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Abstract

Glaucoma, a leading cause of blindness worldwide, is cur-
rently defined as a disturbance of the structural or functional
integrity of the optic nerve that causes characteristic atro-
phic changes in the optic nerve, which may lead to specific
visual field defects over time. This disturbance usually can
be arrested or diminished by adequate lowering of intraocular
pressure (IOP). Glaucoma can be divided roughly into two
main categories, ‘open angle’ and ‘closed angle’ glaucoma.
Open angle, chronic glaucoma tends to progress at a slower
rate and patients may not notice loss of vision until the dis-
ease has progressed significantly. Primary open angle glau-
coma (POAG) is described distinctly as a multifactorial optic
neuropathy that is chronic and progressive with a characteri-
stic acquired loss of optic nerve fibers. Such loss develops in
the presence of open anterior chamber angles, characteristic
visual field abnormalities, and IOP that is too high for the
healthy eye. It manifests by cupping and atrophy of the optic
disc, in the absence of other known causes of glaucomatous
disease. Several biological markers have been implicated
with the disease. The purpose of this study was to summarize
the current knowledge regarding the non-genetic molecular
markers which have been predicted to have an association
with POAG but have not yet been validated.
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Introduction

The incidence of glaucoma is one in 200 people aged 50
or younger, and one in 10 people aged 80 or older. It is an
eye disorder in which the optic nerve suffers damage which
affects vision in the eye(s) and if untreated leads to permanent
impairment of the optic nerve and resultant visual field loss,
which can progress to blindness. The nerve damage involves
loss of retinal ganglion cells in a characteristic pattern. It is
often, but not always, associated with increased pressure of
the fluid in the anterior cavity of the eye (aqueous humor,
AH) (1). With pharmaceutical and/or surgical intervention it
is possible to halt further loss of vision. Glaucoma has been
nicknamed the ‘silent thief of sight’ because the loss of vision
normally occurs gradually over a long period of time and is
often only recognized when the disease is quite advanced.
Worldwide, it is the second leading cause of blindness, only
second to cataract. It is also the leading cause of blindness
among Africans (2).

The definition of glaucoma has changed drastically over
the years. There are many different sub-types of glaucoma
but they can all be generally considered as optic neuropathy.
Increased intraocular pressure (IOP) (above 21 mm Hg or
2.8 kPa) is a risk factor associated with the development of
the disease, but is not the disease itself. Nevertheless, some
controversy still exists as to whether IOP should be included
in the definition, as some subsets of patients can exhibit the
characteristic optic nerve damage and visual field defects
while having an IOP within the normal range. One person
may develop nerve damage at a relatively low pressure, while
another person may have high eye pressure for years and still
not develop damage. Patients can develop optic neuropathy
of glaucoma in the absence of documented elevated IOP. This
condition has been termed normal- or low-tension glaucoma.
People who maintain elevated pressures in the absence of
nerve damage or visual field loss also exist. They are con-
sidered at risk for glaucoma and have been termed glaucoma
suspects or ocular hypertensives.

In many patients with glaucoma, IOP elevation is associ-
ated with an increase in resistance to fluid leaving the eye
(Figure 1), an abnormality thought to occur primarily at the
level of fluid passage through the trabecular meshwork (TM)
and Schlemm’s canal (3, 4). In a minority of cases the increase
in outflow resistance is caused by restricted access of AH to
the TM (angle closure or narrow-angle glaucoma) or to a
mechanical clogging of the meshwork (e.g., pigmentary glau-
coma). However, in primary open angle glaucoma (POAG),
the angle appears normal and the cause for the increase in
outflow resistance through the outflow pathway, especially
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Figure 1 Normal fluid movement in the eye.

Aqueous humor flows from the posterior to anterior chambers
through the pupil and is drained through the trabecular meshwork
in a healthy eye. The cause for the increase in resistance through the
outflow pathway in POAG has remained obscure (Figure taken from
http://static.howstuffworks.com/git/glaucoma-diagram.gif).

the cell- and connective tissue-filled lattice work of the TM,
has remained obscure (5).

