. Histologically, CrD is char-
acterized by a focal (discontinuous) chronic inflammation,
focal crypt architectural irregularities, and granulomas in
about half of the patients. In UC, the main symptoms are
bloody diarrhea and abdominal pain. The inflammation is
usually confined to the colon with a continuous expanse
ascending from the rectum. Typically histological features
of UC are different from CrD and include mononuclear
inflammation in the lamina propria, crypt distortion, and
goblet cell (mucin) depletion. The relative risk for colorec-
tal cancer is increased in patients with CrD and UC com-
pared to the non-IBD population and is associated with the
anatomic expanse of inflammation, duration of disease,
and presence of additional risk factors (e.g., primary scle-
rosing cholangitis) [8, 9]. Patients with CrD have also an
increased risk for small bowel cancer [10].

Thus, CrD and UC encompass a multisystem group of
global disorders with specific clinical and patholophysi-
ological features [4, 11]. Over the last few years, significant
attempts have been made focusing on therapeutic inter-
ventions for patient care. Also, research initiatives have
been focused on the pathophysiological alterations that
characterize these heterogeneous diseases.

Autoimmunity has been assumed to partake in the
pathophysiology of IBD in the late 1950s by demonstrat-
ing the occurrence of autoreactive antibodies in UC [12].
First reports on humoral autoimmunity in CrD can be
traced back to the late 1970s. Walker described a possi-
ble diagnostic test for CrD by the use of buccal mucosa as
a substrate in indirect immunofluorescence (IIF) for the
detection of respective autoantibodies [13]. Loss of immu-
nological tolerance observed in CrD and UC has been
reported mainly for exocrine pancreatic, neutrophilic,
and intestinal goblet cellular antigens [14-16].

Apart from genetic predisposition and environmen-
tal factors, autoimmunity is thought to play an important
role in the induction of IBD and particularly in CrD [1,
17]. Regarding genetics, NOD2 gene mutations have been
reported to be associated with the risk and site of disease
in IBD [18]. By means of genome-wide association studies,
IBD5 locus (5g31-33 region) has been demonstrated to be
strongly associated with UC, whereas the NOD2 (16q12)
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and major histocompatibility complex (MHC) (6p21)
locus appear to be linked to CrD [19]. In general, it is
believed that a “western” or “westernized” diet on a pre-
disposed genetic background seems to lead to an imbal-
ance between innate and acquired immunity which is
accompanied or brought about by an impairment of the
intestinal barrier, as well as changes in the gut microbiota
[20-23]. The intestinal flora is essential to perpetuate the
inflammatory process in the pathophysiology of IBD [23].

Association of pancreatic
autoimmunity with the Crohn’s
disease phenotype

Following Walker’s report of antibuccal mucosa autoan-
tibodies in CrD, Stocker et al. noted in 1984 that the pres-
ence of pancreatic antibodies (PAB) determined by IIF is
a characteristic feature of patients with CrD [24]. Up to
40% of patients suffering from CrD develop loss of toler-
ance to exocrine pancreatic antigens. The prevalence of
humoral autoimmunity largely varies amongst studies
investigated (Table 1). This discovery has led to intensive
research on the role of pancreatic autoimmunity and the
presumed association of these autoantibodies with the
clinical phenotypes. Research has also been focused on
the pathophysiology of CrD and the mechanisms that lead
to the induction of autoreactive responses. According to
the Montreal classification, stratification of CrD patients
is based on age at onset of disease, disease behavior and
location [25]. An extensive Hungarian study including 579
CrD patients associated the presence of PABs with pene-
trating disease behavior, perianal disease, and extraintes-
tinal manifestations but not with the CrD-characteristic
genotype of NOD2/CARD15 or the expression of the innate
immunity toll-like receptor 4 (TLR4) [26]. Indeed, 68% of
CrD patients with extraintestinal complications such as
idiopathic chronic pancreatitis appear to demonstrate
PAB [27-30]. Investigating 252 CrD patients, Seibold’s
group in Switzerland found a negative association of
PABs with inflammatory CrD and revealed a trend towards
small bowel disease and small bowel surgery. In contrast
to the Hungarian study, this latter report did not find a
significant correlation with penetrating disease behavior
[31]. A multicenter study involving 109 CrD patients from
five university hospitals in France and one in Luxemburg,
failed to identify an association between PABs and clinical
features of the disease except of a relationship between
the presence of the autoantibodies and an early disease
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Table 1 Occurrence of pancreatic antibodies (PAB) detected by indirect immunofluorescence on human or monkey pancreas sections
in patients suffering from inflammatory bowel diseases and controls.

