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Genetic defects in folate and cobalamin pathways

affecting the brain

Abstract

Folate and cobalamin are necessary for early brain develop-
ment and function. Deficiency of folate or cobalamin dur-
ing pregnancy can cause severe malformation in the central
nervous system such as neural tube defects. After birth,
folate and cobalamin deficiency can cause anemia, failure
to thrive, recurrent infections, psychiatric and neurologi-
cal symptoms. The folate and the homocysteine metabolic
pathways interact at a central step where 5-methyltetrahy-
drofolate donates its methyl group to homocysteine to pro-
duce methionine and tetrahydrofolate. Methyl cobalamin
and folate interact at this critical step. Both nutrients have a
crucial role in DNA synthesis and in delivering S-adenosyl-
methionine, the universal methyl donor. Severe and mild
inherited disorders in folate and cobalamin pathways have
been described. The two groups of disorders share some
similarities, but differ in the molecular mechanism, meta-
bolic dysregulation, and disease management. This review
summarizes selected disorders, including rare and com-
mon mutations that affect folate and cobalamin absorption,
transport, or dependent enzymes. When the mutations are
discovered early enough, many of the described disorders
are easily treatable by B vitamin supplementation, which
often prevents or reverses the manifestation of the disease.
Therefore, the screening for mutations is recommended
and should be carried out as early as possible: after occur-
rence of the first symptoms or when a certain constellations
of the folate and cobalamin related markers are measured,
such as elevated homocysteine and/or methylmalonic acid.
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Introduction

It is our great pleasure to congratulate Clinical Chemis-
try and Laboratory Medicine (CCLM) on its 50th anni-
versary and to contribute this article for the celebration
issue. CCLM, an internationally recognized and leading
journal in the field of clinical chemistry and laboratory
medicine, also plays an important role in the scientific
area of hyperhomocysteinemia (HHcy) and B vitamin
deficiency. One of the first CCLM publications in this field
dates back to the year 1998 [1] and examined the relation-
ship between HHcy and cardiovascular diseases. In the
period from 2000 to 2012, CCLM has published four inter-
national conferences on HHcy and B vitamin deficiency
which have been organized by our group (2nd Conference
on Hyperhomocysteinemia [2], 3rd Conference on Hyper-
homocysteinemia [3], 4th Conference on Hyperhomocyst-
einemia [4], and the World Congress on Hyperhomocyst-
einemia [5]) with more than 100 articles. To date over 200
articles dealing with homocysteine (Hcy) and B vitamin
deficiency have been published in CCLM. This reflects
the contribution that CCLM has made and underlines the
important role of the journal for the scientific community
active in that research field. HHcy and B vitamin defi-
ciency are still the focus of medical research but topics
have changed during the last decade. Ten years ago the
main interest in HHcy research was directed towards its
relationship with cardiovascular diseases, however, the
current focus lies in its association with neurodegenera-
tive diseases [6, 7]. Large scale intervention has failed to
show that B vitamin supplementation improved patients
cardiovascular outcome [8]. A very recent meta-analysis
with 47,921 participants from 19 studies (plasma Hcy was
reduced in all studies) found that B vitamin supplementa-
tion has a significant protective effect on stroke, but none
on the risk of cardiovascular disease, myocardial infarc-
tion, chronic heart disease, cardiovascular death, or all-
cause mortality [9]. It has also been shown that HHcy and
B vitamin deficiency is correlated to neurological and
psychiatric diseases as well as cognitive decline [7, 10, 11].
The important role of biomarkers in neurodegenerative
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diseases has been highlighted in a special issue of CCLM
(Biomarkers of Neurodegenerative Diseases) [7, 12-21].
Moreover, recent publications provided convincing evi-
dence that B vitamin supplementation significantly
slowed brain atrophy and cognitive decline in patients
with mild cognitive impairment after 2 years of treatment
[22, 23].

Plausible pathomechanisms behind this relationship
are, on the one hand, oxidative stress and other neurotoxic
the mechanisms and a lowered cellular methylation poten-
tial caused by HHcy and B vitamin deficiency [10, 24, 25].
On the other hand, HHcy and B vitamin deficiency result
from lifestyle factors but genetic factors also contribute
significantly to dysregulated metabolic pathways in this
respect. Beside the very common 5,10-methylenetetrahy-
drofolate reductase (MTHFR, EC 1.5.1.20) polymorphism
that influences remethylation of Hcy to methionine [26]
many other genetic mutations affect folate and cobala-
min dependent pathways [27] and have disease modifying
effects [28]. Beside disturbed DNA synthesis, DNA hypo-
methylation due to HHcy and B vitamin deficiency is an
important epigenetic factor in gene regulation and expres-
sion and has impact on disease development [29, 30]. This
review is focused on the role of genetic defects in folate and
cobalamin metabolism and their impact on brain function.

Genetic defects in folate pathway

Folate metabolism and distribution

Folate is a methyl donor for Hcy methylation to methio-
nine. It participates in the de novo synthesis of purines and
thymidylates [deoxythymidine monophosphate (dTMP)].
Therefore, folate cycle links the DNA synthesis with the
methyl group metabolism. The universal methyl donor,
S-adenosylmethionine (SAM), is synthesized from methio-
nine and it regulates the coordination between folate and
methionine metabolism. Folate and cobalamin deficiency
as well as HHcy at conception may negatively influence
the health of the offspring [31] and have been related to
early pregnancy loss and other congenital birth defects
[32]. Several mutations in genes of folate-catabolizing
enzymes and transporting proteins have been described.
Many of these disorders affect the central nervous system
and are associated with severe clinical symptoms that are
manifested at early infancy.

