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Inflammatory bowel diseases: from pathogenesis 
to laboratory testing

Abstract: Inflammatory bowel diseases (IBDs), which 
comprise the two major clinical subtypes, Crohn’s disease 
and ulcerative colitis, incur high morbidity and potential 
mortality. The present study reviews data on the patho-
genesis and diagnosis of IBDs. The pathogenesis depends 
on complex interactions between susceptibility genes, 
environmental factors, and innate and adaptive immunity, 
the understanding of which is crucial to discovering novel 
laboratory biomarkers. Traditional laboratory tests for the 
diagnosis, prognosis and assessment of disease activity of 
IBDs are reported on, and the biochemical properties, pre-
analytical and analytical aspects and clinical utility of the 
fecal markers lactoferrin and calprotectin are described. 
DNA testing and established (ASCA and pANCA) and 
emerging (ACCA, ALCA, AMCA, OmpC) serum markers are 
described; a further aspect to be addressed is the clinical 
use of pharmacogenetics for the treatment of IBDs.
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Inflammatory bowel diseases 
(IBDs) – epidemiology, genetics 
and pathogenesis
Inflammatory bowel diseases (IBDs) comprise a hetero-
geneous group of chronic inflammatory disorders of the 
intestinal tract, most cases having an onset during young 

adulthood, although about 20%–25% of patients are diag-
nosed during childhood [1–3]. Unlike adult IBDs, pediatric 
IBDs have a particularly severe clinical activity, and are pre-
dominant in males, the most frequent clinical presentation 
being ileocolonic inflammation in cases of Crohn’s disease 
(CD) and pan-colitis in ulcerative colitis (UC), the two major 
clinical subtypes. IBDs, one of the largest healthcare chal-
lenges in developed countries, affect over one million 
people in Europe, with a North-South incidence gradient [1]. 
While the incidence of IBDs in western Europe has progres-
sively increased since the World War II, apparently plateau-
ing and now affecting 0.5%–1.0% of the population, it is 
on the increase in areas with a low incidence (eastern and 
southern Europe, the Middle East, Asia, Latin America and 
Indian subcontinent). IBDs have higher morbidity and mor-
tality rates than most other diseases, and incur an important 
risk of complications (in children 29% at diagnosis and 59% 
at follow-up; in adults 16% after diagnosis) [2]. Currently, 
pediatric IBDs are considered a distinct disease rather 
than simply a particularly severe and early presentation 
of a common form of IBDs evolving from pediatric to adult 
age. The exact cause of IBDs is still unknown as no effec-
tive genetic and/or biochemical IBDs markers are available, 
the diagnosis calling for colonoscopy and histology [1]. It is 
believed that the pathogenesis of IBDs depends on complex 
interactions between susceptibility genes, environmental 
factors, and innate and adaptive immunity [4–11].

In the last decade, genome-wide association (GWA) 
studies have been conducted to shed light on genetic loci 
potentially underlying susceptibility to IBDs. The majority of 
studies have been made on adult IBDs, but two large studies 
have been performed on pediatric IBDs [12–18]. Overall, 
it has been confirmed that CD and UC share a common 
genetic ground, but each has distinct genetic features, the 
IBD5 locus (5q31-33 region) being strongly associated with 
UC, and the NOD2 (16q12) and major histocompatibility 
complex (MHC) (6p21) locus with CD [19, 20]. Furthermore, 
adult and pediatric IBDs have some susceptibility loci in 
common but each also has distinct genetic markers. Imie-
linski et  al. [14, 16], who recently conducted the largest 
GWA study among children, validated 31/49 known adult 
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loci and found five new loci associated with early-onset 
IBDs. Several genetic polymorphsims associated with IBDs 
depend on proteins entering the inflammasome multipro-
tein complexes formation, with the consequent activation of 
the cysteine protease caspase-1 and the processing and acti-
vation of pro-IL1b, pro-IL18 and pro-IL33 [21]. This complex 
is formed by a nucleotide binding domain leucine rich 
repeat containing receptors (NLRs), the adaptor molecule 
apoptosis associated speck-like protein (ASC) containing 
the caspase recruitment domain (CARD) and pro-caspase-1 
(Figure 1). The specific name of inflammasome (i.e., NLRP1 
inflammasome or NLRP3 inflammasome) stems from the 
individual NLR number, which might be one of the 22 
known molecules included in the complex [21]. NOD2 may 
also be required to activate NLRP1 inflammasome. Three 
NOD2 polymorphisms [rs2066844 (R702W), rs2066845 
(G908R), rs5743293 (L1007fsinsC)], leading to loss of func-
tion, may be associated with CD [6], while NLRP1 polymor-
phism rs12150220 (Leu155His) has been associated with 
resistance to steroid treatment in young IBDs patients [22]. 
The above data indicate that NLRP1 inflammasome is impli-
cated in IBDs, but epidemiological and experimental data 
suggest that NLRP3 inflammasome is also involved [23]. 
Decreased NLRP3 expression and IL1b production, associ-
ated with the rs6672995 and rs4353135 risk alleles, has been 
linked to increased CD susceptibility [24]; as demonstrated 
in an experimental animal model, this decrease in NLRP3 