CrD uc BD Disease controls Country References

23/59 (39%) 2/46 (4%) 3/100 (3%) Germany [14]
31/82 (38%) 0/65 (0%) 0/250 (0%) 0/100 (0%) SARD, ALD, intestinal neoplasia Germany [101]
32/77 (42%) 18/73 (25%) 0/100 (0%) 0/31 (0%) NIBD, 1/16 (6%) SARD Greece [116]
54/168 (32%) 28/120 (23%) 0/100 (0%) 24/108 (22%) FDR, 1/78 (1%) NIBD Belgium [32]
68/222 (31%) 2/51 (4%) 0/65 (0%) 0/133 (0%) NIBD Germany [34]
29/76 (38%) 2/61 (3%) 2/56 (4%) 7/106 (7%) FDR Germany [117]
43/109 (37%) 6/78 (8%) 1/50 (2%) France [30]
9/64 (14%) 5/63 (8%) 0/28 (0%) 4/130 (3%) FDR Turkey [114]
238/579 (41%) 25/110 (23%) 8/100 (8%) 3/64 (5%) NIBD, 10/43 (22%) CeD Hungary [26]
60/210 (29%) 0/47 (0%) 0/50 (0%) Germany [115]
13/43 (30%) 0/28 (0%) 0/41 (0%) Slovenia [118]
34/100 (34%) 4/99 (4%) 1/100 (1%) Australia, China [119]
72/178 (40%) 21/100 (21%) 0/162 (0%) Germany [46]
35/103 (34%) 10/49 (20%) 0/104 (0%) Hungary? [33]
29/96 (30%) 2/39 (5%) 0/50 (0%) Germany [42]
55/252 (22%) 0/53 (0%) 0/43 (0%) Switzerland [120]

3Pediatric disease onset only. ALD, autoimmune liver diseases; BD, blood donors; CeD, celiac disease; CrD, Crohns’ disease; FDR, first
degree relatives of patients with IBD; NIBD, non-IBD inflammatory gastrointestinal disorders; Ref, reference; SARD, systemic autoimmune

rheumatic diseases; UC, ulcerative colitis.

onset [30]. An earlier study from Leuven including 169 CrD
patients established a significant negative association of
stricturing disease behavior and PAB seropositivity [32].
A recent study based on a cohort of 103 Hungarian
children with CrD did not demonstrate any association of
PAB with clinical features of disease [33]. These data could
support the notion that pediatric IBD are probably dis-
tinct entities compared to the adult forms of the disease.
However, discrepancies amongst studies could be a result
of the poor standardization of PAB testing by IIF due to the
use of different sources of pancreatic substrates and tech-
nical experience with the method. Thus, the search for the
autoantigenic targets responsible for the CrD-specific IIF
patterns seen on pancreatic tissue could provide the neces-
sary tools for molecularly base assays. Such a progress could
assist the efforts made by investigators to study the fine
specificity of humoral and cellular autoimmune responses
and their role in the development of CrD. However, there has
been surprisingly little progress in the identification of the
putative targets of PAB and the understanding of their pos-
sible impact on the pathophysiology of IBD until recently.

Identification of CrD-specific
pancreatic autoantigens

Since its first description in 1984, several groups have
tried intensively to identify the autoantigenic targets of

PAB [24, 34-38]. Hence, the simultaneous report of the
discovery of glycoprotein 2 (GP2) as a CrD-specific pan-
creatic autoantigen by two groups — that of Stocker’s and
our group in 2008 was a remarkable coincidence [39-42].
Employing two-dimensional electrophoresis and matrix-
assisted laser desorption ionization time-of-flight mass
spectrometry, we identified GP2 by an interdisciplinary
collaboration and demonstrated the specific interaction of
PAB with recombinant human GP2 transiently expressed
in mammalian HEK293 cells [40].

