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  Genetic defects in folate and cobalamin pathways 
affecting the brain  

     Abstract 
 Folate and cobalamin are necessary for early brain develop-

ment and function. Deficiency of folate or cobalamin dur-

ing pregnancy can cause severe malformation in the central 

nervous system such as neural tube defects. After birth, 

folate and cobalamin deficiency can cause anemia, failure 

to thrive, recurrent infections, psychiatric and neurologi-

cal symptoms. The folate and the homocysteine metabolic 

pathways interact at a central step where 5-methyltetrahy-

drofolate donates its methyl group to homocysteine to pro-

duce methionine and tetrahydrofolate. Methyl cobalamin 

and folate interact at this critical step. Both nutrients have a 

crucial role in DNA synthesis and in delivering S-adenosyl-

methionine, the universal methyl donor. Severe and mild 

inherited disorders in folate and cobalamin pathways have 

been described. The two groups of disorders share some 

similarities, but differ in the molecular mechanism, meta-

bolic dysregulation, and disease management. This review 

summarizes selected disorders, including rare and com-

mon mutations that affect folate and cobalamin absorption, 

transport, or dependent enzymes. When the mutations are 

discovered early enough, many of the described disorders 

are easily treatable by B vitamin supplementation, which 

often prevents or reverses the manifestation of the disease. 

Therefore, the screening for mutations is recommended 

and should be carried out as early as possible: after occur-

rence of the first symptoms or when a certain constellations 

of the folate and cobalamin related markers are measured, 

such as elevated homocysteine and/or methylmalonic acid.  
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 Introduction 
 It is our great pleasure to congratulate  Clinical Chemis-
try and Laboratory Medicine  (CCLM) on its 50th anni-

versary and to contribute this article for the celebration 

issue. CCLM, an internationally recognized and leading 

journal in the field of clinical chemistry and laboratory 

medicine, also plays an important role in the scientific 

area of hyperhomocysteinemia (HHcy) and B vitamin 

deficiency. One of the first CCLM publications in this field 

dates back to the year 1998 [ 1 ] and examined the relation-

ship between HHcy and cardiovascular diseases. In the 

period from 2000 to 2012, CCLM has published four inter-

national conferences on HHcy and B vitamin deficiency 

which have been organized by our group (2nd Conference 

on Hyperhomocysteinemia [ 2 ], 3rd Conference on Hyper-

homocysteinemia [ 3 ], 4th Conference on Hyperhomocyst-

einemia [ 4 ], and the World Congress on Hyperhomocyst-

einemia [ 5 ]) with more than 100 articles. To date over 200 

articles dealing with homocysteine (Hcy) and B vitamin 

deficiency have been published in CCLM. This reflects 

the contribution that CCLM has made and underlines the 

important role of the journal for the scientific community 

active in that research field. HHcy and B vitamin defi-

ciency are still the focus of medical research but topics 

have changed during the last decade. Ten years ago the 

main interest in HHcy research was directed towards its 

relationship with cardiovascular diseases, however, the 

current focus lies in its association with neurodegenera-

tive diseases [ 6 ,  7 ]. Large scale intervention has failed to 

show that B vitamin supplementation improved patients 

cardiovascular outcome [ 8 ]. A very recent meta-analysis 

with 47,921 participants from 19 studies (plasma Hcy was 

reduced in all studies) found that B vitamin supplementa-

tion has a significant protective effect on stroke, but none 

on the risk of cardiovascular disease, myocardial infarc-

tion, chronic heart disease, cardiovascular death, or all-

cause mortality [ 9 ]. It has also been shown that HHcy and 

B vitamin deficiency is correlated to neurological and 

psychiatric diseases as well as cognitive decline [ 7 ,  10 ,  11 ]. 

The important role of biomarkers in neurodegenerative 
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diseases has been highlighted in a special issue of CCLM 

(Biomarkers of Neuro degenerative Diseases) [ 7 ,  12 – 21 ]. 

Moreover, recent publications provided convincing evi-

dence that B vitamin supplementation significantly 

slowed brain atrophy and cognitive decline in patients 

with mild cognitive impairment after 2 years of treatment 

[ 22 ,  23 ]. 

 Plausible pathomechanisms behind this relationship 

are, on the one hand, oxidative stress and other neurotoxic 

the mechanisms and a lowered cellular methylation poten-

tial caused by HHcy and B vitamin deficiency [10, 24, 25]. 

On the other hand, HHcy and B vitamin deficiency result 

from lifestyle factors but genetic factors also contribute 

significantly to dysregulated metabolic pathways in this 

respect. Beside the very common 5,10-methylenetetrahy-

drofolate reductase (MTHFR, EC 1.5.1.20) polymorphism 

that influences remethylation of Hcy to methionine [26] 

many other genetic mutations affect folate and cobala-

min dependent pathways [27] and have disease modifying 

effects [28]. Beside disturbed DNA synthesis, DNA hypo-

methylation due to HHcy and B vitamin deficiency is an 

important epigenetic factor in gene regulation and expres-

sion and has impact on disease development [29, 30]. This 

review is focused on the role of genetic defects in folate and 

cobalamin metabolism and their impact on brain function.   

 Genetic defects in folate pathway  

 Folate metabolism and distribution 

 Folate is a methyl donor for Hcy methylation to methio-

nine. It participates in the de novo synthesis of purines and 

thymidylates [deoxythymidine monophosphate (dTMP)]. 

Therefore, folate cycle links the DNA synthesis with the 

methyl group metabolism. The universal methyl donor,  
S -adenosylmethionine (SAM), is synthesized from methio-

nine and it regulates the coordination between folate and 

methionine metabolism. Folate and cobalamin deficiency 

as well as HHcy at conception may negatively influence 

the health of the offspring [ 31 ] and have been related to 

early pregnancy loss and other congenital birth defects 

[ 32 ]. Several mutations in genes of folate-catabolizing 

enzymes and transporting proteins have been described. 

Many of these disorders affect the central nervous system 

and are associated with severe clinical symptoms that are 

manifested at early infancy. 