It is predicted that by the year 2020 POAG will affect more
than 50 million people worldwide (6). It is the most com-
mon form of glaucoma, with reported prevalence rates rang-
ing from 1.1% (7) to 3.8% (8). POAG is a long-term ocular
disease process that is generally bilateral and often asymmet-
ric. It is defined by optic disc or retinal nerve fiber structural
abnormalities and visual field abnormality as detected by
optic disc examination and visual field testing. POAG is sug-
gested to be a neurodegenerative disorder which is triggered
by different factors including mechanical stress due to intra-
ocular pressure, reduced blood flow to retina, reperfusion
injury, oxidative stress, glutamate excitotoxicity, and aberrant
immune response. The most definitive evidence of glaucoma
is documented, as progressive change in optic disc appear-
ance and reproducible worsening in automated visual field
testing. Structural alterations of the optic nerve or nerve fiber
layer occur more frequently prior to visual field abnormali-
ties or visual defects, although the opposite may be also seen.
There is strong evidence that IOP plays an important role in
the neuropathy of POAG, and it has been shown that a reduc-
tion in the level of IOP lessens the risk of visual field pro-
gression in open-angle glaucoma. Apart from IOP, other risk
factors include old age, race, female gender, myopia, corneal
thickness, optic disc hemorrhages, hemodynamics, and posi-
tive family history (9). Since POAG is a chronic condition, it
must be monitored for life, but early diagnosis is the first and
crucial step to preserve vision. Many factors have been found
to be implicated with the disease, including genetic and non-
genetic markers. At the genetic level, a distinction between

juvenile onset (age at diagnosis 10-35 years) and adult onset
(age at diagnosis above 35 years) has been made. Many
juvenile onset cases have autosomal dominant inheritance
whilst adult onset cases are typically multifactorial. POAG is
caused by multiple genetic and environmental factors, as well
as their interactions. Mutations, polymorphisms, and copy
number variations (CNVs) could contribute to the pathogen-
esis of POAG. To date, more than 20 genetic loci have been
implicated in its development. Linkage analysis has identified
two POAG-causing genes, myocilin (MYOC) and optineurin
(OPTN). More than 70 MYOC mutations have been reported
to contribute to the pathogenesis of POAG, and OPTN muta-
tions have been associated with normal tension glaucoma.
Variants in these two genes account for about 5% of POAG in
the population. Previous studies also have reported the asso-
ciation of POAG with mutations in WD repeat domain 36
(WDR36) and neurotrophin-4 (NTF4); however, their roles in
the pathogenesis of POAG is controversial. CNVs are defined
as insertions or deletions of large segments of DNA, from
1 kb up to several Mb; they have been found to contribute to
many complex disorders (10).

Biomarkers are characteristics that are specifically mea-
sured with adequate accuracy and precision and evaluated as
indicators of normal biological or pathogenic processes, or to
monitor pharmacologic responses to a therapeutic interven-
tion. Thus, biomarkers might be invaluable tools to identify
individuals at risk for disease and, depending on the approach,
could serve to measure the outcomes of therapies. Biomarkers
are molecules with biologically important intra- or intercellu-
lar function, an expression or activity of which either causes or
is specifically altered in response to corresponding pathologic
condition (11) and they are measured in the laboratory (e.g.,
protein concentration in urine). Molecules can change qualita-
tively (e.g., in case of gene mutations) or quantitatively (e.g.,
in case of an altered gene expression). The role of biomarkers
in medicine is to specify molecular alterations/reactions/path-
ways attributable to concrete pathologic condition. Generally,
biomarkers should not be necessarily linked to any genetic
mutation; both mRNA expression and protein levels possess
valuable information about cellular response to distinct patho-
logic conditions, and, therefore, are frequently used for spe-
cific biomarker selection. Indeed, the most important criterion
for a biomarker is its disease specificity. Whereas alteration
in expression status of only one gene is almost never disease
specific, a gene expression profile could be particularly valu-
able for the creation of highly precise diagnostic approaches
(11). The development of clinically useful biomarkers is an
area of active investigation and includes genetic screening
tests, proteomic markers, and analyses of serum antibodies
to retina and optic nerve proteins. The purpose of the present
study is to summarize all the current information regarding
these factors that have so far been suggested to be related with
the diagnosis of the disease but have not been established and
represent biomarker candidates to be validated. These mark-
ers, measured in blood (serum or plasma), AH, or tissues,
alone or in combination with each other, could be crucial for
the early diagnosis of POAG, or even for the prevention of the
disease in individuals who are at higher risk. Genetic markers
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of POAG, including gene expression and mutations/polymor-
phisms have been excluded from this study, as they have been
broadly reviewed recently (12—14). Antibodies and proteomic
markers have been listed in alphabetical order.