Dietary folates are derivatives of folylpolygluta-
mates that are enzymatically hydrolyzed upon ingestion
into monoglutamates in the brush border cells of the
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duodenum and jejunum. The hydrolysis of the polyglu-
tamate is mediated by glutamate carboxypeptidase II
(GCPIL, EC 3.4.17.21) or the exopeptidase y-glutamyl hydro-
lase (GGH, EC 3.4.19.9) located in the lysosome [33]. The
folylpoly-y-glutamate synthase (FPGS, EC 6.3.2.17) facili-
tates folate polyglutamation. The anionic nature of the
folate oligomers renders them unable to leave the cell
and, therefore, the polyglutamate forms of reduced folates
(and certain antifolates) accumulate in the cell. Only the
monoglutamates can be transported across cell mem-
branes [34].

Three independent types of membrane systems are
responsible for cross membrane transport of folate mono-
glutamate forms. These are the membrane folate receptor
(FR), the reduced folate carrier 1 (RFC1), and the proton-
coupled folate transporter/heme carrier protein 1 (PCFT/
HCP1). The FR has high affinity for folate (K_ approx. 1
nmol/L) and conducts the receptor-mediated endocytosis
(unidirectional) across the cell membrane at neutral pH
[35]. FRo (FOLR1) is expressed in certain epithelial cells,
the choroid plexus, the placenta [36], and the kidney. FRp
(FOLR?) is expressed in the fetal brain, kidney, placenta,
spleen, and thymus [37]. RFC1 (SLC19A1) has a higher
affinity for 5-methyltetrahydrofolate (5-methylTHF) than
for folic acid and transports folate at an optimal pH of 7.5
[38]. The PCFT (SLC46A1) system acts at an optimal pH in
the acidic range (4.5-5.5) explaining its role as the major
intestinal folate transporter [39]. Transport of folates into
the cerebrospinal fluid (CSF) occurs in the choroid plexus,
where 5-methylTHF is transported across the blood-brain
barrier by FRo in adult or FRP in the fetal brain. PCFT is
ubiquitously expressed in the human brain, where it func-
tions in concert with FRo and FRP or might export folates
after FRo-mediated endocytosis [37, 40]. Biomarkers of
folate and methionine metabolism in blood are important
determinants of CSF levels of the metabolites [24, 41].

Tetrahydrofolate (THF) represents the active form
of folate that is formed from dihydrofolate (DHF) by
means of dihydrofolate reductase (DHFR, EC 1.5.1.3)
(Figure 1). 5,10-MethyleneTHF is converted to 5-methyl-
THF by MTHFR in an irreversible reaction [42]. 5-Meth-
yITHF donates its methyl group to Hcy and is converted
into THF by means of methionine synthase (MTR, EC
2.1.1.13), a cobalamin (Cbl)-dependent enzyme. The
enzyme methionine synthase reductase (MTRR, EC
1.16.1.8) is involved in the reductive regeneration of the
Cbl-cofactor, which is required for MTR function. 10-For-
mylTHF is utilized for purine synthesis and 5,10-methyl-
eneTHF for synthesis of dTMP and methionine. Serine
hydroxymethyltransferase 1 (SHMT1, EC 2.1.2.1) utilizes
serine to form 5,10-methyleneTHF [43]. The conversion
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Figure1 Folate metabolism, related enzymes, and transporters.
DHF, dihydrofolate; DHFR, dihydrofolate reductase;

dTMP, deoxythymidine monophosphate; dUMP,

deoxyuridine monophosphate; FR, folate receptor; MTHFD,
5,10-methylenetetrahydrofolate dehydrogenase; MTHFR,
5,10-methylenetetrahydrofolate reductase; MTR, methionine
synthase; MTRR, methionine synthase reductase; PCFT, proton
coupled folate transporter; RFC, reduced folate carrier; SAH,
S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF,
tetrahydrofolate; TYMS, thymidylate synthase.

of the different forms of folate is very fast and depends
on other factors like Cbl and vitamin B status, SAM, and
certain polymorphisms in folate-catabolizing enzymes.
The 5-methylTHF is the predominant folate form in
plasma that constitutes up to 90% of total folate. Folic
acid, the synthetic form of the vitamin, enters the folate
cycle after a two-step reduction via DHFR into DHF and
then THF.

Inherited disorders of folate metabolism
and transport

Several inherited disorders of folate metabolism and
transport have been described: MTHFR deficiency, MTR
deficiency (either caused by mutations in MTR gene or
MTRR gene), cerebral folate deficiency (CFD) caused by
FOLR1 mutation, hereditary folate malabsorption, and
glutamate formiminotransferase (FTCD) deficiency [44]
(Table 1). In addition, several putative inherited disor-
ders related to folate metabolism are discussed in the
literature like DHFR deficiency, cellular uptake defects,
and the 5,10-methyleneTHF cyclohydrolase [part of the
trifunctional enzyme 5,10-methyleneTHF dehydrogenase
1 (MTHFD1, EC 1.5.1.5)] deficiency [66].
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Hereditary folate malabsorption

Hereditary folate malabsorption is a clinical syndrome
manifested a few months after birth [67]. The pathophysio-
logy of the disorder is attributed to impaired intestinal
folate absorption and impaired folate transport into the
central nervous system causing very low serum folate
concentrations and CFD. After birth, affected newborns
rapidly develop severe folate deficiency with megaloblas-
tic anemia, diarrhea, oral mucositis, and recurrent infec-
tions (Table 1). Further symptoms include poor feeding,
failure to thrive and neurologic manifestations includ-
ing seizures and developmental delays [68]. If untreated,
patients might develop ataxia and cognitive impairment.
The disorder has been described in about 30 patients and
mostly females are affected [52, 69].