Figure 1 NLRP1 and NLRP3 inflammasomes multiprotein 
complexes.
These complexes are formed by a nucleotide binding domain 
leucine rich repeat containing receptors (NLRP), the adaptor 
molecule apoptosis associated speck-like protein (ASC) contain-
ing caspase recruitment domain and pro-caspase-1. The activation 
of NLRP1 inflammasome requires NOD2. The cysteine protease 
caspase-1 activates pro-IL1β, pro-IL18 and pro-IL33.

expression enhances susceptibility to dextran sodium 
sulphate induced colitis [25]. In brief, a number of genetic 
polymorphisms associated with an increased IBDs risk are 
associated with reduced inflammasome complex proteins 
expression, and consequently with a reduced caspase-1 
activity.

The gut mucosa, an extensive surface deputed to 
nutrient absorption, is primarily involved in maintain-
ing a delicate balance between host defence and uncon-
trolled inflammation. Immune system cells, extensively 
present in the gut mucosa, regulate the balance between 
tolerance and inflammation in response to the huge bulk of 
environmental and intestinal microbial antigens reaching 
this large tissue-environmental interface. Intraepithelial 
lymphocytes (IELs), the primary mediators of the innate 
immune response to antigens in the epithelial layer of the 
small intestine, constitute a unique T cell population in that 
they differ from circulating, spleen and lymph node T cells 
(MHC class II restricted CD4+ αβ and MHC class I restricted 
CD8+ αβ). IELs are not MHC class II restricted, mainly 
being made up of ( > 80%) CD8+ T cells, which include 
CD8+ αα‧ T cell (absent in blood), and 10% of CD8-CD4- T 
cells (double negative T cells, rare in blood) [26]. IELs are 
involved in the primary response to foreign antigens (e.g., 
food and microbial proteins), but are also autoreactive to 
“self-engendered” molecules deriving from infection or cell 
transformation; these molecules are independent of foreign 
epitopes [27]. The adaptive immune response taking place 
in the lamina propria, which has been well characterized in 
celiac disease with CD4+ T cells responding to antigens in a 
MHC class II restricted manner [28–31], is also implicated in 
IBDs. Innate and adaptive immune response are mediated 
by dendritic cells in the intestinal mucosa which, through 
the release of different cytokines, may either induce toler-
ance or evoke a cascade of inflammatory events ultimately 
leading to chronic inflammation. Dendritic cells in the gut 
mucosa may favor tolerance by releasing high amounts of 
the anti-inflammatory cytokine IL10 or promote inflamma-
tion through the release of IL12. The finding that IL10 and 
IL12 genetic polymorphisms are associated with the risk of 
developing IBDs supports the hypothesis that the adaptive 
immune response plays a primary role in the pathogenesis 
of IBDs [12, 14, 19, 32]; this is further supported by the obser-
vation that several of the more recently identified genetic 
susceptibility genes (IL23R, IL12B, IL27, IL18R1, IL18RAP, 
JAK2, IL10, TNFRSF6B and STAT3) are involved in innate 
and adaptive immunity [16].