Pancreatic autoantibodies can reveal two different IIF
patterns according to the location of specific IIF signals
providing the basis for the differentiation of two PAB types
[43]. Type 1 and 2 PABs are characterized by an extracellu-
lar drop-like staining of the acinar lumen and a speckled
cytoplasmic staining of acinar cells, respectively. These
PABs can interact with GP2 after its release, together with
digestive enzymes, into the pancreatic ducts (PAB type 1)
or with its membrane form of granules in the acinar cells
(PAB type 2) [44]. Due to its tendency for self-binding, GP2
forms high molecular complexes in the pancreatic juice
after discharge (Figure 1). This may lead to the formation
of conformational autoantigenic neoepitopes [44]. This
phenomenon is consistent with the documented high
molecular weight of the PAB reactive pancreatic juice
protein observed by Seibold et al. [34].

Stocker et al. discovered GP2 only as a PAB type 1-reac-
tive pancreatic autoantigen by a different immunochemi-
cal approach [42]. Notably, these authors identified CUB/
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Figure1 Synthesis and function of human glycoprotein 2 at different gastrointestinal sites.

Intracellular glycoprotein 2 (icGP2) has been found in acinar cells of the exocrine pancreas and reported to be shed together with diges-
tive enzymes into the pancreatic duct as extracellular GP2 (ecGP2). Further, ecGP2 is transported via the pancreatic duct into the intestinal
lumen. Provided that GP2 is not degraded by activated digestive enzymes, GP2 can opsonize FimH-positive microbes (FimH +) in the gut.
Simultaneously, GP2 (mGP2) is synthesized in microfold cells (M) of the follicle-associated epithelium (FAE) and presented as a membrane
bound-receptor which can grab FimH-positive bacteria for transcytosis by these cells.

zona pellucida-like domain-containing protein (CUZD1)
as an autoantigenic target of type 2 PAB [41, 45]. In this
context, it is interesting to note, that almost all type 2
PAB positive sera also show a weak type 1 PAB staining
by IIF at least on human pancreas [43]. Furthermore,
type 2 PAB does not seem to differentiate CrD patients
from UC patients whereas type 1 PAB appears to be able
do so [32].

In fact, anti-GP2 reactivity is not universally found
in all PAB-positive patients. Thus, the presence of other
autoantigenic PAB targets cannot be ruled out [40, 46, 47].
However, GP2 is the only PAB reactive autoantigen which
appears to have a profound link with the intestinal loca-
tion of disease in CrD patients. In contrast to CUZD1, both
elevated transcription of GP2 mRNA and translation of
GP2 have been demonstrated in intestinal biopsy samples
of CrD patients apart from the main pancreatic GP2 syn-
thesis [17, 40]. CUZD1, also known as UO-44, is expressed
in cancerous ovarian tissue and is considered a novel sero-
logical biomarker for ovarian cancer [48]. However, North-
ern blot analysis revealed two differing human pancreatic
UO-44 transcripts [49, 50]. To the best of our knowledge,

corresponding data regarding CUZD1 expression in the
intestine are still lacking [17, 51].

Glycoprotein 2 and the link to
intestinal inflammation

For several years, GP2 has been generally known as the
most abundant membrane protein of pancreatic acinar
cells not expressed in endocrine pancreas tissue [52].
Noteworthy, autoimmunity to endocrine pancreas is a
hallmark of type 1 diabetes [53]. Mainly during digestion,
GP2 is discharged along with digestive enzymes by the
acinar cells into the pancreatic duct (Figure 1) [44, 54].

Thus, the identification of GP2 as a specific receptor
on microfold (M) cells of intestinal Peyer’s patches (PP) by
Hase et al. ushered in a new age of autoimmunity research
in IBD [55-57].

The seminal paper of Hase et al. demonstrated GP2
to be involved in the generation of humoral immune
responses to molecules of the intestinal content interacting
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specifically with GP2 on M cells [55]. These findings have
led to a better understanding of autoimmunity against GP2
in CrD-specific inflammation and to a dramatic change in
the understanding of the physiology of GP2. It remains to
be elucidated why GP2 is expressed at two different body
sites and to what extent the expression of GP2 in pancreas
or in the intestine regulates the loss of tolerance to this
unique glycoprotein in CrD (Figure 1). Noteworthy, an ele-
vated expression of GP2 at both mRNA and protein levels
has been shown in biopsy samples from patients with CrD
in contrast to patients with UC hinting at a possible direct
involvement of GP2 in the inflammatory processes in CrD
[40]. Furthermore, a higher mucosal synthesis of GP2 has
been reported in patients with pouchitis, an inflammation
of the small bowel developing in up to 60% of UC patients
undergoing proctocolectomy and ileal pouch anal anasto-
mosis (IPAA) [58]. In this disease subset, patients with de
novo development of CrD demonstrated a loss of tolerance
to GP2 [59].