The molecular bases of the hereditary folate malab-
sorption might be related to mutations in the SLC46A1
gene, encoding the PCFT, which is present in the intes-
tine and the choroid plexus [37, 39, 52, 70]. Patients
deficient in PCFT develop severe folate deficiency sug-
gesting that RFC (one folate carrier), that is expressed
in the intestinal epithelium, does not significantly par-
ticipate in folate absorption [71]. Treatment with large
doses (oral or parenteral) of folinic acid (5-formylTHF)
can normalize folate levels. CSF folate is far more diffi-
cult to normalize and patients require supraphysiologi-
cal folate concentrations in blood to be able to increase
CSF folate [72]. Monitoring the therapy is important and
includes measurements of serum and CSF folate with
the aim of achieving normal concentrations of folate in
CSF.

Mutations in FRo, FRB, or RFC1 may be the cause of
disturbed folate uptake. Folic acid treatment normalized
serum folate and improved the clinical symptoms in one
study, but red blood folate remained very low suggest-
ing an impaired cellular uptake [73]. Patients show low
uptake of labeled 5-methylTHF by stimulated lympho-
cytes and bone marrow cells or red cells [73]. The genetic
background of these cases is unknown but might be vari-
ants of the hereditary folate malabsorption.

Cerebral folate deficiency

The disease is characterized by severe developmental
disorders, mental retardation, epilepsy, and movement
disorders [74]. Unlike children with hereditary folate mal-
absorption, those with CFD present with neurological
disorders several years after birth. The disease is char-
acterized by impaired folate transport across the choroid
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Disorder

Gene Mendelian
inheritance in man
(MIM) code [45]

Involved enzyme/protein [EC
number, cytogenetic location]

5,10-Methylenetetrahydrofolate
reductase deficiency

Cerebral folate deficiency

Glutamate formiminotransferase
deficiency

Hereditary folate malabsorption

Cobalamin A deficiency

Cobalamin B deficiency

Cobalamin C deficiency

Cobalamin D deficiency

Cobalamin E deficiency

Cobalamin F deficiency

Cobalamin G deficiency

Methylmalonyl-CoA mutase
deficiency

607093, #236250

136430, #613068

606806, #229100

611672, #229050

607481, #251100

607568, #251110

609831, #277400

611935, #277410

602568, #236270

612625, #277380

156570, #250940

609058, #251000

5,10-Methylenetetrahydrofolate
reductase (MTHFR) [EC 1.5.1.20,
1p36.3]

Folate receptor (FOLR1)
[11913.3-q14.1]

Formiminotransferase
cyclodeaminase (FTCD) [EC
4.3.1.4,21q22.3]

Proton coupled folate
transporter (PCFT or SLC46A1)
[17g11.2]

Methylmalonic aciduria type A
protein (MMAA) [4q31.21]

Cobalamin adenosyltransferase
(MMAB) [EC 2.5.1.17,11q24.11]
Methylmalonic aciduria and
homocystinuria type C protein
(MMACHCQ) [1p34.1]
Chromosome 2 open reading
frame 25 (C20rf25) [2923.2]
Methionine synthase reductase
(MTRR) [EC 1.16.1.8, 5p15.2-
p15.3]

LMBR1 domain-containing
protein 1 (LMBRD1) [6q13]
Methionine synthase (MTR) [EC
2.1.1.13, 1q43]

Methylmalonyl-CoA mutase
(MUT) [EC 5.4.99.2, 6p12.3]
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Function References
Conversion of [46-48]

5,10-methyleneTHF to
5-methylTHF

High affinity folate transporter,
transport of 5-methylTHF
across choroid plexus
Channels 1-carbon units from
formiminoglutamate to the
folate pool

High affinity folate transporter

Involved in translocation of Cbl
into the mitochondrion during
adenosylcobalamin synthesis
Involved in adenosylcobalamin
synthesis

Involved in the binding and
intracellular trafficking of Cbl

Protein involved in an early
step of cobalamin metabolism
Reductive regeneration of the
Cbl cofactor

Probable lysosomal Cbl
transporter

Transfer of methyl group from
5-methylTHF to homocysteine
to form methionine and THF
(Cbl-dependent)
Mitochondrial enzyme,
catalyzes isomerization

of methylmalonyl-CoA to
succinyl-CoA

[37, 49]

[50, 51]

[39, 52]

[53, 54]

[53, 54]

[55-57]

[58, 59]

[48, 60]

[61, 62]

[48, 63]

[64, 65]

Table1 Inherited disorders of folate and cobalamin metabolism and transport.

# Phenotype MIM number.

plexus, but not in the intestine. Therefore, when dietary
folate intake is sufficient, patients show normal concen-
trations of serum folate, but very low CSF 5-methylTHF [71,
75]. Mutation in the FOLRI gene, which encodes the FRa,
can cause severe 5-methylTHF deficiency in the CSF [37,
49]. Oral folinic acid can normalize the CSF folate status
and lowers frequency and severity of epileptic seizures
[37]. Cario et al. reported heterozygous mutations in both
FOLRI1 C352T and FOLR1 C525A genes, leading to nonsense
mutations (FOLR1 Q118X and C175X) (Table 2) and the loss
of FR-specific folate binding in two siblings [49]. Treat-
ment with folinic acid led to improvement of the symp-
toms, whereas one of the siblings completely recovered.
The homozygous missense mutation FOLR1 T313C was