CD-related inflammation in the gut mucosa is charac-
terized by a marked infiltration of CD4+ T cells secreting T 
helper type 1 (Th1) and Th17 cytokines, whereas in UC the 
local immune response is less polarized, although IL5, IL13 
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and Th17 cytokines production may be enhanced [33]. Th17 
cells and related cytokines may be involved in the expan-
sion and accumulation of myeloid-derived suppressive cells 
(MDSCs), which have been described in animal models of 
experimental colitis, and in patients with IBDs [34]. Th17 
and MDSCs cells appear to be implicated in the pathogen-
esis of autoimmune diseases, and it has been suggested 
that autoimmunity can also contribute to the onset of IBDs 
[35]. This hypothesis is supported by the observation that in 
sera of patients with CD pancreatic autoantibodies recog-
nizing the major zymogen granule membrane glycoprotein 
2 (GP-2) are detected in about 30% of cases [36].

However, despite the numerous genetic studies con-
ducted so far in large patient cohorts, as much as 80% of 
hereditability in IBDs has yet to be clarified. The belief that 
environmental factors play a crucial role in IBDs expres-
sion is in line with the epidemiological observations of 
a rise in the incidence of these diseases proportionate 
to improvement in socio-economic conditions, and the 
observed surge of the incidence of IBDs in South Asian 
children migrating to Canada or the UK, mirroring that of 
the host country [37]. One of the most important environ-
mental factors to be suspected is eating habit, particularly 
the western and “westernized” diet, which may contribute 
to IBDs pathogenesis through several mechanisms, includ-
ing the direct effect of dietary antigens, alterations in gene 
expression and in the composition of the enteric flora and 
the consequent effects on gastrointestinal permeability 
[37]. An increased consumption of refined carbohydrates, 
high total fat and protein intake have been associated with 
CD and/or UC, while a high intake of dietary fibers (vegeta-
bles and fruits) has been associated with a decreased risk 
of IBDs [8]. Animal protein consumption has been cited 
as potentially involved in the pathogenesis of this disease 
in Europe, US and Japan [8, 37]. In only a few epidemio-
logical studies have different sources of animal protein 
been investigated to ascertain the risk of IBDs; Bernstein 
et al. [38] found a higher risk of CD and UC in pork than in 
chicken meat consumers, while Sakamoto et al. [39] found 
an increased risk of CD, not UC, in fish consumers.

IBDs – laboratory diagnosis

Fecal markers

In the presence of suggestive symptoms, blood and stool 
laboratory tests are integral to the overall diagnostic 
work-up, which includes a physical exam, clinical history, 
endoscopy, biopsy and imaging [1]. A complete blood 

Table 1 Causes of abnormal results for fecal calprotectin/lactoferrin 
other than IBDs.

Infections   Drugs

Giardia lamblia   Non-steroidal anti-inflammatory 
drugs

Bacterial or viral 
gastroenteritis

  Proton pump inhibitors

Helicobacter pylori gastritis 

Malignancy   Other gastrointestinal diseases

Colorectal cancer   Untreated food allergy
Gastric cancer   Untreated celiac disease
Intestinal lymphoma   Gastro-esophageal reflux disease
Colorectal adenoma   Diverticular disease
Juvenile polyp   Protein losing enteropathy