To elucidate the role of GP2 in intestinal inflammation
and to understand the loss of tolerance to this unique gly-
coprotein, its physiological role at both sites and, in par-
ticular, in the intestine warrants special attention.

Physiological role of glycoprotein 2

Until the identification of GP2 as an intestinal receptor
on M cells, GP2 has been considered a critical constituent
which affects pancreatic granule formation by interacting
with other zymogen granule membrane proteins or pro-
teoglycans in a submembranous matrix [60—62]. However,
much to the surprise of gastroenterologists, this hypoth-
esis could not be supported by the pathophysological
features of a GP2-deficient mouse model [63]. Therefore,
research on GP2’s urinary homologue, the Tamm-Horsfall
protein (THP) or uromodulin, has also been considered
important to reveal GP2’s physiological functions [64,
65]. THP is the most abundant urinary protein which is
secreted by renal tubular epithelial cells of the ascend-
ing limb of the loop of Henle in the urinary tract [65,
66). Interestingly, both glycoproteins share one common
ancestor gene which evolved separately during the phy-
logenesis to acquire tissue specificity in the digestive and
urinary systems [67]. It has been tempting to speculate
that common features regarding their putative functions
could have been preserved in both organ systems. Exten-
sive research revealed an anti-microbial function of THP
by its binding to uropathogenic type 1 fimbriated Escheri-
chia coli [68]. Defective THP synthesis is associated with

Roggenbuck et al.: Pancreatic antibodies in Crohn’s disease = 487

an elevated susceptibility of mice to urinary tract infec-
tions [69]. In this context, the elegant study by Hase et al.
demonstrated that GP2 selectively binds to a subset of
commensal and pathogenic enterobacteria, including
E. coli and Salmonella enterica serovar Typhimurium [55].
Akin to THP, this type of binding is mediated by FimH of
type I pili on the bacterial outer membrane [70]. Thus, GP2
on M cells can serve as a transcytotic receptor for bacterial
antigens and, therefore, partake in the mucosal immune
response to these particular bacteria [56]. Thus, the ele-
vated phagocytosis of E. coli by monocytes observed after
treatment with GP2 supports the notion that GP2 may have
a broader pro-phagocytotic ability [71].

Intriguingly, THP has also been shown to modulate
innate and adaptive immunity of the urinary tract [72].
Likewise, a putative immunomodulating role of GP2 has
been addressed recently [71, 73]. Glycoprotein 2 has been
identified as a binding partner of the scavenger recep-
tor expressed on endothelial cells I (SREC-I), which can
be also found on dendritic cells [73]. Actually, SREC-I is
present on monocyte-derived dendritic cells and may
react with GP2 or GP2-bound complexes. The ability of
SREC-I expressing dendritic cells to internalize GP2 or
GP2-related complexes has also been considered. This
ability has profound effects on the understanding of GP2
as denderitic cells play an important role in the generation
of innate and adaptive immune responses [74]. Interest-
ingly, the synthesis of GP2 appears to be up-regulated on
activated human T cells and to be modulated by pharma-
ceutical TNFo inhibitors [71]. An intriguing finding was
the reduction of human intestinal epithelial cell, mucosal,
and peripheral T cell proliferation and apoptosis by GP2.
Furthermore, intestinal epithelial cells stimulated with
GP2 are potent chemoattractors of T cells.

In this context, it is interesting to note that pro-inflam-
matory CXCL8 secretion decreased in freshly resected
mucosal specimens whereas regulatory TGFB1 increases
in response to GP2. Altogether, these data seem to support
an anti-inflammatory role of GP2 in the mucosal immune
system. Investigating this putative immunosuppressive
effect, Werner et al. obtained data indicating that GP2
modulates such an effect through its interaction with reg-
ulatory T cells [71].