 Dietary folates are derivatives of folylpolygluta-

mates that are enzymatically hydrolyzed upon ingestion 

into monoglutamates in the brush border cells of the 

duodenum and jejunum. The hydrolysis of the polyglu-

tamate is mediated by glutamate carboxypeptidase II 

(GCPII, EC 3.4.17.21) or the exopeptidase  γ -glutamyl hydro-

lase (GGH, EC 3.4.19.9) located in the lysosome [ 33 ]. The 

folylpoly- γ -glutamate synthase (FPGS, EC 6.3.2.17) facili-

tates folate polyglutamation. The anionic nature of the 

folate oligomers renders them unable to leave the cell 

and, therefore, the polyglutamate forms of reduced folates 

(and certain antifolates) accumulate in the cell. Only the 

monoglutamates can be transported across cell mem-

branes [ 34 ]. 

 Three independent types of membrane systems are 

responsible for cross membrane transport of folate mono-

glutamate forms. These are the membrane folate receptor 

(FR), the reduced folate carrier 1 (RFC1), and the proton-

coupled folate transporter/heme carrier protein 1 (PCFT/

HCP1). The FR has high affinity for folate (K 
m

  approx. 1 

nmol/L) and conducts the receptor-mediated endocytosis 

(unidirectional) across the cell membrane at neutral pH 

[ 35 ]. FR α  (FOLR1) is expressed in certain epithelial cells, 

the choroid plexus, the placenta [ 36 ], and the kidney. FR β  

(FOLR2) is expressed in the fetal brain, kidney, placenta, 

spleen, and thymus [ 37 ]. RFC1 (SLC19A1) has a higher 

affinity for 5-methyltetrahydrofolate (5-methylTHF) than 

for folic acid and transports folate at an optimal pH of 7.5 

[ 38 ]. The PCFT (SLC46A1) system acts at an optimal pH in 

the acidic range (4.5 – 5.5) explaining its role as the major 

intestinal folate transporter [ 39 ]. Transport of folates into 

the cerebrospinal fluid (CSF) occurs in the choroid plexus, 

where 5-methylTHF is transported across the blood-brain 

barrier by FR α  in adult or FR β  in the fetal brain. PCFT is 

ubiquitously expressed in the human brain, where it func-

tions in concert with FR α  and FR β  or might export folates 

after FR α -mediated endocytosis [ 37 ,  40 ]. Biomarkers of 

folate and methionine metabolism in blood are important 

determinants of CSF levels of the metabolites [ 24 ,  41 ]. 

 Tetrahydrofolate (THF) represents the active form 

of folate that is formed from dihydrofolate (DHF) by 

means of dihydrofolate reductase (DHFR, EC 1.5.1.3) 

( Figure 1 ). 5,10-MethyleneTHF is converted to 5-methyl-

THF by MTHFR in an irreversible reaction [ 42 ]. 5-Meth-

ylTHF donates its methyl group to Hcy and is converted 

into THF by means of methionine synthase (MTR, EC 

2.1.1.13), a cobalamin (Cbl)-dependent enzyme. The 

enzyme methionine synthase reductase (MTRR, EC 

1.16.1.8) is involved in the reductive regeneration of the 

Cbl-cofactor, which is required for MTR function. 10-For-

mylTHF is utilized for purine synthesis and 5,10-methyl-

eneTHF for synthesis of dTMP and methionine. Serine 

hydroxymethyltransferase 1 (SHMT1, EC 2.1.2.1) utilizes 

serine to form 5,10-methyleneTHF [ 43 ]. The conversion 
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of the different forms of folate is very fast and depends 

on other factors like Cbl and vitamin B
6
 status, SAM, and 

certain polymorphisms in folate-catabolizing enzymes. 

The 5-methylTHF is the predominant folate form in 

plasma that constitutes up to 90% of total folate. Folic 

acid, the synthetic form of the vitamin, enters the folate 

cycle after a two-step reduction via DHFR into DHF and 

then THF.    

 Inherited disorders of folate metabolism 
and transport 

 Several inherited disorders of folate metabolism and 

transport have been described: MTHFR deficiency, MTR 

deficiency (either caused by mutations in  MTR  gene or 

 MTRR  gene), cerebral folate deficiency (CFD) caused by 

FOLR1 mutation, hereditary folate malabsorption, and 

glutamate formiminotransferase (FTCD) deficiency [ 44 ] 

( Table 1 ).    In addition, several putative inherited disor-

ders related to folate metabolism are discussed in the 

literature like DHFR deficiency, cellular uptake defects, 

and the 5,10-methyleneTHF cyclohydrolase [part of the 

trifunctional enzyme 5,10-methyleneTHF dehydrogenase 

1 (MTHFD1, EC 1.5.1.5)] deficiency [ 66 ].  

 Figure   1    Folate metabolism, related enzymes, and transporters.  

  DHF, dihydrofolate; DHFR, dihydrofolate reductase; 

dTMP, deoxythymidine monophosphate; dUMP, 

deoxyuridine monophosphate; FR, folate receptor; MTHFD, 

5,10-methylenetetrahydrofolate dehydrogenase; MTHFR, 

5,10-methylenetetrahydrofolate reductase; MTR, methionine 

synthase; MTRR, methionine synthase reductase; PCFT, proton 

coupled folate transporter; RFC, reduced folate carrier; SAH, 

S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, 

tetrahydrofolate; TYMS, thymidylate synthase.    

 Hereditary folate malabsorption 

 Hereditary folate malabsorption is a clinical syndrome 

manifested a few months after birth [ 67 ]. The pathophysio-

logy of the disorder is attributed to impaired intestinal 

folate absorption and impaired folate transport into the 

central nervous system causing very low serum folate 

concentrations and CFD. After birth, affected newborns 

rapidly develop severe folate deficiency with megaloblas-

tic anemia, diarrhea, oral mucositis, and recurrent infec-

tions ( Table 1 ). Further symptoms include poor feeding, 

failure to thrive and neurologic manifestations includ-

ing seizures and developmental delays [ 68 ]. If untreated, 

patients might develop ataxia and cognitive impairment. 

The disorder has been described in about 30 patients and 

mostly females are affected [ 52 ,   69]. 