also identified in one patient with CFD [76]. Additionally,
12% of children with any neurological disorder (71 of 584
patients) exhibited deficient CSF 5-methylTHF concen-
tration [76]. FRo is the most abundant folate transporter
in the choroid plexus, supporting its role as major folate
transporter across the blood-brain barrier [37]. Normaliz-
ing CSF folate in children affected with CFD or those with
hereditary folate malabsorption can be better achieved
by administration of high doses of folinic acid or methyl-
folate [71]. Oral treatment is less effective than intra-
muscular injections. Using folic acid is not advisable,
because it must be reduced first and the unmetabolized
folic acid can bind to FRo with a high affinity thus pre-
venting the binding of 5-methylTHF.
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Gene Genetic Amino acid Reference SNP
variant substitution (rs) number
MTHFR C677T A222V 1801133
A1298C E429A 1801131
MTR A2756G D919G 1805087
MTRR A66G 122M 1801394
SHMT1 C1420T L435F 1979277
MTHFD1 G1958A R653Q 2236225
DHFR A458T D153V 121913223
TYMS 2R/3R (28 bp) - -
RFC1 G80A H27R 1051266
FOLR1 C352T Q118X 121918405
C525A C175X 121918406
130_147 dup P49PRKSQAP 121918843

Table 2 Common polymorphisms in folate-metabolizing enzymes.

CFD may be related to causes other than mutations
in the FOLRI gene such as antibodies against the folate
receptor [77, 78]. Since the formation of the antibodies can
be downregulated with a milk-free diet, it has been sug-
gested that soluble folate-binding proteins in cow’s milk
[74] may induce antibody formation [79]. Furthermore,
CFD has been found in patients with single nucleotide
polymorphisms (SNPs) in the DHFR gene in two recent
studies [44, 80]. DHFR deficiency caused megaloblastic
anemia, normal total Hcy (tHcy), and low tetrahydro-
biopterine in the CSF [44]. DNA sequencing revealed a
homozygous DHFR C238T (Leu80Phe) missense mutation
[44]. Treatment with folinic acid led to improvement of
anemia and CSF 5-methylTHF levels, and seizure control.
However, the neurodevelopmental improvement was less
than that reported in patients with FOLR1 mutations or
FR autoantibodies [44]. CFD was also reported in patients
with megaloblastic anemia who were heterozygous for the
DHFR A458T polymorphism [80].

Other conditions with neurological manifestations
that are associated with CFD are Rett syndrome [81],
Kearns-Sayre syndrome [82], dihydropteridine reductase
deficiency [83], Aicardi-Goutiere’s syndrome [84], schiz-
ophrenia [85], and hypomyelination with atrophy of the
basal ganglion syndrome [86].

Glutamate formiminotransferase deficiency

Glutamate formiminotransferase deficiency is an autoso-
mal recessive disorder caused by mutations in the FTCD
gene [50]. Symptoms include elevated urinary levels of
formiminoglutamic acid (FIGLU) after histidine load,
megaloblastic anemia, mental retardation, and develop-
mental delay. Heterozygous missense mutations (C457T
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and G940C) in the FTCD gene were found in the mild form
of the disease [51].

Severe 5,10-methylenetetrahydrofolate reductase
deficiency

Severe MTHFR deficiency is an inborn disease which is
associated with homocystinuria, developmental delay,
decreased neurotransmitter levels, or seizures [87, 88].
One patient homozygous for the missense mutation in the
MTHFR ¢.1129C>T was presented with severe psychomotor
retardation, generalized cerebral atrophy, and hypomyeli-
nation on magnetic resonance imaging examination [89].
Folate (folic acid, 5-methylTHF, or folinic acid), vitamin B,
Cbl, and methionine supplementations are the basic ther-
apeutics. In addition, supplementation of large doses of
betaine seemed to support the metabolic requirements of
the brain by increasing SAM and SAM-dependent methyl
transferases [87]. Improvement in the neurological signs
has been reported, but it depends on the age of starting
the betaine supplementation [87].

Common polymorphisms associated
with neural tube defects

Common polymorphisms in the MTHFR gene have been
described. The C>T substitution in exon 4 at bp 677
causes a substitution of valine for alanine and results in a
thermolabile variant of the enzyme [90] that has a 50%-—
70% less activity when folate intake is limited [42, 90, 91]
(Table 2). The TT genotype is found in 10%-20% of the
European populations and it increases the risk of neural
tube defects (NTDs). Another common polymorphism
in the MTHFR gene is the A>C substitution at bp 1298
leading also to decreased enzyme activity but without
marked effect on tHcy or folate plasma levels [92]. The
prevalence of this polymorphism ranges from 6%-11% in
Europe [93].

Folates are essential for brain development and func-
tion. Folate deficiency during pregnancy can cause NTDs
in the offspring. NTDs are common severe congenital
malformations that arise early in embryogenesis because
of the failure of neural tube closure. Depending on the
location of the lesion, NTDs are divided into spina bifida
and anencephaly. Folate and Chl deficiencies as well as
elevated tHcy during pregnancy increase the risk of having
a child with NTDs [94, 95]. Mutations in genes encoding
enzymes involved in the folate/Hcy metabolism have been
related to the risk of NTDs [96]. Several studies confirmed
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the association between the MTHFR 677TT genotype and
the risk of NTD [97, 98], but a number of studies failed to
find an association [99, 100]. Shaw et al. found no asso-
ciation between the risk of spina bifida and 118 polymor-
phisms of folate-related genes [101]. However, the associa-
tion seems to depend on folate and Chl intake [46]. The
effects of the polymorphisms seem to be counterbalanced
by higher folate and Cbl intakes. This is the reason for the
insignificant effect of theses polymorphisms on NTD risk in
countries applying mandatory fortification with folic acid.

