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       Review   
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Alix   Pantel      and     Albert   Sotto        

  Mass spectrometry: a revolution in clinical 
microbiology ?   

   Abstract
  Recently, different bacteriological laboratory interventions 

that decrease reporting time have been developed. These 

promising new broad-based techniques have merit, based 

on their ability to identify rapidly many bacteria, organisms 

difficult to grow or newly emerging strains, as well as their 

capacity to track disease transmission. The benefit of rapid 

reporting of identification and/or resistance of bacteria can 

greatly impact patient outcomes, with an improvement in 

the use of antibiotics, in the reduction of the emergence of 

multidrug resistant bacteria and in mortality rates. Different 

techniques revolve around mass spectrometry (MS) tech-

nology: matrix-assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF MS), PCR combined 

with electrospray ionization-mass spectrometry (PCR/ESI-

MS), iPLEX MassArray system and other new evolutions 

combining different techniques. This report emphasizes the 

(r)evolution of these technologies in clinical microbiology.  
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  Introduction 
 Despite the extensive use of antibiotics and vaccination 

programs, infectious diseases, particularly bacterial 

infections, remain a major cause of morbidity and mor-

tality worldwide. One of the great challenges of micro-

biology for the coming years remains the development 

of new antimicrobial agents. Indeed, because of the 

massive and often untimely use of antibiotics, patho-

genic bacteria have developed resistance mechanisms 

against most classes of antibiotics currently available. 

This trend has been particularly dramatic over the past 

20 years. The possible transmission of genes encod-

ing mechanisms of resistance between different bacte-

rial species has led to the emergence, particularly in 

the hospital, of multi drug and pain resistant bacteria 

that led to increasing difficulties in therapeutic man-

agement. This major public health problem also faces 

a challenging reality: the virtual withdrawal of the 

pharmaceutical industry from the development of new 

antibiotics. No blockbuster drug is being promoted  [1, 

2] . Given this reality, the development of new thera-

peutic strategies should be considered. One strategy 

is the best use of antibiotics. In this way the recent 

(r)evolution in clinical microbiology approach could 

help to improve this problem. Different solutions have 

increased: first the molecular diagnostic methods (e.g., 

16S ribosomal RNA sequencing, real-time PCR for detec-

tion of selected genes) which is classically used in par-

allel with routine bacteriological methods; and second 

mass spectrometry (MS) which is propelling us into a 

new era far beyond the classical bacterio logy of Louis 

Pasteur. These promising new broad-based techniques 

have merit, since they can rapidly identify many bac-

teria, including organisms that are difficult to culture 

or new emerging strains. They also can be used as epi-

demiological tools to follow disease transmission. The 

benefit of rapid reporting of isolation and/or identifi-

cation of resistance of bacteria can potentially impact 

patient outcome, improve the use of antibiotics and 
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(Figure  1  ). The ions formed are then accelerated and sent 

in a vacuum flight tube where they are separated accord-

ing to their speed. This speed depends itself of a mass/

charge ratio peak (m/z). Ions characterized by a high m/z 

fly more slowly than those with lower m/z. The approach of 

protein identification is based on the accurate mass meas-

urement of a group of peptides derived from a protein by 

sequence-specific proteolysis. Proteins of different amino 

acid sequence produce a series of peptides masses, which 

can be detected by the detector. The spectrum of identi-

fied peptide masses is unique for a protein specific to a 

bacterial species. The peptide profiles are generated from 

direct ionization of an intact colony or a bacterial protein 

extract after manual extraction. The spectrum obtained 

is then compared with spectra contained in the database 

according to the algorithm-specific software used. Identi-

fication occurs after a protein ’ s spectral signature is cor-

related to a database of spectra collected from reference 

strains. The results are returned with a scoring system, 

which appears to be conservative enough to avoid false-

positive identifications with both systems  [9, 10] . Differ-

ent systems (software/database) have been created for 

routine identification of bacteria: the Bruker instrument 

provides its own solution, MALDI BioTyper (software, 

bioinformatic and database); the Shimadzu instrument 

uses also its own software (Launchpad) and the SARAMIS 

database developed by AnagnosTec GmbH and recently 

acquired by BioM é rieux; Andromas (a French start-up) 

provides a different type of database and software for 

routine bacteriology, compatible with either Bruker or 

Shimadzu hardware. These databases currently available 

for both systems need to be optimized for certain species 

but are large and contain up to 2000 species (including 

bacteria, yeast and mycobacteria), with over 3000 spectra. 