  Cystic fibrosis
  Microscopic colitis

count, ESR and CRP, which may indicate the presence of 
intestinal inflammation, are, however, unreliable indexes 
of disease activity in patients with confirmed IBDs. Other 
blood parameters, including electrolytes, ferritin, calcium, 
magnesium, cobalamin, liver enzymes and function tests 
(INR, albumin, bilirubin), may indicate malabsorption 
and/or intestinal protein loss. Calprotectin and lactofer-
rin are the most reliable available fecal markers to be used 
as indexes of intestinal inflammation [1, 40–44]; both 
proteins, produced mainly by polymorphonuclear and 
monocytic inflammatory cells, are shaded in the intesti-
nal lumen in the presence of mucosal inflammation. Fecal 
calprotectin/lactoferrin, considered hallmarks of neu-
trophilic intestinal inflammation, are invariably present 
in IBDs, thus explaining the high sensitivity of these 
markers in detecting the condition. Other organic intesti-
nal diseases (e.g., celiac disease, diverticulosis, colorectal 
carcinoma) are also associated with neutrophilic intesti-
nal inflammation, and consequently with an increased 
fecal calprotectin/lactoferrin output (Table 1). Therefore 
fecal calprotectin, with a sensitivity of 64%–95% and a 
specificity of 79%–93%, has been suggested as an index 
of organic bowel disease [43]. Nonetheless, an increased 
fecal level of calprotectin and/or lactoferrin leads to the 
identification of patients most likely to have IBDs and 
calls for immediate endoscopy; moreover, the use of fecal 
calprotectin/lactoferrin for screening allows a reduction 
in the number of negative findings at endoscopy in both 
adults and young patients with suspected IBDs [45]. In 
adults, the overall sensitivity of these markers in discrimi-
nating between patients with IBDs and healthy subjects is 
93%, and the specificity 96%; the sensitivity is also high 
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(92%) in children and teenagers, but the specificity is less 
satisfactory (76%) [45, 46]. The reasons for the discrep-
ancy in specificity between adults and children probably 
depends on both age-related variations and the higher 
prevalence among children of intestinal disorders that 
can lead to augmented calprotectin fecal levels. Overall, 
fecal calprotectin and lactoferrin, which are correlated 
with each other, perform equally well in diagnosing IBDs 
and therefore should be used as an alternative, rather 
than an addition, to the diagnostic flow-chart.

In patients with a confirmed diagnosis of IBDs, fecal 
markers are also sensitive and specific markers of disease 
activity. Table 2 reports the sensitivity and specificity of 
lactoferrin, calprotectin and of CRP in discriminating 
between active and inactive IBDs [47–54]. High levels of 
calprotectin/lactoferrin are also predictive of relapse 
for both UC and CD [55, 56]. The calprotectin thresholds 
specified by different authors for predicting relapse vary, 
ranging from 50 to 400 μg/g (Table 3). In their recent 
paper, Louis et al. [60] demonstrated that a simple algo-
rithm based on six clinical and laboratory parameters (no 
previous surgical resection, male gender, Hb ≤145 g/L, 

leucocyte count  > 6 × 109/L, hsCRP ≥5 mg/L, fecal calpro-
tectin ≥300 μg/g) allows the stratification of CD patients 
into four categories according to risk of relapse.

Lactoferrin and calprotectin: biochemical 
properties, pre-analytical and analytical 
aspects

Lactoferrin, an 80  kDa protein, stored in secondary 
granules of neutrophils, is released upon cell activation. 
Calprotectin, a 36.5  kDa hetero-trimer, consisting of one 
S100A8 light chain and two S100A9 heavy chains belong-
ing to the S100 calcium binding proteins family, is present 
in the cytoplasm of granulocytes and accounts for about 
60% of soluble proteins; it is secreted extracellularly 
from stimulated neutrophils and monocytes or released 
by cell disruption or death [44]. Both lactoferrin and cal-
protectin have antimicrobial properties: histidine-based 
zinc-binding sequences (His-X-X-X-His motif) are involved 
in the antimicrobial activity of calprotectin, while the 
amino-terminal domain (lactoferricin) liberated by pepsin 

Table 2 Sensitivity and specificity of lactoferrin, calprotectin and of C reactive protein (CRP) in discriminating between active and inactive 
IBDs.

Author [ref.]  
 