 The molecular bases of the hereditary folate malab-

sorption might be related to mutations in the  SLC46A1  

gene, encoding the PCFT, which is present in the intes-

tine and the choroid plexus [ 37 ,  39 ,  52 ,  70 ]. Patients 

deficient in PCFT develop severe folate deficiency sug-

gesting that RFC (one folate carrier), that is expressed 

in the intestinal epithelium, does not significantly par-

ticipate in folate absorption [ 71 ]. Treatment with large 

doses (oral or parenteral) of folinic acid (5-formylTHF) 

can normalize folate levels. CSF folate is far more diffi-

cult to normalize and patients require supraphysiologi-

cal folate concentrations in blood to be able to increase 

CSF folate [ 72 ]. Monitoring the therapy is important and 

includes measurements of serum and CSF folate with 

the aim of achieving normal concentrations of folate in 

CSF. 

 Mutations in FR α , FR β , or RFC1 may be the cause of 

disturbed folate uptake. Folic acid treatment normalized 

serum folate and improved the clinical symptoms in one 

study, but red blood folate remained very low suggest-

ing an impaired cellular uptake [ 73 ]. Patients show low 

uptake of labeled 5-methylTHF by stimulated lympho-

cytes and bone marrow cells or red cells [ 73 ]. The genetic 

background of these cases is unknown but might be vari-

ants of the hereditary folate malabsorption.   

 Cerebral folate deficiency 

 The disease is characterized by severe developmental 

disorders, mental retardation, epilepsy, and movement 

disorders [ 74 ]. Unlike children with hereditary folate mal-

absorption, those with CFD present with neurological 

disorders several years after birth. The disease is char-

acterized by impaired folate transport across the choroid 
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plexus, but not in the intestine. Therefore, when dietary 

folate intake is sufficient, patients show normal concen-

trations of serum folate, but very low CSF 5-methylTHF [ 71 , 

 75 ]. Mutation in the  FOLR1  gene, which encodes the FR α , 

can cause severe 5-methylTHF deficiency in the CSF [ 37 , 

 49 ]. Oral folinic acid can normalize the CSF folate status 

and lowers frequency and severity of epileptic seizures 

[ 37 ]. Cario et al. reported heterozygous mutations in both 

FOLR1 C352T and FOLR1 C525A genes, leading to nonsense 

mutations (FOLR1 Q118X and C175X) ( Table 2 ) and the loss 

of FR-specific folate binding in two siblings [ 49 ]. Treat-

ment with folinic acid led to improvement of the symp-

toms, whereas one of the siblings completely recovered. 

The homozygous missense mutation FOLR1 T313C was 

also identified in one patient with CFD [ 76 ]. Additionally, 

12% of children with any neurological disorder (71 of 584 

patients) exhibited deficient CSF 5-methylTHF concen-

tration [ 76 ]. FR α  is the most abundant folate transporter 

in the choroid plexus, supporting its role as major folate 

transporter across the blood-brain barrier [ 37 ]. Normaliz-

ing CSF folate in children affected with CFD or those with 

hereditary folate malabsorption can be better achieved 

by administration of high doses of folinic acid or methyl-

folate [ 71 ]. Oral treatment is less effective than intra-

muscular injections. Using folic acid is not advisable, 

because it must be reduced first and the unmetabolized 

folic acid can bind to FR α  with a high affinity thus pre-

venting the binding of 5-methylTHF.  

 Disorder  Gene Mendelian 
inheritance in man 

(MIM) code [ 45 ] 

 Involved enzyme/protein [EC 
number, cytogenetic location] 

 Function  References 

 5,10-Methylenetetrahydrofolate 

reductase deficiency 

 607093, #236250  5,10-Methylenetetrahydrofolate 

reductase (MTHFR) [EC 1.5.1.20, 

1p36.3] 

 Conversion of 

5,10-methyleneTHF to 

5-methylTHF 

 [ 46 – 48 ] 

 Cerebral folate deficiency  136430, #613068  Folate receptor (FOLR1) 

[11q13.3-q14.1] 

 High affinity folate transporter, 

transport of 5-methylTHF 

across choroid plexus 

 [ 37 ,  49 ] 

 Glutamate formiminotransferase 

deficiency 

 606806, #229100  Formiminotransferase 

cyclodeaminase (FTCD) [EC 

4.3.1.4, 21q22.3] 

 Channels 1-carbon units from 

formiminoglutamate to the 

folate pool 

 [ 50 ,  51 ] 

 Hereditary folate malabsorption  611672, #229050  Proton coupled folate 

transporter (PCFT or SLC46A1) 

 [17q11.2] 

 High affinity folate transporter  [ 39 ,  52 ] 

 Cobalamin A deficiency  607481, #251100  Methylmalonic aciduria type A 

protein (MMAA) [4q31.21] 

 Involved in translocation of Cbl 

into the mitochondrion during 

adenosylcobalamin synthesis 

 [ 53 ,  54 ] 

 Cobalamin B deficiency  607568, #251110  Cobalamin adenosyltransferase 

(MMAB) [EC 2.5.1.17, 11q24.11] 

 Involved in adenosylcobalamin 

synthesis 

 [ 53 ,  54 ] 

 Cobalamin C deficiency  609831, #277400  Methylmalonic aciduria and 

homocystinuria type C protein 

(MMACHC) [1p34.1] 

 Involved in the binding and 

intracellular trafficking of Cbl 

 [ 55 – 57 ] 

 Cobalamin D deficiency  611935, #277410  Chromosome 2 open reading 

frame 25 (C2orf25) [2q23.2] 

 Protein involved in an early 

step of cobalamin metabolism 

 [ 58 ,  59 ] 

 Cobalamin E deficiency  602568, #236270  Methionine synthase reductase 

(MTRR) [EC 1.16.1.8, 5p15.2-

p15.3] 

 Reductive regeneration of the 

Cbl cofactor 

 [ 48 ,  60 ] 

 Cobalamin F deficiency  612625, #277380  LMBR1 domain-containing 

protein 1 (LMBRD1) [6q13] 

 Probable lysosomal Cbl 

transporter 

 [ 61 ,  62 ] 

 Cobalamin G deficiency  156570, #250940  Methionine synthase (MTR) [EC 

2.1.1.13, 1q43] 

 Transfer of methyl group from 

5-methylTHF to homocysteine 

to form methionine and THF 

(Cbl-dependent) 

 [ 48 ,  63 ] 

 Methylmalonyl-CoA mutase 

deficiency 

 609058, #251000  Methylmalonyl-CoA mutase 

(MUT) [EC 5.4.99.2, 6p12.3] 

 Mitochondrial enzyme, 

catalyzes isomerization 

of methylmalonyl-CoA to 

succinyl-CoA 

 [ 64 ,  65 ] 

 Table   1    Inherited disorders of folate and cobalamin metabolism and transport.   