Their performance is in any case higher than phenotypic 

identification systems  [11 – 13] . We could note that no 

statistically significant difference was identified between 

the platforms for clinically relevant bacteria  [11, 14] . 

 As we previously noted, MS needs the use of a 

matrix to facilitate the ionization of proteins. They 

allow a burst of microorganisms and the release of pro-

teins that migrate performing a true chromato graphy. 

Depending on the matrix, we obtain a spectrum of 

proteins of specific molecular weight ranges. Alpha-4-

cyano-4-hydroxy cinnamic acid (HCCA) induces the for-

mation of small spherical crystals with more uniform 

distribution. It is not suitable for some taxons and 

requires fewer laser shots and allows the production 

of 80 to 150 peaks per spectrum  [15] . The UV absorbing 

matrices used were found to be highly specific to bac-

terial Gram type: HCCA for Gram-negative bacteria and 

reduce the emergence of multidrug resistant bacteria 

and mortality rates. 

 The aim of this review is to describe the different solu-

tions using MS recently developed and to evaluate their 

impact on rapidity of diagnosis and on the prognosis of 

infectious diseases.  

  The MALDI-TOF MS technology 

  Principle (Figure 1) 

 The first description concerning the use of MS in bacte-

riology was in 1975  [3] . The technology was developed to 

study the biomarker profiles of some bacterial species. It 

used the ionization by fast atom bombardment and the 

association of gas chromatography and MS. The difficulty 

was to detect the release of the ribosomal and membrane 

proteins without destroying them in order to analyze the 

protein profiles and obtain mass pattern spectra. This 

encouraging study was not followed by any other develop-

ment until 1996. At this time, the first matrix-assisted laser 

desorption/ionization time-of-flight MS (MALDI-TOF 

MS) experiment was successful in identifying bacteria 

directly from whole colonies based on protein content  [4, 

5] . However, the most important evolution corresponded 

to the system of detection by soft ionization techniques 

such as MALDI and electrospray ionization (ESI) allowing 

the analysis of biomolecules and large organic molecules, 

which tend to be fragile when ionized by the old other con-

ventional ionization methods  [6] . The continual develop-

ment of the hardware provided increasing accuracy and 

resolution of the different proteins, and the MALDI-TOF MS 

was being used for the identification of bacteria in research 

settings  [4] . Following this period, the new approaches for 

species identification were developed involving the use of 

a different matrix. The change of matrix allowed the ioni-

zation of mainly ribosomal proteins, which are more con-

served than surface proteins  [7] . This was considered to be 

more reliable for routine identification of bacterial species, 

as culture conditions seemed to have little effect on the 

results of identification  [8] . Therefore, the MS became a 

revolutionary tool for bacteriology laboratories. 

 Matrix-assisted laser desorption/ionization involves 

the principle of the co-crystallization of the sample with 

a matrix. The couple sample-matrix is irradiated with 

photons of a laser whose wavelength is in the absorption 

band of the matrix. This radiation causes the ionization 

in the gas phase of molecules of the sample and matrix 
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 Figure 1    Principle of MALDI-TOF MS and ESI-MS identification of bacteria. 

 For MALDI-TOF, laser impact causes thermal desorption of ribosomal proteins of bacteria embedded in matrix material and applied to the 

target plate (analytes shown as red, light blue, and orange spheres, the matrix is given as green spheres). In an electric field, ions are 

accelerated according to their mass and electric charge. The drift path allows further separation and leads to measurable differences in 

time-of-flight of the desorbed particles that are detected on top of the vacuum tube. From the time-of-flight, the exact mass of the 

polypeptides can be calculated. For ESI, the DNA amplicons are dissolved in a solvent and injected in a conductive capillary, where high 

voltage is applied, resulting in the emission of aerosols of charged droplets of the sample. The latter are sprayed through compartments 

with diminishing pressure, resulting in the formation of gas-phase multiple-charged analyte ions, which then are detected by spectrometer.    

5-chloro-2-mercaptobenzothiazole for Gram-positive 

bacteria  [16] . The latter matrix system enhances the sen-

sitivity of the analysis of bacterial endotoxins (lipid A) 

by more than 100-fold and provides tolerance to high 

concentrations of reagents (such as sodium dodecyl 

sulphate, sodium chloride and calcium chloride)  [17] . 