In a study on fibroblasts from 41 NTD-affected fetuses,
Ou et al. found a 7.2-fold higher risk for NTDs in samples
with MTHFR 677TT genotype [102]. Christensen et al.
reported an odds ratio (OR) (95% confidence interval) for
NTD of 2.2 (0.82-5.99) for affected children, 2.0 (0.75-5.43)
for mothers with an NTD child, and 6.0 (1.26-28.53) for
mothers and child pairs with MTHFR 677TT [46]. Low
red blood cell (RBC) folate further increased the risk of
developing NTD, and RBC folate was lower in cases and
case mothers compared to controls and control mothers,
respectively. The MTHFR 677TT combined with low RBC
folate resulted in an OR for NTD of 3.28 (0.84-12.85) for
mothers and 13.43 (2.49-72.33) for cases [46].

The association between MTHFR A1298C poly-
morphism and NTD risk is not consistent. Few studies
reported gene-gene interactions with the MTHFR C677T
genotype [92, 103], other studies found a protective
effect for the MTHFR 1298 C allele [104, 105]. In addition,
the MTRR 66GG genotype in the mothers was associ-
ated with a 2.1-fold (OR 2.1, 95% CI 1.3-3.3) higher risk
for having a child with NTD [106]. The MTR A2756G, the
MTRR A66G [107], and the MTHFD1 1958AA polymor-
phisms [108] were also reported to enhance the mater-
nal risk of having a child with spina bifida [28, 107].
Polymorphisms in RFC1 G80A [109], DHFR [110], and
thymidylate synthase (TYMS; EC 2.1.1.45) 28-bp tandem
repeat [111], and the presence of autoantibodies against
the FR [112] might also be involved in maternal risk of
having a child with NTD. Many NTDs can be prevented
by improving maternal folate status before the concep-
tion. Therefore, it seems that the polymorphisms related
to the folate cycle have no independent effect in case of
high folate status.

Genetic defects affecting cobalamin-
transport or dependent reactions

Cobalamin (Cbl, vitamin B ) is a water soluble vitamin
from the B-group. It is essential for cell growth and
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division. Chl deficiency can cause severe hematological
and/or neurological manifestations. Low serum Chl levels
are associated with pregnancy loss [113, 114]. Inherited
defects in Cbl metabolism are mostly associated with
failure to thrive, irritation, feeding problems, and neuro-
logical or neurodevelopmental disorders. Hematological
and neurological symptoms of folate and Cbl deficiency
are similar which is consistent with the crosstalk between
the folate and Cbl pathways.

Animal-based diet is the only source of Chl for
humans. The daily requirement for Chl termed as rec-
ommended dietary allowance is 2.4 pg/day for adults
[115]. Recent studies accessing blood concentrations of
modern markers of cobalamin, suggested that the daily
requirements for cobalamin should be set at >6 ug [116].
A relatively large amount of Cbl is stored in the body. The
depletion of the vitamin takes several years to develop
to deficiency when one stops to consume Chl-containing
diet.

Cbl is a cofactor for only two biochemical reac-
tions in humans (Figure 2). Methylcobalamin (MeCbl) is
a cofactor for the cytosolic enzyme MTR that transfers
a methyl group from 5-methylTHF to Hcy converting it
into methionine [117]. Adenosylcobalamin (AdoCbl) is a
cofactor for the mitochondrial enzyme methylmalonyl-
CoA mutase (MCM, EC 5.4.99.2) that converts succinyl-
CoA into methylmalonyl-CoA. Classical nutritional Cbl
deficiency is associated with low holotranscobalamin
(holoTC) and elevated plasma concentration of tHcy and
methylmalonic acid (MMA). Patients with defects in Chl
metabolism can show severely elevated MMA and/or tHcy
without any evidence of low holoTC. This can lead the
diagnoses and indicate that elevated MMA and/or tHcy
are not related to transcobalamin (TC) deficiency, but to
defects in the Cbl-dependent enzymes or trafficking pro-
teins within the cells.

The absorption, transport, and dissimilation of Cbl
are complex processes that require several proteins and
cellular receptors. Food Chl is first released from food pro-
teins by means of salivary amylase and acidic conditions
and is then bound to haptocorrin released in the saliva.
Haptocorrin protects the vitamin from the acid surround-
ings in the stomach. In the alkaline environment of the
intestine haptocorrin is degraded by pancreatic enzymes,
and the vitamin liberated from food is recognized by
intrinsic factor (IF). IF, another Cbl transporter, is a gly-
coprotein synthesized in the parietal cells of the stomach
that binds only the forms of the vitamin which are active
within the body. In the distal ileum, IF-bound-Chbl is taken
up by a specific receptor called cubam. Cubam is com-
posed of two proteins, cubilin (CUBN) and amnionless
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Figure 2 Cobalamin homeostasis and inherited disorders.

AdoCbl, adenosylcobalamin; Cbl, cobalamin; Hcy, homocysteine; HOCbl, hydroxycobalamin; MCM, methylmalonyl-CoA mutase; MeCbl,
methylcobalamin; MMA, methylmalonic acid; MTR, methionine synthase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine;

TC, transcobalamin.