IBDs type  
 

Lactoferrin  
 

Calprotectin  
 

CRP

Sens/Spec Sens/Spec Sens/Spec

Røseth et al. [47]   CD and UC   77%/100%    
Solem et al. [48]   CD       54%/75%
D’Incà et al. [49]   CD   77%/80%   81%/80%  
D’Incà et al. [49]   UC   75%/60%   78%/70%  
Sipponen et al. [50]   CD   77%/100%   87%/100%  
Schoepfer et al. [51]  UC     86%–93%/71%–88%  
Schoepfer et al. [52]  CD     89%/58%   68%/58%
Sipponen et al. [53]   CD   80%/67%   80%/89%  
Lobatòn et al. [54]   UC     74%/90%   84%/38%

CD, Crohn’s disease; Sens, sensitivity; Spec, specificity; UC, ulcerative colitis.

Table 3 Fecal calprotectin thresholds for predicting IBDs relapse rate.

Author [ref.]   IBDs type  Cut-off, μg/g   Relapse rate with 
low calprotectin, %

  Relapse rate with 
high calprotectin, %

Tibble et al. [55]   UC   50   10   85
  CD   50   15   85

Sipponen et al. [53]   UC+CD   100   25   39
D’Incà et al. [57]   UC   130   30   79
Gisbert et al. [46]   UC   150   9   31
Costa et al. [58]   UC   150   10   81

  CD   150   57   87
Walkiewicz et al. [59]  CD   400   11   56

CD, Crohn’s disease; UC, ulcerative colitis.
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cleavage is involved in the antimicrobial activity of lacto-
ferrin. Both proteins are resistant to bacterial proteolysis, 
their integrity being maintained in stools, where they can 
easily be identified; since they remain stable in feces for 
up to 1 week when stored at room temperature, and for 
months when stored at −20°C [43], it may be possible to 
adopt low stringency transport conditions for fecal mate-
rial, although transport in refrigerated boxes is advisable 
for a better overall standardization of the pre-analytical 
phase. Laboratory processing of the samples includes: 
1) sampling and dilution; and 2) analysis. In the initial 
pre-analytical phase, 100 mg of feces should be collected 
from the fecal mass and diluted into an exact w/v ratio. 
The time-consuming weighting of fecal samples has now 
been obviated by the use of devices allowing the easy 
and rapid obtaining of standardized w/v fecal sample 
dilutions. However, the devices cause an under-recovery 
of calprotectin with respect to the classical manual pro-
cedure, and this appears to be particularly relevant in 
the case of liquid stool samples [61]. We obtained similar 
results for lactoferrin, when manual weighting was com-
pared with the approach using the Schebo device; under-
recovery was particularly evident when levels were below 
the upper normal limit. These findings suggest that each 
laboratory should investigate the transferability of pub-
lished and/or manufacturers’ cut-off values not only to its 
own patients’ population but also to its own pre-analyti-
cal procedures for sample preparation. The upper normal 
limits for both calprotectin and lactoferrin, which have 
mainly been established by using manual processing of 
the stool samples, appear to be age-dependent: while for 
adults and adolescents it is estimated at 50 μg/g for cal-
protectin and 7–11 μg/g for lactoferrin [44, 62], in children 
younger than 10 years, values three to four-fold the refer-
ence cut-off are suggested [63]. Likewise, a separate ref-
erence range two-fold higher than the reference cut-off is 
required in patients over 60 years of age [63].

The commercially available ELISAs for calprotectin 
have a total assay imprecision with mean % CV values 
of  < 12% [61]. By contrast the biological variability may 
span from low ( < 10%) to very high (58%) values [64], sug-
gesting that a single stool test result should be interpreted 
with great caution in clinical practice.

The complex scenario of calprotectin laboratory 
testing includes several rapid immunochromatographic 
tests [point-of-care tests (FC-POCT)]. Three types of 
FC-POCT (qualitative, semi-quantitative and quantitative) 
are available – and good correlations between the latter 
and ELISAs have been reported [54, 65–68]. However, it 
has yet to be established whether FC-POCT results call for 
ELISA confirmation, and the way in which quality should 

be monitored. Since FC-POCT is not suitable for monitor-
ing IBDs in patients likely to have high concentrations, 
it is reasonable to suggest that ELISA should be used to 
confirm positive FC-POCT findings, although this is time-
consuming and incurs additional costs. Furthermore, 
the set of results of each ELISA plate can be monitored 
by quality control of the manufacturers’ and patients’ 
extracts [61], but this does not apply to any FC-POCT. 
These considerations indicate that the uncontrolled use 
of FC-POCT is inadvisable and that batch ELISA testing is 
preferable in high volumes centralized laboratories.