 # Phenotype MIM number.  
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 CFD may be related to causes other than mutations 

in the  FOLR1  gene such as antibodies against the folate 

receptor [ 77 ,  78 ]. Since the formation of the antibodies can 

be downregulated with a milk-free diet, it has been sug-

gested that soluble folate-binding proteins in cow ’ s milk 

[ 74 ] may induce antibody formation [ 79 ]. Furthermore, 

CFD has been found in patients with single nucleotide 

polymorphisms (SNPs) in the  DHFR  gene in two recent 

studies [ 44 ,  80 ]. DHFR deficiency caused megaloblastic 

anemia, normal total Hcy (tHcy), and low tetrahydro-

biopterine in the CSF [ 44 ]. DNA sequencing revealed a 

homozygous DHFR C238T (Leu80Phe) missense mutation 

[ 44 ]. Treatment with folinic acid led to improvement of 

anemia and CSF 5-methylTHF levels, and seizure control. 

However, the neurodevelopmental improvement was less 

than that reported in patients with FOLR1 mutations or 

FR autoantibodies [ 44 ]. CFD was also reported in patients 

with megaloblastic anemia who were heterozygous for the 

DHFR A458T polymorphism [ 80 ]. 

 Other conditions with neurological manifestations 

that are associated with CFD are Rett syndrome [ 81 ], 

Kearns-Sayre syndrome [ 82 ], dihydropteridine reductase 

deficiency [ 83 ], Aicardi-Goutiere ’ s syndrome [ 84 ], schiz-

ophrenia [ 85 ], and hypomyelination with atrophy of the 

basal ganglion syndrome [ 86 ].   

 Glutamate formiminotransferase deficiency 

 Glutamate formiminotransferase deficiency is an autoso-

mal recessive disorder caused by mutations in the  FTCD  

gene [ 50 ]. Symptoms include elevated urinary levels of 

formiminoglutamic acid (FIGLU) after histidine load, 

megaloblastic anemia, mental retardation, and develop-

mental delay. Heterozygous missense mutations (C457T 

 Gene  Genetic 
variant 

 Amino acid 
substitution 

 Reference SNP 
(rs) number 

  MTHFR   C677T  A222V  1801133 

   A1298C  E429A  1801131 

  MTR   A2756G  D919G  1805087 

  MTRR   A66G  I22M  1801394 

  SHMT1   C1420T  L435F  1979277 

  MTHFD1   G1958A  R653Q  2236225 

  DHFR   A458T  D153V  121913223 

  TYMS   2R/3R (28 bp)   –    –  

  RFC1   G80A  H27R  1051266 

  FOLR1   C352T  Q118X  121918405 

   C525A  C175X  121918406 

   130_147 dup  P49PRKSQAP  121918843 

 Table   2    Common polymorphisms in folate-metabolizing enzymes.  

and G940C) in the  FTCD  gene were found in the mild form 

of the disease [ 51 ].   

 Severe 5,10-methylenetetrahydrofolate reductase 
deficiency 

 Severe MTHFR deficiency is an inborn disease which is 

associated with homocystinuria, developmental delay, 

decreased neurotransmitter levels, or seizures [ 87 ,  88 ]. 

One patient homozygous for the missense mutation in the 

MTHFR c.1129C  >  T was presented with severe psychomotor 

retardation, generalized cerebral atrophy, and hypomyeli-

nation on magnetic resonance imaging examination [ 89 ]. 

Folate (folic acid, 5-methylTHF, or folinic acid), vitamin B 
6
 , 

Cbl, and methionine supplementations are the basic ther-

apeutics. In addition, supplementation of large doses of 

betaine seemed to support the metabolic requirements of 

the brain by increasing SAM and SAM-dependent methyl 

transferases [ 87 ]. Improvement in the neurological signs 

has been reported, but it depends on the age of starting 

the betaine supplementation [ 87 ].    

 Common polymorphisms associated 
with neural tube defects 

 Common polymorphisms in the  MTHFR  gene have been 

described. The C  >  T substitution in exon 4 at bp 677 

causes a substitution of valine for alanine and results in a 

thermolabile variant of the enzyme [ 90 ] that has a 50% –

 70% less activity when folate intake is limited [ 42 ,  90 ,  91 ] 

( Table 2 ). The TT genotype is found in 10% – 20% of the 

European populations and it increases the risk of neural 

tube defects (NTDs). Another common polymorphism 

in the  MTHFR  gene is the A  >  C substitution at bp 1298 

leading also to decreased enzyme activity but without 

marked effect on tHcy or folate plasma levels [ 92 ]. The 

prevalence of this polymorphism ranges from 6%–11% in 

Europe [ 93 ]. 

 Folates are essential for brain development and func-

tion. Folate deficiency during pregnancy can cause NTDs 

in the offspring. NTDs are common severe congenital 

malformations that arise early in embryogenesis because 

of the failure of neural tube closure. Depending on the 

location of the lesion, NTDs are divided into spina bifida 

and anencephaly. Folate and Cbl deficiencies as well as 

elevated tHcy during pregnancy increase the risk of having 

a child with NTDs [ 94 ,  95 ]. Mutations in genes encoding 

enzymes involved in the folate/Hcy metabolism have been 

related to the risk of NTDs [ 96 ]. Several studies confirmed 
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the association between the MTHFR 677TT genotype and 

the risk of NTD [ 97 ,  98 ], but a number of studies failed to 

find an association [ 99 ,  100 ]. Shaw et al. found no asso-

ciation between the risk of spina bifida and 118 polymor-

phisms of folate-related genes [ 101 ]. However, the associa-

tion seems to depend on folate and Cbl intake [ 46 ]. The 

effects of the polymorphisms seem to be counterbalanced 

by higher folate and Cbl intakes. This is the reason for the 

insignificant effect of theses polymorphisms on NTD risk in 

countries applying mandatory fortification with folic acid. 