Biomarkers in POAG
30-HSD

3o-Hydroxysteroid dehydrogenases (30.-HSDs) catalyze
the conversion of 3-ketosteroids to 3a-hydroxy compounds.
The best known 30-HSD activity is the transformation of the
most potent natural androgen, dihydrotestosterone, into 50t-
androstan-30.,17B-diol (3a-diol), a compound having much
lower activity. 30-HSDs could play a crucial role in the con-
trol of a series of active steroid levels in target tissues. In the
human, type 1 30-HSD was first identified as human chlorde-
cone reductase (15). 3a-HSDs are members of the aldo-keto
reductase family and catalyze the conversion of 3-ketosteroids
to the corresponding 3o-hydroxy compounds using NADPH
as the cofactor.

Weinstein et al. determined whether peripheral blood lym-
phocytes from POAG patients have reduced 3c-HSD activ-
ity (16). The results of this study showed an association of
decreased peripheral blood lymphocytes 30-HSD activity
and POAG which was not related to antiglaucoma therapy.
The authors concluded that the reduced levels of 30-HSD
activity in the readily obtainable peripheral blood lympho-
cytes may serve as a marker for POAG or those at risk for
developing the disease.

ANGPTL?

ANGPTL7 is a member of the angiopoietin-like (ANGPTL)
family of proteins that have high sequence and structural
homology to the angiopoietins, which are important regula-
tors of angiogenesis (17). All ANGPTL proteins studied to
date have been shown to be involved in blood vessel forma-
tion or neovascularization in several models, including corneal
angiogenesis assays (18, 19). In addition, ANGPTL proteins
have been demonstrated to play an important role in lipid
metabolism by inhibition of phospholipase (20). ANGPTL
proteins appear to be bi-functional, with both functions dem-
onstrated for most of the family members studied. ANGPTL7
has been identified by expression microarray analysis to be a
highly induced mRNA in response to either dexamethasone
or transforming growth factor-f (TGF-f) treatment of TM
cells in vitro (21, 22).

ANGPTL7 was also identified as possibly being associ-
ated with POAG in a proteomics study of TM tissue (23).
Kuchtey et al. found that the concentration of ANGPTL7 was
elevated in the AH of POAG eyes, supporting the notion that
ANGPTL7 could be involved in POAG pathogenesis (24).
They concluded that elevated TGF-J3, levels in glaucomatous
AH could cause increased ANGPTL7 expression, which in
turn could induce collagen changes, or through other mecha-
nisms, contribute to the pathogenesis of POAG.

Antibodies

By enzyme-linked immunosorbent assay (ELISA), Tezel
and coworkers (25) compared the serum immunoreactivity
to glycosaminoglycans, and by immunohistochemistry they
compared the distribution patterns of glycosaminoglycans in
the optic nerve head of POAG eyes vs. controls. The authors
found that these autoantibodies may increase the suscepti-
bility of the optic nerve head to damage in these patients by
changing the functional properties of the lamina cribrosa, its
vasculature, or both (25).

The glutathione S-transferase (GST) supergene family,
which encodes detoxification enzymes, is widely expressed
in mammalian tissue cytosols and membranes. GST is pres-
ent in glial and neuronal cells of the central nervous system
and in the retina (26). Increased titers of autoantibodies to
GST in some patients with POAG may represent a general-
ized response to tissue stress and/or damage as a consequence
of the glaucomatous neurodegeneration process and thereby
secondary production of serum antibodies to GST in the glau-
comatous retina (26).

Approximately 20% of POAG patients possess a serum
antibody against neuron specific enolase (NSE), and the max-
imum IOP levels in POAG patients with anti-NSE antibody
are statistically lower than those without the antibody (27). It
has been suggested that the anti-NSE antibody can reach the
retina through circulation and cause retinal ganglion cell dam-
age and progression of visual field loss in addition to elevated
IOP (28), and that the presence of serum autoantibody against
NSE may be clinically useful for predicting the progression of
visual field loss in POAG patients (29).