The 2,5-dihydroxybenzoic acid (DHB) allows the forma-

tion of long crystals from the periphery to the center of 

the deposit. It is suitable for a majority of taxons and 

requires more laser shots to obtain 100 to 200 peaks per 

spectrum and many signals whose the m/z is   >  10 kDa 

 [18] . The manipulation of this matrix is trickier. Finally 

3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid 

or SA) is a more recent matrix. It allows the analysis of 

proteins of higher molecular weight than the HCCA and 

DHB  [19] .  

  Advantages of MALDI-TOF MS (Table  1 ) 

  The MALDI-TOF MS is the most promising technol-

ogy for the present and the future in the microbiology 

laboratories. This is due to its ability to analyze whole 

bacterial cells with virtually no sample preparation 

or no batching and the improvement in the identifica-

tion time of a positive culture (10 – 20 s for acquisition 

of the protein spectra and 15 – 30 s for the comparison 

in the databank), starting from a colony (Figure  2  ). 
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MALDI-TOF MS is also widely used because of its high 

accuracy, low running cost and low maintenance needs. 

Indeed this technology requires only the medium to 

grow the organism and a small quantity of matrix. It 

has already replaced most of the biochemical tests cur-

rently used for bacterial identification in routine labo-

ratories (e.g., catalase, oxydase, identification card or 

API gallery, latex test, agglutination tests) because it 

does not require prior knowledge about the organism 

 [68] . This new method has now proven to be reliable 

and safe for the identification of the clinically relevant 

bacteria (e.g.,  Enterobacteriacae , the non-fermenting 

bacteria, staphylococci or streptococci)  [12, 69 – 72] . Con-

tinuous improvement of the database is performed and 

updates are released every 3 – 6 months. In this way, the 

identification of most rarely isolated bacteria such as 

some potential bioterrorism agents ( Brucella  sp.  [73] , 

 Coxiella burnetii ,  Francisella tularensis  and  Bacillus 
anthracis   [74]) , some Gram-negative bacilli ( Pasteur-
ellaceae   [75] ,  Acinetobacter baumannii  group  [76, 77] , 

 Yersinia  sp.  [78] ,  Legionella  sp.  [79] ), anaerobes  [80 –

 82] , or bacteria difficult to identify after Gram staining 

( Leptospira  sp.  [83] ,  Mycobacterium  sp.  [84, 85] ) have 

been reported. 

 All these developments are promising notably since 

the publication by Gaillot et al. on cost-effectiveness of 

MS. The authors reported that phasing out of conventional 

techniques in favor of MS resulted in the overall saving of 

$177,090 in 1 year  [86] .  

  Inconveniences of MALDI-TOF MS (Table 1) 

 The speedy identification of bacteria by MS clearly 

presents a major advantage for clinicians in the man-

agement of antibiotic treatment. However, even if the 

protein mass pattern spectra can be analyzed for iden-

tification of bacteria to the genus and species level, 

many results are rarely available to the subspecies level. 

This means that this tool is not completely efficient to 

identify all bacteria (e.g., difficulty in distinguishing 

between  Escherichia coli  and  Shigella  sp.) and does 

not provide help in epidemiological studies to follow 

crossed transmission of bacteria. Moreover, the major 

problem is the incomplete current databases. The com-

position and quality of these databases is crucial for a 

correct identification. They still need implementation 

and expansion  [68] . 

Sample

CultureDNA extraction
Lysis protocol

12-72 h20 min-2 h 

6-18 h20 min-2 h 

Phenotypic
identification

DNA extraction

2 min 
4-5 h

3-4 h

PCR-ESI MS
MALDI-TOF MS:

identification

PCR for
MLST

  

Protein
extraction

4-5 h

18-24 h

20 min
-24 h

iPLEX
Mass ARRAY

Valid result Non-reliable
result

6-18 h

48 h

MLST

6-18 h

Antibiogram

 Figure 2    Typical workflow of new and old methods used in a clinical microbiology laboratory. The time to identification, typing and resist-

ance analysis is noted. 

 MALDI-RE, matrix-assisted laser desorption ionization resequencing; MALDI-TOF MS, matrix-assisted laser desorption ionization time-of-

flight mass spectrometry; MLST, multilocus sequence typing; PCR-ESI MS, electrospray ionization mass spectrometry.    
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 Adjustment of the default MALDI-TOF MS database 

allowed the identification of all members of the  A. bau-
mannii  group as well as other  Acinetobacter  spp. with 

similar accuracy, as was reported by Espinal et al.  [76] . 