 In a study on fibroblasts from 41 NTD-affected fetuses, 

Ou et al. found a 7.2-fold higher risk for NTDs in samples 

with MTHFR 677TT genotype [ 102 ]. Christensen et al. 

reported an odds ratio (OR) (95% confidence interval) for 

NTD of 2.2 (0.82 – 5.99) for affected children, 2.0 (0.75 – 5.43) 

for mothers with an NTD child, and 6.0 (1.26 – 28.53) for 

mothers and child pairs with MTHFR 677TT [ 46 ]. Low 

red blood cell (RBC) folate further increased the risk of 

developing NTD, and RBC folate was lower in cases and 

case mothers compared to controls and control mothers, 

respectively. The MTHFR 677TT combined with low RBC 

folate resulted in an OR for NTD of 3.28 (0.84 – 12.85) for 

mothers and 13.43 (2.49 – 72.33) for cases [ 46 ]. 

 The association between MTHFR A1298C poly-

morphism and NTD risk is not consistent. Few studies 

reported gene-gene interactions with the MTHFR C677T 

genotype [ 92 ,  103 ], other studies found a protective 

effect for the MTHFR 1298 C allele [ 104 ,  105 ]. In addition, 

the MTRR 66GG genotype in the mothers was associ-

ated with a 2.1-fold (OR 2.1, 95% CI 1.3 – 3.3) higher risk 

for having a child with NTD [ 106 ]. The MTR A2756G, the 

MTRR A66G [ 107 ], and the MTHFD1 1958AA polymor-

phisms [ 108 ] were also reported to enhance the mater-

nal risk of having a child with spina bifida [ 28 ,  107 ]. 

Polymorphisms in RFC1 G80A [ 109 ], DHFR [ 110 ], and 

thymidylate synthase (TYMS; EC 2.1.1.45) 28-bp tandem 

repeat [ 111 ], and the presence of autoantibodies against 

the FR [ 112 ] might also be involved in maternal risk of 

having a child with NTD. Many NTDs can be prevented 

by improving maternal folate status before the concep-

tion. Therefore, it seems that the polymorphisms related 

to the folate cycle have no independent effect in case of 

high folate status.    

 Genetic defects affecting cobalamin-
transport or dependent reactions 
 Cobalamin (Cbl, vitamin B 

12
 ) is a water soluble vitamin 

from the B-group. It is essential for cell growth and 

division. Cbl deficiency can cause severe hematological 

and/or neurological manifestations. Low serum Cbl levels 

are associated with pregnancy loss [ 113 ,  114 ]. Inherited 

defects in Cbl metabolism are mostly associated with 

failure to thrive, irritation, feeding problems, and neuro-

logical or neurodevelopmental disorders. Hematological 

and neurological symptoms of folate and Cbl deficiency 

are similar which is consistent with the crosstalk between 

the folate and Cbl pathways. 

 Animal-based diet is the only source of Cbl for 

humans. The daily requirement for Cbl termed as rec-

ommended dietary allowance is 2.4  μ g/day for adults 

[ 115 ]. Recent studies accessing blood concentrations of 

modern markers of cobalamin, suggested that the daily 

requirements for cobalamin should be set at   >  6  μ g [ 116 ]. 

A relatively large amount of Cbl is stored in the body. The 

depletion of the vitamin takes several years to develop 

to deficiency when one stops to consume Cbl-containing 

diet. 

 Cbl is a cofactor for only two biochemical reac-

tions in humans ( Figure 2 ). Methylcobalamin (MeCbl) is 

a cofactor for the cytosolic enzyme MTR that transfers 

a methyl group from 5-methylTHF to Hcy converting it 

into methionine [ 117 ]. Adenosylcobalamin (AdoCbl) is a 

cofactor for the mitochondrial enzyme methylmalonyl-

CoA mutase (MCM, EC 5.4.99.2) that converts succinyl-

CoA into methylmalonyl-CoA. Classical nutritional Cbl 

deficiency is associated with low holotranscobalamin 

(holoTC) and elevated plasma concentration of tHcy and 

methylmalonic acid (MMA). Patients with defects in Cbl 

metabolism can show severely elevated MMA and/or tHcy 

without any evidence of low holoTC. This can lead the 

diagnoses and indicate that elevated MMA and/or tHcy 

are not related to transcobalamin (TC) deficiency, but to 

defects in the Cbl-dependent enzymes or trafficking pro-

teins within the cells.  

 The absorption, transport, and dissimilation of Cbl 

are complex processes that require several proteins and 

cellular receptors. Food Cbl is first released from food pro-

teins by means of salivary amylase and acidic conditions 

and is then bound to haptocorrin released in the saliva. 

Haptocorrin protects the vitamin from the acid surround-

ings in the stomach. In the alkaline environment of the 

intestine haptocorrin is degraded by pancreatic enzymes, 

and the vitamin liberated from food is recognized by 

intrinsic factor (IF). IF, another Cbl transporter, is a gly-

coprotein synthesized in the parietal cells of the stomach 

that binds only the forms of the vitamin which are active 

within the body. In the distal ileum, IF-bound-Cbl is taken 

up by a specific receptor called cubam. Cubam is com-

posed of two proteins, cubilin (CUBN) and amnionless 
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(AMN) [ 118 ]. Binding of IF-Cbl to cubam is mediated by 

CUB domains 5 – 8 in the CUBN protein. Amnionless is a 

small transmembrane protein that anchors cubilin to 

the cell membrane in the enterocytes [ 119 ]. In the entero-

cytes, Cbl is released and transferred to transcobalamin, 

forming the complex holoTC that is secreted into the 

blood by a yet unknown mechanism probably involv-

ing the multidrug resistance protein (MRP1) [ 120 ]. As the 

enterocytes have a high rate of synthesis of transcobala-

min II (TC), it has been a common view that Cbl is secreted 

from the enterocytes in complex with TC. An alternative 

hypothesis is that free Cbl is transported from the cytosol 

across the basolateral cell surface into plasma, where it 

subsequently forms a complex with circulating TC [ 120 ]. 