Several studies have presented data regarding the associa-
tion of a number of antibodies related to POAG and other
glaucomatous groups. Among them, the serum titers of anti-
bodies against heat shock proteins (30, 31), and the entire IgG
autoantibody patterns against different retina, optic nerve,
and optic nerve head antigens in sera have been investigated
(32-37). Another study (38) was carried out to investigate
the levels of anti-Helicobacter pylori 1gG antibodies in the
AH and serum of POAG patients. A significant increase of
H. pylori 1gG antibody levels was demonstrated, suggest-
ing that the titer of anti-H. pylori IgG antibody in the AH
might reflect the severity of glaucomatous damage in POAG
patients. Yuki et al. analyzed the serum of POAG patients for
Chlamydia pneumoniae and Chlamydia trachomatis immu-
noglobulin G antibody titers by ELISA, and found signifi-
cantly higher immunoglobulin G titers for C. pneumoniae in
POAG patients than in controls (39). This may indicate either
a common factor that causes susceptibilities to both glaucoma
and C. pneumoniae infection, or that C. pneumoniae may be a
causal factor for developing POAG (39).

AP,A

Diadenosine tetraphosphate (AP,A) is a compound that con-
tains two adenosine moieties bridged by four phosphates.
AP,A is found in tears, heart, and brain (40). Oxidative
stress induces synthesis of AP,A (41). In vivo, AP A reduced
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translocation of mitochondrial cytochrome C, activation of
cytoplasmic caspase-3, and cerebral infarction in ischemic
cerebral cortex in vivo (42). These data suggest that AP A is
protective, via anti-apoptotic mechanisms, against ischemic
injury in cerebral cortex. AP, A also has positive effects on
dopaminergic neurons. Selective AP,A binding sites were
found in substantia nigra and striatum (43, 44). The role of
AP,A in POAG has been investigated in one recent study
(40). AP A was detected in human AH and its concentrations
were significantly elevated in POAG patients compared to
controls.

BDNF

Brain-derived neurotrophic factor (BDNF) is one of the
polypeptide growth factors known to be vital components
for building up and preserving of neurons. BDNF is trans-
ported to the retinal ganglion cell bodies through a retrograde
axonal transportation system and the synaptic connections
within (45). BDNF in the tears of normal tension glaucoma
patients is significantly less than normal, and this may be a
potential diagnostic biomarker for early detection of normal
tension glaucoma. BDNF crosses the blood-brain barrier and
as a result, the level of this factor in the blood can relatively
reflect its concentration in the brain. BDNF levels in serum
were determined in POAG patients and controls by ELISA
(45). The authors concluded that BDNF in the serum might be
a useful biochemical marker for early detection of POAG.

Caspase-14

Caspase-14 is a unique member of the evolutionarily con-
served family of cysteinyl aspartate-specific proteinases,
which are mainly involved in inflammation and apoptosis.
Although most caspases are ubiquitously expressed, cas-
pase-14 expression is confined mainly to cornifying epithelia,
such as the skin. Moreover, caspase-14 activation correlates
with cornification, indicating that it plays a role in terminal
keratinocyte differentiation. According to a recent study, cas-
pase-14 might be involved in the apoptosis of ocular tissues
in POAG by either directly mediating or inducing caspase-8
and caspase-9 activation in vitro (46).

CD44H

CD44 is an 80 to 90 kDa, type 1, transmembrane multifunc-
tional glycoprotein, and it is the principal receptor of the gly-
cosaminoglycan, hyaluronan (47, 48). CD44 is expressed in
a wide variety of cell types, including mature T-cells, B-cells,
medullary thymocytes, granulocytes, macrophages and fibro-
blasts, and the corneal epithelium (49) and retina (50, 51).
CD44 binds to the actin cytoskeleton, mediates cell attach-
ment to the extracellular matrix (52), and participates in
fibroblast migration in provisional wound healing (53) and in
immunologic activation (54). CD44 participates in the uptake
and degradation of hyaluronan (55). POAG is associated with
a decreased content of hyaluronan in the TM and in the jux-
tacanalicular connective tissue. Knepper and co-workers (56)

examined selected regions of the anterior segment to localize
and determine the content of CD44H. Their results indicate
that CD44H may represent a marker of POAG and an etio-
logic factor in the POAG disease process. The ectodomain of
CD44 is shed as a 32 kDa fragment-soluble CD44 (sCD44)
which is cytotoxic to TM cells and retinal ganglion cells in
culture (57). It has been shown that sCD44 adversely affects
retinal ganglion cells and TM cell survival in vitro, by activat-
ing a proapoptotic pathway (58). More recent studies (59-61)
have also demonstrated that sCD44 in AH could be a potential
biomarker for POAG.