 A large number of bacterial cells are required for iden-

tification. Usually a whole intact colony is used for analy-

sis, limiting the ability to rapidly identify microorganisms 

directly from biological fluids where the bacterial count is 

expected to be relatively low. Research is currently being 

performed to mitigate some of these requirements. 

 Other problems could also be noted: 1) the use of MS 

is challenged by the high costs of the instruments and by 

the long period of maintenance (up to 2 days) requiring 

another solution during this period; 2) this technology 

must be completely adapted to the new constraints of diag-

nostic laboratories, in particular, the traceability of all the 

tests; 3) Anderson et al. has demonstrated the effects of 

some selective solid-medium type on the rate of identifica-

tion of bacterial isolates by MS  [87] . For example,  Staphy-
lococcus  spp. from colistin-nalidixic acid agar medium 

exhibit low identification rates whereas the same bacte-

ria from blood medium were perfectly identified. In addi-

tion to that, it has also been found that protein extraction 

enhances identification rates and is recommended for 

colonies grown on different media. However, this extrac-

tion increases the time of the experiment; 4) there is also 

an important need to obtain isolated bacterial colonies 

to avoid the growth of microorganisms from potentially 

contaminated material because the technique ’ s ability to 

resolve mixtures is lacking; and 5) the uncultured bacteria 

detected by this technology are not mandatory pathogens 

and must be evaluated with the clinical signs. 

 It is probable that all these minor inconveniences 

could be corrected in the future developments. However, 

one of the most important objectives support improved 

antibiotic prescription. In fact, this is one of the missing 

features of this technology and bacterial cultures are 

still required for antimicrobial susceptibility testing. 

Therefore, accurate measures and identification of resist-

ance factors could represent the future evolution of this 

technology.   

  New developments of the MS 
 A great number of developments have been made recently 

to improve the detection limit based on genus and species 

identification. The MS is now used not only to detect 

endogenous peptide/proteins to identify bacteria but 

in the new evolutions, MS enables the improvement of 

immunological/PCR detection methods. Moreover, the 

protein biomarkers that are measured in MS of micro-

organisms are highly expressed proteins responsible for 

housekeeping functions, such as ribosomal, chaperone, 

and transcription/translation factor proteins  [88 – 92] . 

Based on this detection, new markers have been found 

and specific databases are being developed for the iden-

tification of specific resistance or virulence factors with 

MALDI-TOF MS technology. 

  Detection of resistance 

 Recently some resistance markers to one or more anti-

microbial agents have been detected by MALDI-TOF MS. 

Reports suggest that MS has the ability to differenti-

ate methicillin-susceptible  S. aureus  from methicillin-

resistant  S. aureus  (MRSA) strains  [93, 94] , and also detect 

carbapenem resistance activity based on the detection 

of degradation of  β -lactam antimicrobials  [20, 21, 95] . 

Basically, the MS follows the enzymatic hydrolysis of the 

antimicrobial agent. The sensitivity and specificity of this 

approach is high (97 %  and 98 % , respectively)  [21]  and the 

results are available in   <  3 h  [95] . However, this approach 

must be validated in routine laboratories to consider 

replacing the conventional techniques (such as cefoxitin 

disks, or PCR to detect the  mecA  gene). We can speculate 

that the time frame of MS can be further shortened as sug-

gested by Hooff et al.  [20] . 

 Even if the detection of subtle protein alterations will 

probably be difficult to assess by MALDI-TOF MS, recently, 

some reports have demonstrated it is possible such as the 

detection of  rpoB  mutations in  Brucella  sp.  [22] . There have 

also been reports of the detection of bacterial enzymes 

targeting antibiotics, such as  β -lactamases or carbapen-

emases in  E. coli  and  A. baumannii   [21, 23 – 25, 95] , the CfiA 

carbapenemase in  Bacteroides fragilis   [26] . Other resist-

ance mechanisms recently reported to be detected by this 

technology including porin defects and expression of 

efflux pumps  [27] . 

 The ability to use MS technology to rapidly detect the 

resistance mechanisms produced by a bacterial patho-

gen will be a key element that will revolutionize clinical 

microbiology.  