In the blood, the major part of Cbl is bound to haptocor-

rin (70% – 90%) which is called holohaptocorrin (meta-

bolically inert fraction). Only 10% – 30% of Cbl is bound 

to TC, which carries the metabolically active Cbl. The cel-

lular uptake of Cbl is receptor mediated endocytosis via 

the TC-receptor or cubam. TC-bound Cbl is degraded in 

the lysosome and Cbl is released and directed into the two 

pathways requiring it as a cofactor. The lysosomal degra-

dation and transport of Cbl within the cell are not fully 

understood. 

 Several inherited defects in Cbl absorption, transport, 

or assembly within the cell have been described ( Table 1 ). 

Defects in any step involved in converting methylmalonyl-

CoA to succinyl-CoA cause methylmalonylacidemia. This 

can be due to either defective methylmalonyl-CoA mutase 

(MUT) or impaired synthesis or utilization of AdoCbl 

(CblA, B, D, and H). There are eight distinct complemen-

tation group defects of the intracellular Cbl metabolism 

( Table 1 ,  Figure 2 ). The different types were identified by 

somatic complementation studies applied on fibroblasts 

isolated from the patients [ 121 ]. Moreover, the Cbl genetic 

defects have been identified on the molecular level [ 58 , 

 122 ]. The CblF and CblC defects caused homocystinuria 

and methylmalonic aciduria [ 59 ,  123 ]. The CblD defect 

can cause either homocystinuria or methylmalonic aci-

duria or a combination of homocystinuria and methyl-

malonic aciduria [ 59 ]. The CblA, CblB, and MUT cause 

only methylmalonic aciduria, and CblE and G cause only 

homocystinuria. The molecular bases of these disorders 

have been partly elucidated [ 124 ]. The clinical features 

are similar and the start of the manifestations varies from 

a few weeks to the adulthood. Lifelong Cbl treatment is 

required but the prognoses may differ. Clinical symptoms 

include feeding difficulties, hypotonia, megaloblastic 

anemia, mental retardation [ 125 ], visual loss, or nystag-

mus. Neuroradiological studies on children with CblC/D 

defects have shown severe white matter abnormalities like 

edema, swelling [ 125 ], or hydrocephalus [ 126 ]. The exact 

mechanisms behind the neurological manifestations are 

not known, but may be related to elevated tHcy, lowered 

SAM causing hypomethylation, or accumulation of MMA 

that is neurotoxic.  
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CblII 

CblI
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 Figure   2    Cobalamin homeostasis and inherited disorders.  

  AdoCbl, adenosylcobalamin; Cbl, cobalamin; Hcy, homocysteine; HOCbl, hydroxycobalamin; MCM, methylmalonyl-CoA mutase; MeCbl, 

methylcobalamin; MMA, methylmalonic acid; MTR, methionine synthase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; 

TC, transcobalamin.    
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 Defects of cobalamin transport 
and absorption 

  CblA 

 The gene responsible for CblA was identified in 2002 by 

analyses of prokaryotic gene arrangements [ 53 ]. This dis-

order causes isolated methylmalonyluria.   

 Cobalamin C defect (CblC, MMACHC) 

 CblC is the most common severe disorder of intracellular 

Cbl metabolism. CblC is an autosomal recessive disorder 

of Cbl metabolism related to mutations in  MMACHC  gene 

[ 127 ]. The methylmalonic aciduria and homocystinuria 

type C protein (MMACHC) is responsible for processing 

the upper-axial ligands of dietary Cbl before AdoCbl and 

MeCbl can be synthesized [ 128 ,  129 ]. It causes impaired 

conversion of Cbl into its two metabolically active forms, 

MeCbl and AdoCbl. There are several known and recently 

identified mutations in the  MMACHC  gene [ 55 ,  56 ]. 

 Severe neurological clinical symptoms are mani-

fested in the early onset form during the first year of 

life. Symptoms include failure to thrive, microcephaly, 

feeding difficulties, hypotonia, vomiting, developmental 

delay, seizures, and speech delay. Symptoms are rarely 

responsive to treatment [ 130 ] in the infantile form of the 

disease. Retinal dysfunction has also been reported in two 

cases with CblC [ 131 ]. Several non-specific hematologi-

cal symptoms can be seen like megaloblastic anemia and 

thrombocytopenia. 

 In 1984 [ 132 ] and later reports, a late onset form of 

CblC which is diagnosed in previously asymptomatic 

cases at older ages up to adulthood was identified [ 133 , 

 134 ]. The first patient identified with CblC had acute onset 

of dementia, myelopathy, and motor neuron disease [ 132 ]. 

The late onset form has better outcome and response to 

treatment. A recent study on normal fibroblasts and fibro-

blasts from early onset CblC disorder identified several 

proteins that are downregulated in the mutant cells prob-

ably explaining some of the neurological manifestations 

of functional Cbl deficiency [ 135 ]. Hydroxycobalamin 

(HOCbl) did not cause any reduction in the excretion of 

tHcy from the mutant cells. Interestingly, because of the 

role of MTR in cellular folate retention, intracellular folate 

was lower in the CblC cells even after treatment with 

HOCbl compared to normal fibroblasts [ 135 ]. Moreover, 

protein markers related to brain function were found to be 

upregulated in fibroblasts from CblC patients and the level 

of expression was not restored to normal after incubation 

with HOCbl [ 135 ]. This probably explains the neurocog-

nitive manifestations of the disease or effects on brain 

development during the prenatal life. 

 There seems to be a genotype-phenotype association 

with some mutations: the c.271dupA and c.331C  >  T (R111X) 

mutations are more prevalent in the early onset disease. 

Some missense mutations c.394C  >  T and c.482G  >  A are 

associated with late-onset disease [ 55 ,  56 ]. Genotype-

phenotype correlations were explained by variations in 

the levels of MMACHC mRNA being severely lower in the 

early-onset forms [ 55 ]. 

 In several cases with late onset CblC defect (age at 

onset 16 – 41 years) thrombotic events were common. 

Moreover, six of 11 cases described had encephalopathy, 

two had seizures, six suffered from myelopathy, and six 

suffered from psychiatric disturbances [ 133 ]. Neurologi-

cal symptoms, as shown by magnetic resonance imaging, 

dominated with abnormalities in the white matter area, 

cortical atrophy, or medullar lesions mostly reported [ 133 ]. 