In summary, GP2 is located at the epithelial frontier
of the intestine on the surface of M cells. I appears to play
an important role in keeping the balance of the intestinal
immune system by partaking in the enormous task of dif-
ferentiating between pathogenic and commensal micro-
biota. Therefore, it seems likely that the loss of tolerance
to pancreatic and/or intestinal GP2 modulates the patho-
physiology of IBD and in particular that of CrD [17].
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Autoimmunity to glycoprotein 2
in the pathophysiology of Crohn’s
disease

The pathophysiology in CrD remains to be elucidated.
The current discourse in this context refers to an imbal-
ance between tolerance to commensal microbiota or
food-derived antigens and immune responses to patho-
gens [1]. Thus, mucosal inflammation observed in CrD is
triggered by such dysregulation of the innate as well as
adaptive immune responses [1, 75]. A molecule like GP2
interacting with FimH positive microbes and facilitating
the phagocytosis thereof could play a major role in trig-
gering and perpetuating inflammatory processes in CrD.
In fact, data demonstrating specific pathogenic species
to be linked with CrD have been lacking so far. Notwith-
standing, high concentrations of mucosal microbes and
especially adhesive bacteria which interact with PP have
been found in patients with CrD [76-78]. Furthermore,
gastrointestinal infections appear to pose a higher risk
for triggering CrD inflammation [79]. The de novo devel-
opment of CrD seen in pouchitis patients suffering from
UC initially could be an attractive model to shed light on
the induction of CrD-like inflammatory processes [58].
As mentioned before, the IPAA performed after procto-
colectomy in these patients brings about a change in the
intestinal flora being in contact with the small bowel epi-
thelium [21]. Glycoprotein 2 as a specific M cell receptor
in the FAE of the PP is bound to interact with this new
microbial environment and could be involved in the
immune dysbalance leading to inflammation due to its
reported immunomodulating role. The development of
autoreactivity to GP2 observed in a part of such patients
supports the assumption loss of tolerance to GP2 leads to
or partakes in CrD inflammation. Even the more interest-
ing, the fact anti-GP2 levels are in particular elevated in
pouchitis patients not receiving probiotics compared to
those which do underscores the link of autoimmunity to
GP2 with the intestinal microbiota [58].

Furthermore, GP2 secreted by the pancreas into
the intestine and not digested by zymogenes can also
modulate these inflammatory processes. Currently, they
are believed to be triggered and/or perpetuated by an
increased leakiness of the epithelial barrier, disturbance
of innate epithelial immune mechanisms, and distur-
bance of antigen recognition as well as processing of pro-
fessional and atypical antigen-presenting cells [80-82].
Noteworthy, a disturbed regulatory and effector T cell
balance appears also to be involved [83, 84]. Thus, the
reported regulatory T cell dependent immunomodulating
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role of GP2 is another intriguing phenomenon that needs
to be taken into account in this context [71]. Further
studies are warranted to investigate whether this putative
regulatory mechanism plays a role in the pathophysiology
of CrD.

Emerging evidence suggests PP which are par-
ticularly abundant in the distal part of the ileum to be
potential sites of the inflammatory onset in CrD [85-87].
Thus, GP2 expressed on the surface of M cells in the PP
appears to be located in the very center of CrD inflam-
mation. Intriguingly, certain pathogenic bacteria such
as S. typhimurium bind to and induce the transformation
of M cells from normal intestinal epithelial cells [77, 78].
Since GP2 expression is elevated in the targeted tissue
of patients with CrD compared to patients with UC this
would be in line with the previous finding and provide a
further hint for the putative role of pathogenic bacteria
in triggering CrD inflammatory processes. The associa-
tion of autoreactivity to GP2 with mainly ileal location of
disease seems to support a possible role of autoimmun-
ity in CrD [88, 89].

Intriguingly, loss of tolerance against another recep-
tor in the gastrointestinal tract binding to potential patho-
gens has been shown for the asialoglycoprotein receptor
on hepatocytes. Indeed, this is one of very few organ-spe-
cific autoantigenic targets in patients with autoimmune
liver diseases and, in particular, in autoimmune hepatitis
[90-92]. These findings cumulate in support of the emerg-
ing close interplay between infection and autoimmunity.
Thus, infectious agents recognized by surface receptors
and internalized by epithelial cells may be involved in the
breakdown of immunological tolerance to the receptor
under investigation.

Provided, GP2 represents a major self-target in CrD
inflammation and participates in the triggering events
leading to the maintenance of immunological intolerance
seen in this disease, a GP2-specific response may play a
pathophysiological role in CrD. Thus, humoral loss of
tolerance to GP2 would not be considered an epiphenom-
enon or a bystander effect of unrelated inflammatory phe-
nomena in CrD [17].