Serum markers to define type of IBDs

Although the two main IBDs clinical subtypes, UC and 
CD, have distinct clinical and pathological features, IBDs 
remain unclassified in about 6% of pediatric and 8% of 
adult onset cases [2]. Serum markers of clinical utility in 
diagnosing IBDs and aiding the differentiation between 
CD and UC are: 1) IgA and IgG class antibodies anti-Sac-
charomyces cerevisiae (ASCA), which can be determined 
by means of enzyme immunoassays; and 2) IgG class anti-
neutrophil cytoplasmic antibodies (ANCA) demonstrat-
ing atypical perinuclear staining (pANCA), which can be 
assessed by indirect fluorescent antibody assays. While 
ASCA are associated with CD, positive pANCA are more 
frequently encountered in UC [69–71]. The antigenic target 
of ASCA has been identified as the mannose residue from 
the phosphopeptidomannan of the S. cerevisiae cell wall. 
In making a diagnosis of CD, ASCA have a high specificity 
(96%–100%), but a limited sensitivity (50%–63%) [72, 73]. 
If CD is suspected, ASCA IgA and IgG should be measured: 
while about two-thirds of CD patients with ASCA IgG are 
also positive for ASCA IgA, one-third of these patients are 
IgA ASCA negative, and 0%–19% have only ASCA IgA anti-
bodies. The prevalence of ASCA is much higher in cases 
of sporadic CD and family members with CD alone (63%) 
than in those with both CD and UC (33%). Furthermore, 
ASCA is detected more frequently in healthy relatives of 
CD patients (20%–25%), and may therefore be consid-
ered a familial and hereditary quantitative trait. pANCA 
are spontaneously produced by the lamina propria and 
mesenteric node lymphocytes with the antigenic target 
present on the inner side of the nuclear periphery [74]. 
Positive pANCA antibody detects 60%–80% of patients 
with UC, but will also identify 6%–20% of subjects with 
CD. The combined analysis of pANCA and ASCA, indicated 
for defining the IBDs type, raises the specificity of the test 
to 94.3% with a sensitivity of 51.3% in adults [69]. In the 
pediatric population pANCA combined with ASCA raises 
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sensitivity to 70.3% with no significant variation in speci-
ficity (93.4%) [69]. If IBDs patients with ASCA positive/
pANCA negative findings are more likely to have CD, while 
those with ASCA negative/pANCA positive are more likely 
to have UC, double negative or double positive ASCA and 
pANCA results do not support one diagnosis or another. 
A study was conducted in 2006 to clarify this aspect, a 
platform with 384 new antibodies anti-glycans, the pre-
dominant components of the cell wall surface of many 
micro-organisms such as fungi, yeast and bacteria, being 
tested: those directed against laminaribioside (ALCA), chi-
tobioside (ACCA) and mannobioside (AMCA) were found 
more frequently and in higher levels in CD patients than in 
subjects with UC and healthy controls [75]. The sensitivity 
and specificity of these serum markers in distinguishing 
between CD subjects, healthy controls and UC patients are 
reported in Table 4 [76]. ANCA, ALCA, ACCA and AMCA 
levels, increased in both CD patients and in their first 
degree relatives, have been found to be associated with 
CD-associated NOD2 mutations [77–79]; this suggests that 
they may be the expression of an increased stimulation of 
the immune system in CD predisposed subjects.