(AMN) [118]. Binding of IF-Cbl to cubam is mediated by
CUB domains 5-8 in the CUBN protein. Amnionless is a
small transmembrane protein that anchors cubilin to
the cell membrane in the enterocytes [119]. In the entero-
cytes, Chl is released and transferred to transcobalamin,
forming the complex holoTC that is secreted into the
blood by a yet unknown mechanism probably involv-
ing the multidrug resistance protein (MRP1) [120]. As the
enterocytes have a high rate of synthesis of transcobala-
min II (TC), it has been a common view that Cbl is secreted
from the enterocytes in complex with TC. An alternative
hypothesis is that free Cbl is transported from the cytosol
across the basolateral cell surface into plasma, where it
subsequently forms a complex with circulating TC [120].
In the blood, the major part of Cbl is bound to haptocor-
rin (70%-90%) which is called holohaptocorrin (meta-
bolically inert fraction). Only 10%-30% of Cbl is bound
to TC, which carries the metabolically active Cbl. The cel-
lular uptake of Chl is receptor mediated endocytosis via
the TC-receptor or cubam. TC-bound Chl is degraded in
the lysosome and Cbl is released and directed into the two
pathways requiring it as a cofactor. The lysosomal degra-
dation and transport of Cbl within the cell are not fully
understood.

Several inherited defects in Cbl absorption, transport,
or assembly within the cell have been described (Table 1).
Defects in any step involved in converting methylmalonyl-
CoA to succinyl-CoA cause methylmalonylacidemia. This

can be due to either defective methylmalonyl-CoA mutase
(MUT) or impaired synthesis or utilization of AdoCbl
(CblA, B, D, and H). There are eight distinct complemen-
tation group defects of the intracellular Cbl metabolism
(Table 1, Figure 2). The different types were identified by
somatic complementation studies applied on fibroblasts
isolated from the patients [121]. Moreover, the Cbhl genetic
defects have been identified on the molecular level [58,
122]. The CbIF and CbIC defects caused homocystinuria
and methylmalonic aciduria [59, 123]. The ChID defect
can cause either homocystinuria or methylmalonic aci-
duria or a combination of homocystinuria and methyl-
malonic aciduria [59]. The CblA, CblB, and MUT cause
only methylmalonic aciduria, and CbIE and G cause only
homocystinuria. The molecular bases of these disorders
have been partly elucidated [124]. The clinical features
are similar and the start of the manifestations varies from
a few weeks to the adulthood. Lifelong Chl treatment is
required but the prognoses may differ. Clinical symptoms
include feeding difficulties, hypotonia, megaloblastic
anemia, mental retardation [125], visual loss, or nystag-
mus. Neuroradiological studies on children with CblC/D
defects have shown severe white matter abnormalities like
edema, swelling [125], or hydrocephalus [126]. The exact
mechanisms behind the neurological manifestations are
not known, but may be related to elevated tHcy, lowered
SAM causing hypomethylation, or accumulation of MMA
that is neurotoxic.
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Defects of cobalamin transport
and absorption

CblA

The gene responsible for CblA was identified in 2002 by
analyses of prokaryotic gene arrangements [53]. This dis-
order causes isolated methylmalonyluria.

Cobalamin C defect (CblC, MMACHC)

CblC is the most common severe disorder of intracellular
Cbl metabolism. CbIC is an autosomal recessive disorder
of Chl metabolism related to mutations in MMACHC gene
[127]. The methylmalonic aciduria and homocystinuria
type C protein (MMACHC) is responsible for processing
the upper-axial ligands of dietary Chl before AdoCbl and
MeCbl can be synthesized [128, 129]. It causes impaired
conversion of Cbl into its two metabolically active forms,
MeCbl and AdoCbl. There are several known and recently
identified mutations in the MMACHC gene [55, 56].

Severe neurological clinical symptoms are mani-
fested in the early onset form during the first year of
life. Symptoms include failure to thrive, microcephaly,
feeding difficulties, hypotonia, vomiting, developmental
delay, seizures, and speech delay. Symptoms are rarely
responsive to treatment [130] in the infantile form of the
disease. Retinal dysfunction has also been reported in two
cases with CbIC [131]. Several non-specific hematologi-
cal symptoms can be seen like megaloblastic anemia and
thrombocytopenia.

In 1984 [132] and later reports, a late onset form of
CblC which is diagnosed in previously asymptomatic
cases at older ages up to adulthood was identified [133,
134]. The first patient identified with CbIC had acute onset
of dementia, myelopathy, and motor neuron disease [132].
The late onset form has better outcome and response to
treatment. A recent study on normal fibroblasts and fibro-
blasts from early onset CblC disorder identified several
proteins that are downregulated in the mutant cells prob-
ably explaining some of the neurological manifestations
of functional Cbl deficiency [135]. Hydroxycobalamin
(HOCb]) did not cause any reduction in the excretion of
tHcy from the mutant cells. Interestingly, because of the
role of MTR in cellular folate retention, intracellular folate
was lower in the CbIC cells even after treatment with
HOCbI compared to normal fibroblasts [135]. Moreover,
protein markers related to brain function were found to be
upregulated in fibroblasts from CbIC patients and the level
of expression was not restored to normal after incubation
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with HOCbI [135]. This probably explains the neurocog-
nitive manifestations of the disease or effects on brain
development during the prenatal life.

There seems to be a genotype-phenotype association
with some mutations: the c.271dupA and c.331C>T (R111X)
mutations are more prevalent in the early onset disease.
Some missense mutations c.394C>T and c.482G>A are
associated with late-onset disease [55, 56]. Genotype-
phenotype correlations were explained by variations in
the levels of MMACHC mRNA being severely lower in the
early-onset forms [55].