Apart from IgG and IgM, PAB of the IgA isotype can
be found in patients with CrD [34]. Consequently, anti-
GP2 IgA has been demonstrated in PAB-positive CrD sera
recently [93, 94]. Remarkably, anti-GP2 IgA appears to be
elevated in patients suffering from celiac disease (CeD).
This feature is another piece of evidence in support of
the hypothesis that loss of tolerance relates closely to
the impairment of the epithelial barrier [95] (Roggen-
buck, unpublished results). Werner et al. have shown that
anti-GP2 IgA can be detected at higher levels in feces of
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patients with pouchitis compared with their anti-GP2 IgG
levels [58]. Thus, secreted anti-GP2 IgA being a dimeric
molecule can theoretically bind to membrane anchored
GP2 on M cell and crosslink GP2 opsonized FimH positive
pathogens increasing the bacterial uptake of an already
inflamed intestinal mucosa.

In summary, the large body of evidence regarding
GP2’s putative pathophysiological functions reported so far
warrants further investigation. In particular anti-GP2 and
their association with the disease phenotype in CrD can be
helpful elucidating the remaining mysteries of IBD [96)].

Serology of Crohn’s disease and
humoral loss of tolerance to GP2

The role of anti-GP2in the serological diagnosis of IBD has
been reviewed extensively [17, 51]. Due to the introduction
of ELISAs for the detection of anti-GP2, quantification of
these autoantibodies as a result of the humoral break of
tolerance has become available in clinical practice [46].
Studies published so far revealed a prevalence of anti-
GP2 by these novel ELISAs ranging from 25% to 30% in
patients with CrD. In contrast, patients with UC demon-
strated significantly less anti-GP2 (9%-12%) [51]. Patients
with, in particular, overt CeD appear also to develop auto-
reactivity to GP2 [95] (Roggenbuck, unpublished results).
In CeD, anti-GP2 IgA correlated with CeD-specific anti-
transglutaminase and antideamidated gliadin IgA giving
support to the hypothesis that a leaky gut induces or
facilitates this break of tolerance [97]. Excluding patients
with CeD and UC, the specificity of anti-GP2 for CrD in
comparison with non-intestinal disease controls is about
98%.

Anti-GP2 may be helpful especially in the case of
undetermined colitis to predict the course of disease [98].
Indeed, in 10%-15% of IBD cases it is difficult to differ-
entiate between CrD and UC and anti-GP2 antibodies may
offer a complementary tool to stratify this specific group
of patients [99, 100].

As other antibodies to microbial polypeptides, gly-
coproteins, and glycans have been reported in patients
with CrD, specific antibody profiling could increase the
differentiating power of the serological diagnosis of
certain IBD entities [101]. Apart from the well-established
antibodies to Saccharomyces cerevisiae (ASCA), antibod-
ies to the outer membrane porin C (OmpC), 12 protein,
CBir1-flagellin, laminaribioside carbohydrate, chitobio-
side carbohydrate, and mannobioside carbohydrate can
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be candidates for CrD-specific markers in the context of
antibody profiling [102]. These antimicrobial antibodies
have been correlated with the severity of disease and
the clinical phenotype in CrD [38, 103-107]. Antibody
profiling has been considered a promising new diagnos-
tic tool for other autoimmune disorders characterized
by multiple autoantibody specificities such as those
of antiphospholipid syndrome or rheumatoid arthritis
[108, 109].

Taking into account the above raised link between
infection and autoimmunity, patients with stricturing
behavior demonstrating fibrostenotic complications have
shown a higher prevalence of anti-GP2 IgG [88, 110, 111].
In contrast, CrD patients with penetrating disease seem
to have a significantly lower prevalence of anti-GP2 IgG.
Such a differential expression of anti-GP2 could not be
confirmed for ASCA which are found elevated in both con-
ditions. According to the Montreal classification of CrD,
patients with ileocolonic location have a significantly
higher prevalence of anti-GP2, whereas CrD patients
with colonic location have been shown to demonstrate
a significantly diminished prevalence thereof [88, 112].
Furthermore, occurrence of anti-GP2 autoantibodies was
significantly more prevalent in CrD patients with young
age at onset of disease (<16 years). These findings provide
evidence for the assumption loss of tolerance to GP2 is
associated with the phenotype in patients with CrD. Anti-
GP2 may be a promising candidate for a fibrosis marker
in CrD and, thus, support further stratification of CrD
patients.

Despite emerging evidence, (auto)antibody-based
disease prediction or stratification and correlation of
(auto)antibody titers with disease activity or clinical
symptoms remains to be elucidated in CrD [94, 113].
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