Other potential serum biomarkers of CD, with respec-
tive clinical uses, sensitivity and specificity, are reported 
in Table 5. Although none of them is currently recom-
mended instead of or in addition to ASCA determination, a 
combination of pANCA, ASCA, anti-CBir1 and anti-OmpC 
were shown to predict CD and UC in individuals from a 
low-risk population several years before any clinical sign 
of the disease [80]. Moreover, it has been suggested that 
anti-GP2 IgG and IgA serum autoantibodies combined 
with ASCA are of potential clinical utility in distinguish-
ing CD from UC [36, 81], but that they may also be helpful 
in distinguishing between ileocolonic and colonic CD [35].

Table 4 Performance of individual anti-glycans antibodies for the 
diagnosis of Crohn’s disease (CD) in comparison with ulcerative 
colitis (UC) and healthy controls.

Anti-glycan 
antibody markers

  Sensitivity % 
Mean (min-max)

  Specificity % 
Mean (min-max)

CD vs. UC
ASCA   57 (52–61)  88 (86–90)
ALCA   18 (12–27)  92 (85–96)
AMCA   24 (18–31)  92 (88–95)
ACCA   16 (11–22)  92 (85–96)

CD vs. controls
ASCA   53 (45–61)  70 (86–90)
ALCA   17 (9–31)  72 (22–99)
AMCA   26 (18–37)  87 (56–97)
ACCA   15 (9–23)  81 (22–99)

Antibodies against intestinal bacterial components 
detected in the sera of CD patients and of their first degree 
relatives might be the expression of a dysfunctional intes-
tinal barrier function that may lead to the dysfunctional 
handling of macromolecules and intestinal bacterial anti-
gens, resulting in an excessive immunological intestinal 
mucosal response.

Intestinal permeability

Increased gastrointestinal permeability, known to play 
a role in the pathogenesis of IBDs, has been found in a 
large number of familial studies on CD patients and in 
their asymptomatic first-degree relatives [82–84]; it can be 
evaluated by sugar testing, which is based on the meas-
urement of the urinary excretion of orally administered 
non-metabolized sugar probe molecules (lactulose/man-
nitole). Normal intestinal epithelium allows the trans-
cellular absorption of about 10% of the monosaccharide 
mannitole, while only traces ( < 1%) of the disaccharide 
lactulose are absorbed through the paracellular pathway. 
A leaky intestinal epithelium causes increased paracel-
lular lactulose absorption and urinary excretion with 
respect to mannitole, thus leading to an increased lactu-
lose/mannitole urinary excretion ratio that, in excess of 
0.025, indicates the presence of increased intestinal per-
meability [85].

Genetic markers

The development of IBDs depends on complex interac-
tions between environmental factors, genetic predisposi-
tion, and innate and adaptive immune response. A series 
of GWA studies identified more than 70 loci for CD and 47 
for UC, each locus typically spanning about 150 kb and 
encompassing an average of 3–4 genes. NOD2 (16q12) and 
MHC loci (6p21) are associated with an increased risk of 
CD, while the IBD5 locus (5q31-33 region) is associated with 
an increased risk of UC [12–19]. The CARD15/NOD2 pro-
teins enter the formation of inflammasomes multiprotein 
complexes that, upon activation, lead to the activation of 
the cysteine protease caspase-1 and the resultant process-
ing and activation of pro-IL1b, pro-IL18 and pro-IL33 [21]. 
Although multiple variants in the gene can increase CD 
susceptibility, the most commonly identified mutations 
of NOD2 are R702W, G908R and L1007fsinsC. NOD2 muta-
tions, found in approximately 30% of CD patients, are 
associated with a more severe form of the disease, early 
age at onset, and ileal lesions [86, 87]. Heterozygosity 
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increases the risk two to three-fold, whereas homozygo-
sity is associated with a 20–40-fold higher risk of devel-
oping CD. The IBD5 locus contains immunoregulatory 
genes, including IL4, IL5, IL13 and the interferon regula-
tory factor-1 [88]. Despite the numerous efforts made to 
identify predisposing genes, the reported percentage for 
IBDs heredity, as high as 80% has yet to be explained, and 
further prospective studies must be undertaken before 
any attempt is made to translate GWA study findings to 
clinical practice.