  Detection of virulence factors 

 Differences in virulence profiles for bacterial isolates can 

be based on the selective determination of the presence or 

absence of m/z peaks in the MALDI-TOF MS instrument. 
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This approach allows not only the identification of the 

bacterial species, but also to show the presence of some 

key surface-associated molecules or some well-known 

virulence factors involving a rapid management of the 

infection. In this way, the MALDI-TOF MS technology could 

detect a m/z peak specific to Panton-Valentine leukocidin-

producing  S. aureus  strains, a well-known virulence factor 

in the development of acute severe  S. aureus  infection 

 [28] . However, a recent publication calls into question the 

previous work. Szabados et al. claim that protein peaks of 

4448 and 5302 Da are not associated with the presence of 

Panton-Valentine leukocidin  [29] . 

 Some efforts have been made to find biomarkers to dif-

ferentiate between infectious and non-infectious causes 

of systemic inflammatory response syndrome (SIRS). Dis-

criminatory peaks have been detected suggesting a direct 

link between infectious-related protease activity and a 

sepsis-specific diagnostic pattern for discrimination of 

patients with SIRS  [30] . An interesting example is repre-

sented by the detection of the staphylococcal delta-toxin 

which was found associated with the acute infection  [31] . 

 Detection and identification of quorum sensing 

signals, immune-modulatory proteins and the binding 

of host factors including antibodies are targets for future 

research in this field.  

  Detection directly from samples 

 Molecular methods have revolutionized clinical microbio-

logy. Indeed a growing range of rapid diagnostic tests that 

can be performed at the point-of-care has been imple-

mented such as real-time PCR assays  [32] . These tools 

considered to be expensive and time-consuming have 

clearly evolved and represented a suitable evolution for 

routine identification. For example, different tests (e.g., 

GeneXpert TM  system or BD GeneOhm ™  StaphSR) have 

been developed for rapid management of contagious dis-

eases such as  Clostridium difficile ,  Bordetella pertussis  or  

Neisseria meningitidis   (33, 34) . These tests also allow 

MRSA to be detected from different sample types (e.g., 

blood, skin and soft tissue, nasal swabs) and to prevent 

unjustified prescriptions (e.g., detection of Enterovirus or 

 Streptococcus agalactiae  in pregnant women  [35, 36] ). 

 In this way, the use of MALDI-TOF MS for microor-

ganisms ’  identification in clinical samples has become 

essential in the future development of this technology. 

Some reports have been published recently to detect 

microorganisms directly from blood or urine samples 

 [37 – 47] . Methods (combining centrifugation steps, the use 

of serum separator tubes or ammonium chloride lysis) 

for the processing of positive blood culture samples have 

been proposed to increase the sensibility of the technique 

but especially in the case of direct testing of other mater-

ials (e.g., urine specimens), consensus still has not been 

reached  [37 – 47] . The analytical sensitivity in blood culture 

varied between 66 %  and 76 %  with a major precision in 

the identification of Gram-negative bacteria (around 90 % ) 

compared to Gram-positive bacteria (  <  50 % ). It is of note 

that current MALDI-TOF MS data software analysis is not 

able to reliably identify all microorganisms present in 

mixed cultures. Direct identification of pathogens in urine 

samples has also been evaluated. The results are not yet 

satisfactory, the most promising result was obtained for 

urine containing more than 100,000 CFU/mL  [44]  and 

other developments still seem necessary. Different proto-

cols have been used (e.g., concentration step, membrane 

filtration and magnetic separation) to improve the sensi-

tivity of MS  [43, 48] . The use of automation of urine analy-

sis (e.g., urines flow cytometry) in the laboratory in order 

to eliminate negative samples might render downstream 

use of MALDI-TOF MS more efficient. 

 All these evolutions are attractive for the future. Vlek 

et al. have demonstrated that the direct performance of 

MALDI-TOF MS on positive blood culture broths reduced 

the time until species identification by 28.8 h and was 

associated with an increased proportion of patients receiv-

ing an adequate antibiotic treatment within 24 h  [49] .  