Cellular senescence

Cellular senescence has been hypothesized to constitute an
antagonistic pleiotropic response that protects against cancer
early in life, but has cumulative deleterious effects, contribut-
ing to aging and certain age-related diseases (62). Acquisition
of a senescent phenotype can result from either multiple rounds
of cell proliferation in vitro (replicative senescence) (63), or
by exposure to different types of stress factors (stress-induced
premature senescence) (64). Since the proliferation rate of
TM cells is very low (65), it is more likely that acquisition of
a senescent phenotype in the glaucomatous outflow pathway
may result from stress-induced premature senescence rather
than from the exhaustion of their replicative potential. One
factor that could potentially contribute to stress-induced pre-
mature senescence in the TM is the constant exposure of TM
cells to an oxidative environment (66, 67). An additional fac-
tor that could contribute to the observed increased presence of
senescent cells in the outflow pathway from POAG donors is
the reported increased resistance to apoptosis associated with
the acquisition of a senescence phenotype (68), which may
favor the survival of senescent cells and lead to their accumu-
lation in the outflow pathway over time. The increased pro-
duction of reactive oxygen species by senescent cells could
potentially lead to an increase in apoptosis of the adjacent
non-senescent cells, and therefore contribute to the decrease
in the absolute number of cells observed in glaucoma (69).
POAG is associated with a significant increase in the number
of senescent cells in the outflow pathway. Given the multiple
potential adverse effects that these senescent cells might have
on outflow pathway function, it has been hypothesized that
cellular senescence might serve as a biomarker and could
contribute to the increase in AH outflow resistance and IOP
commonly associated with POAG (70).

Cystatin C

Cystatins, and in particular cystatin C, have been shown to
be involved in many biological events and have not always
been related to protease inhibition; examples include a neural
stem cell factor, osteoclast differentiation, pathophysiologi-
cal process in brain ischemia as well as in atherosclerotic
plaque development (71). In a study by Duan and cowork-
ers, a significant increase of cystatin C was observed in the
AH of POAG patients (46). The increase was similar to
the changes in cerebrospinal fluid of Alzheimer’s disease,
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suggesting that POAG shares similar mechanisms with
Alzheimer’s disease.

Cytokines

Cytokines are secreted proteins that play central roles in
modulating immunity, but they can also perform non-immune
functions in areas such as angiogenesis and development.
If immune activation is associated with glaucoma, changes
in cytokine secretion within the eye might be detectable as
changes in the concentration of cytokines in the AH of glau-
coma patients (72). Cytokines include interleukins, interfer-
ons, colony-stimulating factors, chemokines, tumor necrosis
factor, and growth factors. Tumor necrosis factor o (TNF-ov),
amacrophage/monocyte derived pluripotent cytokine, is asso-
ciated with tissue ischemia, neuronal damage, and remodel-
ing (73), and increased levels signify neuronal damage after
brain trauma. In humans, the TNF-o expression is elevated in
the optic nerve and the retina of glaucomatous eyes (73-75).
Significant alterations of serum cytokines are associated with
glaucoma (72, 76, 77), suggesting the possibility that abnor-
mal immune environments contribute to the glaucomatous
neuropathy of POAG.