None of the patients suffered from mental retardation and 

few remained free of neurological or psychiatric illnesses 

[ 133 ]. Death occurred in few cases despite treatment with 

Cbl. The mechanisms behind the neurological manifesta-

tions might be related to impaired methylation causing 

cerebral perivascular demyelination [ 136 ]. Interestingly, 

one case had recurrent thrombotic events that were pre-

vented by HOCbl injections. Folinic acid and betaine were 

used as adjacent therapy to lower tHcy. Oral HOCbl was 

less effective than the injections in preventing the throm-

bosis [ 133 ].   

 CblD (MMADHC gene) 

 The disorder is caused by mutations in the methyl-

malonic aciduria and homocystinuria type D protein 

( MMADHC ) gene that can result in isolated homocyst-

inuria (variant 1), isolated methylmalonic aciduria 

(variant 2), or combined homocystinuria and methyl-

malonic aciduria. Patients unable to synthesize AdoCbl 

and those unable to produce MeCbl have methylmalonic 

aciduria or homocystinuria, respectively. The third com-

plementation group are patients unable to synthesize 

both coenzyme forms and have therefore methylmalonic 

aciduria and homocystinuria [ 59 ]. Depending on the 

mutation, the clinical, cellular, and molecular pheno-

type of the CblD disorder is heterogeneous. Mutations 

affecting the  N -terminus of MMADHC are thought to be 

associated with methylmalonic aciduria, and mutations 

affecting the C-terminus are associated with homocyst-

inuria [ 137 ].   
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 CblG 

 This group summarizes disorders in MTR that is related to 

disorders in the enzyme itself or in the co-factor, MeCbl. 

CblG is caused by defects in MeCbl synthesis that in turn 

cause MTR deficiency [ 138 ].   

 CblF (LMBRD1 gene) 

 CblF is a disorder in Cbl lysosomal trafficking. This defect 

has been identified in 1986 as a distinct complementation 

group [ 121 ]. Fibroblasts from CblF patients are able to take 

Cbl via TC-receptor, but unable to release the vitamin from 

the lysosome [ 139 ]. This defect has been reported in only 

13 patients so far [ 140 ]. 

 Rutsch et al. recently identified the LMBD1 domain-

containing protein ( LMBRD1 ) gene on chromosome 6q13, 

that might be defect in CblF patients and might explain 

why Cbl is trapped in the lysosome [ 61 ]. The gene product 

is probably lysosomal cobalamin transporter (LMBD1), a 

lysosomal membrane protein with homology to lipocalin-

interacting membrane receptor (LIMR). Five frame shift 

mutations in LMBRD1 resulting in loss of LMBD1 func-

tion were identified. Fibroblasts of individuals with CblF 

showed improved synthesis of Cbl cofactor after transfec-

tion with wild-type LMBD1. Genetics defects on the molec-

ular level have been recently identified in  LMBRD1  gene in 

one Turkish [ 140 ] and three Canadian [ 141 ] patients with 

CblF disorder. The LMBD1 protein is synthesized in the 

liver and is hypothesized to participate in Cbl uptake and 

transport in the lysosome [ 140 ]. 

 The CblF disorder is manifested at an early age and 

patients have abnormal newborn screening. Patients 

are small for gestational age or growth retarded at birth. 

Beside homocystinuria and methylmalonic aciduria, cer-

ebral seizures, intraventricular hemorrhage [ 140 ], failure 

to thrive, anemia, lethargy, feeding difficulties [ 61 ,  142 ], 

and developmental delay have been reported [ 61 ]. Other 

disorders have been reported in CblF patients like congen-

ital heart failure, gastritis, ventricular hypertrophy, and 

hypotonia [ 61 ].   

 CblJ defect (mutations in ABCD4 gene) 

 One previously identified peroxisomal ATP-binding cas-

sette (ABC) transporter (ABCD4) has been recently shown 

to be involved in one inherited defect affecting Cbl metab-

olism. The ABCD4 protein has been shown to colocalize 

with the lysosomal proteins LAMP1 and LMBD1 [ 143 ]. The 

last protein is encoded by  LMBRD1  gene and is deficient in 

patients with CblF defect.    

 Imerslund-Gr ä sbeck syndrome (IGS) or 
juvenile megaloblastic anemia 

 This selective Cbl malabsorption is a rare autosomal 

recessive disorder characterized by Cbl deficiency that is 

responsive to treatment. Megaloblastic anemia is common 

and mild proteinuria occurs in approximately 50% of the 

patients [ 144 ,  145 ]. 

 In 1960, the first description of the disease was by 

Gr ä sbeck as  “ selective cobalamin malabsorption with pro-

teinuria ”  [ 146 ]. In 1963, Imerslund described a similar dis-

order called idiopathic chronic megaloblastic anemia in 

children [ 147 ]. The disease was first diagnosed in Finland 

and Norway where the estimated prevalence is 1:200,000. 

Although the exact prevalence worldwide is not known, 

many new cases have been reported from eastern Mediterra-

nean countries. In contrast to the case of TC deficiency, symp-

toms do not appear directly after birth but from the age of a 

few months to 15 years [ 148 ]. Symptoms are rather unspecific 

and include fatigue, failure to grew or thrive, megaloblastic 

anemia, and mild neurological symptoms [ 149 ]. 

 Investigations of the disorder identified several 

mutations in two different proteins that constitute the 

functional IF-receptor: CUBN and AMN [ 150 ]. CUBN and 

AMN form a complex called cubam that represents part 

of the IF receptor responsible for intestinal Cbl uptake 

and renal protein reabsorption. Imerslund-Gr ä sbeck 

syndrome (IGS) can lead to low expression of IF-recep-

tor, increased degradation [ 151 ], or decreased affinity 

of IF-Cbl to the receptor [ 152 ]. A recent study identified 

genetic mutations in AMN causing a premature stop 

codon and a strong decrease in the luminal receptor 

activity [ 153 ]. Analyses of renal biopsy from a patient 

with AMN mutation showed no immunologic reaction for 

CUBN and an abnormal cytoplasmic, vesicular distribu-

tion of the receptor partner AMN suggesting that AMN 

depends on CUBN for correct localization in the human 

proximal tubule [ 154 ]. 