  PCR/ESI-MS (Table 1) 

 Other MS solutions have been recently developed to 

increase the interest of MS technology. The PLEX-ID 

system (Abbott TM ) is a nearly fully automated system that 

associates broad-spectrum PCR (targeting ribosomal and 

housekeeping protein genes) with electrospray ioniza-

tion-MS (ESI-MS) (Figure 1)  [10] . It delivers broad micro-

bial screening to semiquantitatively identify all organ-

isms present in a sample. It is capable of running multiple 

human identification targets such as mitochondrial DNA, 

short-tandem repeat (STR) or single-nucleotide polymor-

phism (SNP). The principle is to measure the m/z of ampli-

cons, generated by multiplex PCRs that target several loci 

within bacterial or fungal genomes. The method targets 

both conserved and species-specific genetic regions to 

identify microbes based on amplicon base compositions 

relative to a known database of microorganisms. To date 

this tool has demonstrated its ability to directly detect and 

identify bacteria  [50]  and associated antibiotic resistance 

genes, such as drug-resistance  M. tuberculosis , carbap-

enemase-producing  A. baumannii  or  K. pneumoniae  and 
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quinolone resistance in  A. baumannii  from isolates  [51 – 55]  

(Figure 2). Indeed specific primers may be added to the 

assay to screen the  mecA  gene for methicillin resistance, 

the  vanA  and  vanB  genes for vancomycin resistance in 

enterococci, and the  bla  
KPC

  gene for resistance to carbap-

enems  [56 – 58] . Most recently, the method produced highly 

accurate results when used to identify bacterial and yeast 

pathogens directly from the clinical specimen (blood 

culture)  [59] , in particular, to detect  Erlichia  isolates  [60] . 

 It is important to highlight the technology also offers 

extended utility for epidemiological surveillance and 

infection control  [51, 52, 54] . It provides quick results 

(  <  6 h) and can identify mixtures of up to three to four 

microorganisms but requires the batching of six samples 

at a time  [10] . 

 In contrast, the first and most limiting step of this 

technique is DNA extraction from clinical samples. This 

induces an increase of the costs (2 to 3 times compared 

to MALDI-TOF) due to the cost of consumables, software 

package and the need to use DNA extraction reagents 

(buffers, enzymes, and primers) for PCR. 

 Although this technology needs to be validated more 

extensively, there are some recent publications on the 

detection of  Aspergillus terreus  from bronchio-alveolar 

lavage  [61]  and a panel of respiratory viruses from naso-

pharyngeal aspiration that represents an important target 

for the future in clinical microbiology  [62] .  

  iPLEX MassARRAY  ®   system (Table 1) 

 The MassARRAY iPLEX single-nucleotide polymorphism 

(SNP) typing platform uses and the MS technology coupled 

with single-base extension PCR to analyze amplicons of 

PCR for rapid and accurate molecular identification of 

microorganisms  [63] . This system is commercialized by 

Sequenom TM  (San Diego, CA, USA). 

 The assay consists of an initial locus-specific PCR 

reaction, followed by single base extension using mass-

modified dideoxynucleotide terminators of an oligonu-

cleotide primer which anneals immediately upstream of 

the polymorphic site of interest. Using MALDI-TOF MS, the 

different mass of the extended primer identifies the SNP 

allele. The starting point of the protocol is the amplifica-

tion of a target region of interest. T7- and SP6- promoter 

tagged primers are used to amplify the template. After 

treatment, in vitro transcription provides RNA transcripts 

which are base-specifically cleaved. The resulting RNA 

cleavage products are analyzed by MALDI-TOF MS. 

 The spectra are compared with the simulated spectra 

of the reference sequences as published for MLST. Due to 

the distinct mass of each nucleotide base, the results are 

as good as those of conventional dideoxy sequencing  [64] . 

 This technology has two main applications in clinical 

microbiology (Figure 2): the comparative sequence anal-

ysis, and the SNP genotyping. These two approaches 

provide a powerful tool in phylogenetic investigation, epi-

demiology (molecular typing) and surveillance of crossed 

transmission of bacteria  [63, 65, 84] . An interesting 

example using the MassARRAY technology is the study 

performed by Syrmis et al.  [63]  related with the genotyp-

ing of MRSA. 

 MassARRAY iPLEX is more efficient than a sequenc-

ing method; however, the analysis by MALDI-TOF MS is 

much faster than the analysis by capillary electrophore-

sis, requiring a few seconds for the former one and up to 

several minutes for the latter one  [85] . The iPLEX assay is 

suitable for high-throughput analysis, as either 96 or 384 

samples can be analyzed on the same chip. The major 

drawback of this technology lies in the requirement for 

specific equipment and the cost of this equipment.  