Transforming growth factors (TGFs) constitute a family of
multifunctional polypeptides of approximately 25 kDa, and
exhibit pleiotropic regulatory actions upon most vertebral
cell types (78, 79). Depending on the cell type, they regulate
proliferation, migration, differentiation, cytokine production,
synthesis of extracellular matrix, wound healing, immunosup-
pression, and in vivo angiogenesis (80). Transforming growth
factor-B (TGF-P) exists in at least five genetically distinct iso-
forms, 3,-B, (81). Among these, only three isoforms, namely
B,. B,, and B, are expressed in human ocular tissues (81).
TGF-B, is regarded as the major isoform in the eye (78, 80,
81). Elevated levels of TGF-f3, have been detected in the AH
of glaucomatous eyes (81-84). A distinct structural change
in the TM of patients with POAG is the increase in fibrillar
extracellular matrix in the juxtacanalicular region of the TM.
TGF-B, signaling may be involved, as TGF-, is significantly
increased in the AH of patients with POAG. In cultured human
TM cells, TGF-B2 causes an increase in extracellular matrix
deposition (85). The concentration of TGF-f3, has been previ-
ously measured in several studies (86—88). The results have
shown that the levels of total TGF-f3, in the aqueous samples
of POAG are elevated and have suggested that minimizing
TGF-$, levels may help to prevent the aging process in the
TM as seen in POAG (88). Extracellular matrix elasticity
modulates TGF-B-induced signaling and protein expression
in human TM cells. Increasing extracellular matrix elasticity
in vitro promotes protein expression patterns reminiscent of
patterns reported in POAG. Therefore, changes in TM elas-
ticity and mechanical load may have a significant role in the
disease (89).

Erythropoietin

Human erythropoietin (EPO) is an acidic glycoprotein
hormone with a molecular mass of 34 kDa. As the prime

regulator of red cell production, its major functions are to
promote erythroid differentiation and to initiate hemoglobin
synthesis. Sakanaka et al. reported in vivo evidence that EPO
protects neurons against ischemia-induced cell death (90).
They presented findings suggesting that EPO may exert its
neuroprotective effect by reducing the nitric oxide-mediated
formation of free radicals or antagonizing their toxicity. Siren
and colleagues presented data suggesting that inhibition of
neuronal apoptosis underlies short latency protective effects
of EPO after cerebral ischemia and other brain injuries (91).
In rats, Junk et al. conducted parallel studies of recombinant
EPO in a model of transient global retinal ischemia induced
by raising intraocular pressure, which is a clinically relevant
model for retinal diseases. They observed abundant expres-
sion of the EPO receptor (EPOR) throughout the ischemic
retina (92). Becerra and Amaral (93) hypothesized that iden-
tification and separation of the structural determinants within
the erythropoietin molecule could elucidate additional ways
to minimize side effects associated with local administration
of erythropoietin to the eye, an approach that offers advan-
tages over systemic administration. Recently, the role of AH
erythropoietin in POAG has been investigated, and the stud-
ies have concluded that erythropoietin is a possible biomarker
for the disease (61, 94, 95).

GRP78

The 78 kDa glucose-regulated protein (GRP78) is an abun-
dant multi-functional protein that binds to endocytoplasmic
reticulum stress transducers and serves as a transmitter in
alterating of endocytoplasmic reticulum homeostasis. These
proteins originally generate a cytoprotective signal leading to
reduced translation, then improve endocytoplasmic reticulum
protein folding capacity, and clear misfolded endocytoplas-
mic reticulum proteins (96). Studies performed during the
last decade identified GRP78 as a ubiquitous luminal resident
protein of the endocytoplasmic reticulum that plays a key role
in assisting the corrected folding of protein tertiary and qua-
ternary structures. Recent studies indicated a close connec-
tion between GRP78 and endocytoplasmic reticulum stress in
certain disease processes (97). GRP78 was down-regulated in
TM cells of POAG patients compared to TM cells of healthy
controls, even when treated with an endocytoplasmic reticu-
lum stress inducer (97).

Hepcidin

The Hepcidin prohormone (Hep) is a small peptide produced
in the liver. Human Hep is produced from an 84 amino acid
precursor, including a putative single peptide. Hep is an
important peptide hormone that plays a critical role in the
regulation of iron efflux from numerous cell types, including
intestinal cells, macrophages, and hepatocytes (98). A recent
study found that Hep is expressed in Miiller cells, photorecep-
tor cells, and retinal pigmented epithelium. The expression
of Hep in the retina points to the local intraocular regulation
of iron metabolism, separate from a dependence on the cir-
culation liver-derived hormone: circulating Hep would likely
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be inaccessible to intraocular tissues due to the presence of
blood-ocular barriers (99). Recently, it was shown that local
Hep secretions may have a pathogenic role in POAG (100),
however, the authors raised a number of questions that need
to be elucidated before final conclusions are drawn.