In several cases with late onset ChIC defect (age at
onset 16—41 years) thrombotic events were common.
Moreover, six of 11 cases described had encephalopathy,
two had seizures, six suffered from myelopathy, and six
suffered from psychiatric disturbances [133]. Neurologi-
cal symptoms, as shown by magnetic resonance imaging,
dominated with abnormalities in the white matter area,
cortical atrophy, or medullar lesions mostly reported [133].
None of the patients suffered from mental retardation and
few remained free of neurological or psychiatric illnesses
[133]. Death occurred in few cases despite treatment with
Cbl. The mechanisms behind the neurological manifesta-
tions might be related to impaired methylation causing
cerebral perivascular demyelination [136]. Interestingly,
one case had recurrent thrombotic events that were pre-
vented by HOCbl injections. Folinic acid and betaine were
used as adjacent therapy to lower tHcy. Oral HOCbl was
less effective than the injections in preventing the throm-
bosis [133].

CblD (MMADHC gene)

The disorder is caused by mutations in the methyl-
malonic aciduria and homocystinuria type D protein
(MMADHC) gene that can result in isolated homocyst-
inuria (variant 1), isolated methylmalonic aciduria
(variant 2), or combined homocystinuria and methyl-
malonic aciduria. Patients unable to synthesize AdoCbl
and those unable to produce MeCbl have methylmalonic
aciduria or homocystinuria, respectively. The third com-
plementation group are patients unable to synthesize
both coenzyme forms and have therefore methylmalonic
aciduria and homocystinuria [59]. Depending on the
mutation, the clinical, cellular, and molecular pheno-
type of the CblD disorder is heterogeneous. Mutations
affecting the N-terminus of MMADHC are thought to be
associated with methylmalonic aciduria, and mutations
affecting the C-terminus are associated with homocyst-
inuria [137].
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CblG

This group summarizes disorders in MTR that is related to
disorders in the enzyme itself or in the co-factor, MeCbl.
CblG is caused by defects in MeCbl synthesis that in turn
cause MTR deficiency [138].

CblF (LMBRD1 gene)

CbIF is a disorder in Chl lysosomal trafficking. This defect
has been identified in 1986 as a distinct complementation
group [121]. Fibroblasts from CblF patients are able to take
Cbl via TC-receptor, but unable to release the vitamin from
the lysosome [139]. This defect has been reported in only
13 patients so far [140].

Rutsch et al. recently identified the LMBD1 domain-
containing protein (LMBRDI1) gene on chromosome 6q13,
that might be defect in CblF patients and might explain
why Chl is trapped in the lysosome [61]. The gene product
is probably lysosomal cobalamin transporter (LMBD1), a
lysosomal membrane protein with homology to lipocalin-
interacting membrane receptor (LIMR). Five frame shift
mutations in LMBRD1 resulting in loss of LMBD1 func-
tion were identified. Fibroblasts of individuals with CbIF
showed improved synthesis of Cbl cofactor after transfec-
tion with wild-type LMBD1. Genetics defects on the molec-
ular level have been recently identified in LMBRD1 gene in
one Turkish [140] and three Canadian [141] patients with
CblF disorder. The LMBD1 protein is synthesized in the
liver and is hypothesized to participate in Cbl uptake and
transport in the lysosome [140].

The CbIF disorder is manifested at an early age and
patients have abnormal newborn screening. Patients
are small for gestational age or growth retarded at birth.
Beside homocystinuria and methylmalonic aciduria, cer-
ebral seizures, intraventricular hemorrhage [140], failure
to thrive, anemia, lethargy, feeding difficulties [61, 142],
and developmental delay have been reported [61]. Other
disorders have been reported in CblF patients like congen-
ital heart failure, gastritis, ventricular hypertrophy, and
hypotonia [61].

Cbl) defect (mutations in ABCD4 gene)

One previously identified peroxisomal ATP-binding cas-
sette (ABC) transporter (ABCD4) has been recently shown
to be involved in one inherited defect affecting Cbl metab-
olism. The ABCD4 protein has been shown to colocalize
with the lysosomal proteins LAMP1 and LMBD1 [143]. The
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last protein is encoded by LMBRDI1 gene and is deficient in
patients with CbIF defect.

Imerslund-Grasbeck syndrome (IGS) or
juvenile megaloblastic anemia

This selective Cbl malabsorption is a rare autosomal
recessive disorder characterized by Cbl deficiency that is
responsive to treatment. Megaloblastic anemia is common
and mild proteinuria occurs in approximately 50% of the
patients [144, 145].

In 1960, the first description of the disease was by
Grasbeck as “selective cobalamin malabsorption with pro-
teinuria” [146]. In 1963, Imerslund described a similar dis-
order called idiopathic chronic megaloblastic anemia in
children [147]. The disease was first diagnosed in Finland
and Norway where the estimated prevalence is 1:200,000.
Although the exact prevalence worldwide is not known,
many new cases have been reported from eastern Mediterra-
nean countries. In contrast to the case of TC deficiency, symp-
toms do not appear directly after birth but from the age of a
few months to 15 years [148]. Symptoms are rather unspecific
and include fatigue, failure to grew or thrive, megaloblastic
anemia, and mild neurological symptoms [149].

Investigations of the disorder identified several
mutations in two different proteins that constitute the
functional IF-receptor: CUBN and AMN [150]. CUBN and
AMN form a complex called cubam that represents part
of the IF receptor responsible for intestinal Chl uptake
and renal protein reabsorption. Imerslund-Grasbeck
syndrome (IGS) can lead to low expression of IF-recep-
tor, increased degradation [151], or decreased affinity
of IF-Chl to the receptor [152]. A recent study identified
genetic mutations in AMN causing a premature stop
codon and a strong decrease in the luminal receptor
activity [153]. Analyses of renal biopsy from a patient
with AMN mutation showed no immunologic reaction for
CUBN and an abnormal cytoplasmic, vesicular distribu-
tion of the receptor partner AMN suggesting that AMN
depends on CUBN for correct localization in the human
proximal tubule [154].