  Other technologies 

 Other systems for future applications could be devel-

oped. One solution includes the surface enhanced laser 

desorption/ionization time-of-flight (SELDI-TOF) MS 

system (Table 1). This technology is a specific MALDI-TOF 

application that combines a chip-based chromatographic 

enrichment of proteins with TOF-MS  [66] . The combina-

tion of SELDI (to generate protein profiles and identify 

significant peaks from large sample sets) and MALDI 

(to obtain sequence identity of significant peaks) can be 

extremely powerful for the rapid identification and vali-

dation of biomarkers. The SELDI technology incorporates 

sample prefractionation and binding to the active surface 

of a  ‘ ProteinChip ’  array providing more information about 

the protein of interest than just size, with inferences based 

on the surface chemistry of the  ‘ chip ’  (e.g., hydrophobic, 

reverse-phase, cation-exchange). This design feature of 

SELDI markedly decreases the complexity of protein-

rich fluids such as serum and permits quantitative com-

parisons of peak intensities between samples using large 

sample sets  [67, 96] . SELDI platforms are specifically 

designed for the rapid high-throughput comparative anal-

ysis of multiple biological samples, increasing the chance 

of finding proteins with consistently altered expression 

during disease development, progression or following 

treatment  [96] . The technology allows assessment of the 

performance of individual biomarkers and to evaluate 

combinations of biomarkers with potential diagnostic. 
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The two main limitations of SELDI are its relative impreci-

sion in its assignment of molecular mass to any given peak 

 [67]  and its high cost. Very few studies are available con-

cerning bacterial detection increasing the detection limit 

to the subspecies  [66, 97] . 

 A second solution is the liquid chromatography 

coupled to electrospray ionization triple quadrupole (LC-

ESI-QqQ) MS, LC coupled to ESI-Q-TOF (LC-ESI-Q-TOF MS) 

or MALDI triple quadrupole coupled to MALDI-TOF (Table 

1). The LC-ESI-QqQ in selected or multiple reactions way 

has been used for routine detection of small molecules 

including metabolites and drugs  [31] . More recently, the 

LC-ESI-QqQ has been suggested as a replacement for clas-

sical ELISAs for the quantitation of proteins in complex 

matrices  [98] . The MALDI triple quadruple measures 

enzyme-mediated, time-dependent hydrolysis of the 

 β -lactam ring structure of penicillin G and ampicillin and 

inhibition of hydrolysis by clavulanic acid for clavulanic 

acid susceptible  β -lactamases. This assay represents the 

basis for future investigations of  β -lactamase activity 

in various bacterial strains [20]. These MS technologies 

have already been used in research settings extensively 

and it will be just a brief time before this technology can 

be introduced in the routine clinical microbiology labo-

ratories. Noteworthy, the most popular routine diagnos-

tic procedure to date was developed two decades ago 

to facilitate the analysis of solid next to the customary 

volatile compounds  [99] . The technology must be used 

on liquid and could detect proteins especially peptides. 

It is completely adapted to quantification of proteins, 

but, until now, no development has been made in clinical 

microbiology.   

  The future: fad or real revolution ?  
 As pointed out in the present review and in previously 

published papers, MS has clearly revolutionized bac-

teriological diagnostics. Indeed, currently the delay 

between the collection of the specimen and the result of 

the bacterial culture is a great hindrance to the clinician 

(Figure 2)  [10] . For better use of antibiotics and control 

of the antimicrobial resistance, a rapid identification of 

the involved pathogens is of the greatest importance for 

effective patient management. Indeed, it can reduce the 

empirical use of broad-spectrum antibiotic therapy to 

a more narrow specific treatment. However, even if it is 

promising, MS technology still has limitations which are 

being overcome. When they are finally resolved, we can 

definitely speak of a  ‘ revolution ’ . MS will become a tool 

for the detection of microbial subtyping, antimicrobial 

susceptibility testing and virulence factors directly in the 

samples to guide the clinician in his choice of treatment. 

Indeed, in parallel, molecular biology seems to be more 

efficient especially at the point-of-care organization and 

the syndrome panel solutions. 

 In conclusion, MS is the future of microbiology: 

helping clinicians with accurate identification of micro-

organisms will contribute to timely decision-making for 

most infectious diseases, resulting in the optimal use of 

antibiotics, the decrease of multidrug resistant bacteria, 

the reduction of length and costs of hospitalization.   
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