IBDs – pharmacognetics
The drugs employed for treating IBDs include anti-inflam-
matory agents (5-aminosalicylic acid, sulfasalazine, 
corticosteroids), immune modifiers (azathioprine and 
6-mercaptopurine (6-MP), calcineurin inhibitors, metho-
trexate), anti-TNF agents (infliximab, adalimumab, car-
tolizumab), antibiotics (most commonly metronidazole 
and ciprofloxacin) and probiotics. Experimental agents 
and symptomatic therapy complete the IBDs treatment 
panel. Before starting thiopurines AZA or 6-MP admin-
istration, thiopurine methyl transferase (TPMT) pheno-
typing (enzyme levels) or genotyping is recommended 
in order to direct dosing thus maximizing patient safety 
[1, 89]. TPMT plays an important role in the metabolism 
of AZA and 6-MP, which it converts into inactive metabo-
lites. Genetically determined differences in the enzymatic 
activity of TPMT may influence the likelihood of AZA- and 
6-MP-induced myelotoxicity. More than 20 single nucleo
tide polymorphisms can cause a reduction in TPMT 
production; however, the most prevalent allele among 
whites associated with a reduced TPMT enzyme activity 

is TPMT*3A (0.035), followed by TPMT*3C (0.0042) and 
TPMT*2 (0.0019). To diagnose TPMT deficiency, pheno-
type or genotype analyses may be performed [90]. Phe-
notype analysis has the advantage of verifying the effects 
of different factors (e.g., blood transfusions, medications, 
alcohol, food, post-myelotoxicity), which might affect the 
genetically-based expected TPMT enzyme activity, but 
must be repeated throughout treatment and has a high 
inter-laboratory variability mainly due to differences in 
assay types (HPLC followed by enzymatic assay, tandem 
mass spectrometry or radiochemical assay). The sensitiv-
ity of genotype analysis, which is not influenced by exoge-
nous factors and need not be repeated, maybe limited, but 
exceeds 90% when this assay method is used for detecting 
the major alleles (i.e., wild type TPMT*1 and the most fre-
quent mutant alleles TPMT*2, *3A and *3C), rather than 
for rare mutations [91]. Treatment with AZA or 6-MT is con-
traindicated in homozygous TPMT mutant allele carriers, 
since these subjects have an extremely low TPMT enzyme 
activity and are therefore at a high risk of myelotoxicity [1, 
89, 92]. It has not yet been demonstrated in heterozygote 
patients, for whom a reduced enzyme activity should be 
expected, whether dosage adjustments might improve the 
outcome of treatment or reduce myelotoxicity, although 
a regimen starting with a 50% standard dose reduction 
followed by adjustment based on the degree of myelosup-
pression (continued for 2–4 weeks to reach steady state) is 
advisable in these cases. In all cases periodic monitoring 
of cell blood count is mandatory for the early identifica-
tion of myelotoxicity, and for the patient’s safety.

In conclusion, several genetic and biochemical labo-
ratory testing strategies are currently available for sup-
porting a diagnosis of IBDs, differentiating between IBDs 
types, predicting relapse and establishing the risk of 
adverse events from therapy.

Table 5 Potential new serum biomarkers for IBDs differential diagnosis.

Biomarker   Antigen   Disease indication   Prevalence  
 
Sens, %  

 
Spec, %

CD   UC   HC

Anti-CBir1 IgG   Flagellin, NCir (Clostridium 
subphylum)

  CD
May help differentiate 
CD from UC in pANCA+

  50%    < 5%   8%   50   53

             
Anti-I2 IgA   Bacterial DNA sequence derived 

from Pseudomonas fluorescens
  CD   54%   10%   4%   42   76

Anti-OmpC 
Iga, IgG

  Outer membrane porin, 
originally isolated from E. coli

  CD
May identify CD  < 15% 
of ASCA-

  20%–55%   10%   5%   20–55   89

             

CD, Crohn’s disease; HC, healthy controls; Sens, sensitivity; Spec, specificity; UC, ulcerative colitis.
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