 Defects in CUBN or AMN and those in IF cause 

similar symptoms and can be mistaken [ 155 ]. Life-long 

treatment with Cbl in IGS is necessary for preventing the 

symptoms. 

 The exact mechanism behind the transport of Cbl into 

the CNS is not clear. An active transport mechanism into 

the CNS has been proposed for Cbl. In one case of IGS, CSF 

Cbl was low and Cbl was required in short intervals for the 

remission of the psychiatric symptoms [ 156 ] suggesting 
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that AMN protein might be involved in Cbl transport into 

the brain [ 156 ]. 

 Pediatric patients present with megaloblastic anemia, 

funicular myelosis, or benign proteinuria should be tested 

for IGS syndrome. The definitive test is based on genetic 

testing of the mutation, and Cbl should be administered 

lifelong.   

 Congenital gastric intrinsic factor 
deficiency 

 The discovery of new genes involved in Cbl assimilation 

and metabolism has improved our knowledge of the rare 

inborn errors of Cbl metabolism [ 119 ]. Juvenile Cbl defi-

ciency leads to hematological and neurological distur-

bances. There is a lack of Cbl in congenital pernicious 

anemia due to gastrointestinal intrinsic factor (GIF) defi-

ciency and megaloblastic anemia due to selective intesti-

nal malabsorption of Cbl. 

 Overgaard et al. [ 157 ] recently described a case 

(15-year-old boy) of a compound heterozygous muta-

tion in the  GIF  gene, with a previously described muta-

tion (c.79+1G  >  A) and a novel mutation (c.290T  >  C; M97T) 

leading to a megaloblastic anemia in an adolescent. 

Serum Cbl was decreased and serum folate was normal. 

Cbl therapy together with oral iron supplement normal-

ized blood parameters. Ament et al. [ 158 ] identified a spe-

cific GIF mutation [c.183_186delGAAT frame shift muta-

tion (M61fs)] to be responsible for juvenile Cbl deficiency 

in cases of West-African origin. A child from Spain with 

a megaloblastic anemia due to GIF deficiency has been 

reported by Garcia Jimenez et al. [ 159 ]. The patient is a 

compound heterozygous in GIF gene for a splice site muta-

tion inherited from his mother and a missense change 

inherited from his father. Leunbach et al. [ 160 ] reported 

a 28-month-old boy with pallor and weight stagnation, 

macrocytic anemia, and pancytopenia due to Cbl defi-

ciency and a homozygous mutation in the intrinsic factor 

gene. His sister showed similar symptoms at the age of 15 

months. All were given monthly cyanocobalamin injec-

tions which, however, caused leg cramps. Replacement 

with monthly HOCbl was successful.   

 Congenital transcobalamin deficiency 

 TC is a non-glycoprotein that has a half-life of 90 min [ 161 ]. 

The vascular endothelium is the major cite of the synthe-

sis of TC [ 162 ], but many other tissues can also synthesize 

it. TC deficiency might be caused by the absence of the 

protein, error in RNA editing [ 163 ], or a protein that is not 

functional either because it can not bind to the TC-recep-

tor or to Cbl [ 164 ,  165 ]. The molecular bases of several TC 

defects have been identified [ 163 ,  166 ,  167 ] after cloning 

the  TC  gene [ 168 ]. 

 Newborns with TC deficiency are asymptomatic 

at birth. Symptoms are developed during the first few 

weeks of life and include megaloblastic anemia, failure 

to thrive, vomiting, infections, and neurological symp-

toms [ 163 ,  169 ]. Cbl treatment must be started as soon 

as possible and continue for life. Despite Cbl treatment 

many patients show continuous neurological symptoms 

like seizures, cerebral disturbances, and impaired visual 

abilities [ 163 ]. As approximately 80% of serum Cbl is 

bound to haptocorrin, total serum Cbl might be normal 

in patients with TC deficiency. This may give the wrong 

impression that Cbl status is normal and may thus delay 

the diagnosis of severe Cbl deficiency. Patients have 

severely increased concentrations of MMA and tHcy in 

blood and urine. 

 Haptocorrin (TC I) deficiency produces low serum Cbl 

levels similar to Cbl deficiency. Diagnosis is especially diffi-

cult when TC I deficiency is mild. The phenotype is asymp-

tomatic. A prospective study found severe TC I deficiency 

with absence of TC I in 0.6% of 537 patients with low Cbl 

levels [ 170 ]. The low Cbl levels of TC I deficiency are usually 

misattributed to Cbl deficiency. Severe homozygous TC I 

deficiency features virtually undetectable TC I in plasma 

and secretions, and serum Cbl is usually  <   100 pmol/L but 

heterozygous have mild to mode rate lowering of plasma 

TC I, and mildly lowered (100 – 150 pmol/L) or low-normal 

serum Cbl [ 170 ,  171 ]. 

 The  TCN1  gene [Mendelian inheritance in man (MIM) 

189905] is located on chromosome 11q11-q12.3 [ 172 ], has 9 

exons of 59 to 191 bp and 8 introns of 160 bp to 3.2 kb, and 

encodes TC I, a protein of 433 amino acids [ 173 ]. Two muta-

tions have been described, both are located in exon 2 of 

the 9-exon  TCN1  gene [ 171 ]; a 315C   >   T nonsense mutation 

and a G deletion at position 270 that causes a frame shift 

leading to a premature stop codon. These mutations lead 

to degradation of the transcripts via nonsense-mediated 

mRNA decay.    

 Conclusions and final remarks 
 Disorders in the folate and cobalamin transport or meta-

bolism that affect folate and Cbl absorption, transport, or 

dependent enzymes, cause severe neurological symptoms 

that are in some instances reversible after supplementing 
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the co-enzyme form of the vitamin. Severe elevation in 

plasma or urine concentrations of tHcy and/or MMA can 

be considered as a screening test for these disorders. 

However, it is crucial to identify the defective pathway 

in order to supplement the proper form of the vitamin 

as early as possible. The neurological and neurodeve-

lopmental complications in patients with defects in the 

folate or Cbl related reactions underline the importance of 

the vitamins in the pre- and post-natal development of the 

central nervous systems.   
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