Defects in CUBN or AMN and those in IF cause
similar symptoms and can be mistaken [155]. Life-long
treatment with Chl in IGS is necessary for preventing the
symptoms.

The exact mechanism behind the transport of Chl into
the CNS is not clear. An active transport mechanism into
the CNS has been proposed for Cbl. In one case of IGS, CSF
Cbl was low and Cbl was required in short intervals for the
remission of the psychiatric symptoms [156] suggesting
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that AMN protein might be involved in Chl transport into
the brain [156].

Pediatric patients present with megaloblastic anemia,
funicular myelosis, or benign proteinuria should be tested
for IGS syndrome. The definitive test is based on genetic
testing of the mutation, and Cbl should be administered
lifelong.

Congenital gastric intrinsic factor
deficiency

The discovery of new genes involved in Cbl assimilation
and metabolism has improved our knowledge of the rare
inborn errors of Chl metabolism [119]. Juvenile Cbl defi-
ciency leads to hematological and neurological distur-
bances. There is a lack of Chl in congenital pernicious
anemia due to gastrointestinal intrinsic factor (GIF) defi-
ciency and megaloblastic anemia due to selective intesti-
nal malabsorption of Cbl.

Overgaard et al. [157] recently described a case
(15-year-old boy) of a compound heterozygous muta-
tion in the GIF gene, with a previously described muta-
tion (c.79+1G>A) and a novel mutation (c.290T>C; M97T)
leading to a megaloblastic anemia in an adolescent.
Serum Chl was decreased and serum folate was normal.
Cbl therapy together with oral iron supplement normal-
ized blood parameters. Ament et al. [158] identified a spe-
cific GIF mutation [c.183_186delGAAT frame shift muta-
tion (M61fs)] to be responsible for juvenile Cbl deficiency
in cases of West-African origin. A child from Spain with
a megaloblastic anemia due to GIF deficiency has been
reported by Garcia Jimenez et al. [159]. The patient is a
compound heterozygous in GIF gene for a splice site muta-
tion inherited from his mother and a missense change
inherited from his father. Leunbach et al. [160] reported
a 28-month-old boy with pallor and weight stagnation,
macrocytic anemia, and pancytopenia due to Chl defi-
ciency and a homozygous mutation in the intrinsic factor
gene. His sister showed similar symptoms at the age of 15
months. All were given monthly cyanocobalamin injec-
tions which, however, caused leg cramps. Replacement
with monthly HOCbl was successful.

Congenital transcobalamin deficiency

TC is a non-glycoprotein that has a half-life of 90 min [161].
The vascular endothelium is the major cite of the synthe-
sis of TC [162], but many other tissues can also synthesize
it. TC deficiency might be caused by the absence of the
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protein, error in RNA editing [163], or a protein that is not
functional either because it can not bind to the TC-recep-
tor or to Cbl [164, 165]. The molecular bases of several TC
defects have been identified [163, 166, 167] after cloning
the TC gene [168].

Newborns with TC deficiency are asymptomatic
at birth. Symptoms are developed during the first few
weeks of life and include megaloblastic anemia, failure
to thrive, vomiting, infections, and neurological symp-
toms [163, 169]. Cbl treatment must be started as soon
as possible and continue for life. Despite Cbl treatment
many patients show continuous neurological symptoms
like seizures, cerebral disturbances, and impaired visual
abilities [163]. As approximately 80% of serum Chl is
bound to haptocorrin, total serum Cbl might be normal
in patients with TC deficiency. This may give the wrong
impression that Cbl status is normal and may thus delay
the diagnosis of severe Cbl deficiency. Patients have
severely increased concentrations of MMA and tHcy in
blood and urine.

Haptocorrin (TC I) deficiency produces low serum Chl
levels similar to Cbl deficiency. Diagnosis is especially diffi-
cult when TC I deficiency is mild. The phenotype is asymp-
tomatic. A prospective study found severe TC I deficiency
with absence of TC I in 0.6% of 537 patients with low Cbl
levels [170]. The low Chl levels of TC I deficiency are usually
misattributed to Cbl deficiency. Severe homozygous TC I
deficiency features virtually undetectable TC I in plasma
and secretions, and serum Cbl is usually<100 pmol/L but
heterozygous have mild to moderate lowering of plasma
TC 1, and mildly lowered (100-150 pmol/L) or low-normal
serum Cbl [170, 171].

The TCN1 gene [Mendelian inheritance in man (MIM)
189905] is located on chromosome 11q11-q12.3 [172], has 9
exons of 59 to 191 bp and 8 introns of 160 bp to 3.2 kb, and
encodes TC I, a protein of 433 amino acids [173]. Two muta-
tions have been described, both are located in exon 2 of
the 9-exon TCN1 gene [171]; a 315C > T nonsense mutation
and a G deletion at position 270 that causes a frame shift
leading to a premature stop codon. These mutations lead
to degradation of the transcripts via nonsense-mediated
mRNA decay.

Conclusions and final remarks

Disorders in the folate and cobalamin transport or meta-
bolism that affect folate and Cbl absorption, transport, or
dependent enzymes, cause severe neurological symptoms
that are in some instances reversible after supplementing
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the co-enzyme form of the vitamin. Severe elevation in
plasma or urine concentrations of tHcy and/or MMA can
be considered as a screening test for these disorders.
However, it is crucial to identify the defective pathway
in order to supplement the proper form of the vitamin
as early as possible. The neurological and neurodeve-
lopmental complications in patients with defects in the
folate or Cbl related reactions underline the importance of
the vitamins in the pre- and post-natal development of the
central nervous systems.
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