Homocysteine

Homocysteine (Hcy) is an amino acid of interest which has
cytotoxic and vasculopathic actions such as apoptosis of reti-
nal ganglion cells, extracellular matrix alterations, oxidative
stress, and ischemic vascular dysregulation (101). Available
evidence indicates that Hcy is directly toxic to neurons and
blood vessels and can induce DNA strand breakage, oxida-
tive stress, and apoptosis. The methioninehomocysteine met-
abolic pathway intermediaries, S-adenosylmethionine and
S-adenosylhomocysteine, produce methyl groups required
for the synthesis of catecholamines and DNA methylation.
Since Hcy is a sensitive indicator of vitamin B deficiency, an
elevated Hcy level has been suggested as a marker for a patho-
genic process (102). Recent reports on Hcy measured in AH,
plasma, and tear fluid have yielded mixed results with some
studies demonstrating an association with normal tension
glaucoma, pseudoexfoliative glaucoma, and POAG, whilst
others have not (101, 103). Hcy metabolism is complex with
both genetic and environmental factors. Differences in these
factors could, in part, account for the disparity in reported
results. Vitamin B12, vitamin B6, and folate act as cofactors
in Hey metabolism (101).

Hydroxyproline

Hydroxyproline (Hyp) is an imino acid normally present in
human plasma. It is derived primarily from endogenous colla-
gen turnover and the breakdown of dietary collagen. The find-
ing of elevated (5- to 10-fold increase from the normal of <50
umol) serum hydroxyproline is thought to be an inherited
defect in the catabolism of hydroxyproline. Hydroxyproline
is produced by hydroxylation of the amino acid proline by the
enzyme prolyl hydroxylase following protein synthesis (as a
post-translational modification). The enzyme catalyzed reac-
tion takes place in the lumen of the endoplasmic reticulum.
Although itis not directly incorporated into proteins, hydroxy-
proline comprises roughly 4% of all amino acids found in ani-
mal tissue, more than seven amino acids which are directly
incorporated (104). Recently, the levels of Hyp were assessed
by spectrometry in the AH and plasma of human eyes with
POAG (103). This study demonstrated that Hyp levels were
significantly higher in the AH of POAG patients compared to
controls, while no significant difference between the levels of
Hyp in plasma of POAG and controls was shown (103).

Myocilin

Myocilin, a 55-57 kDa secreted glycoprotein and member
of the olfactomedin family is expressed in many ocular and
non-ocular tissues. The protein is found in both intracellular
and extracellular spaces, and has been linked to elevations

in intraocular pressure. TM issue from POAG, low-tension
glaucoma, and pseudoexfoliation glaucoma had increased
myocilin immunoreactivity when compared to normal tis-
sue (105). Steroid treatment of monolayer TM cells or
cultured human anterior segments showed a time and pres-
sure dependent increase in myocilin protein production
and secretion. Perfusion of human anterior segment organ
culture with recombinant myocilin increases outflow resis-
tance (105). Furthermore, animal models show a correla-
tion between increased myocilin levels and elevated 1OP.
Rats that spontaneously develop increased IOP had a 4-fold
increase in myocilin transcription. Myocilin is present in AH
where it may serve as a marker for the glaucomatous state
(105). Evidence supports a role for elevated myocilin levels
in canine glaucomatous AH particularly in breeds with pri-
mary glaucoma. Less well understood is the relationship of
myocilin levels in human glaucomatous AH, particularly in
POAG and pseudoexfoliation glaucoma. In humans, a trend
towards elevated myocilin levels in human glaucomatous
AH has been reported, however, limited sample size pre-
vented a glaucoma sub-type classification (106). Misfolded
mutant myocilin forms secretion-incompetent intracellular
aggregates. The block of myocilin secretion was proposed
to alter the extracellular matrix environment of the TM, with
subsequent impediment of AH outflow leading to elevated
intraocular pressure. Endoplasmic reticulum stress-induced
apoptosis could be a pathway to explain the reduction of TM
cells in patients with myocilin-caused glaucoma. As a conse-
quence, the phagocytotic capacity of the remaining TM cell
population would be insufficient for effective cleaning of AH,
constituting a major pathogenetic factor for the development
of increased intraocular pressure in POAG (107). Myocilin
levels were tested in control AH and compared to the levels
of POAG and pseudoexfoliation glaucoma AH to determine
whether levels of myocilin are altered in these glaucoma sub-
sets. These levels were significantly elevated in human POAG
AH when compared with control AH (105). A more recent
study demonstrated that myocilin expression is not altered in
the blood of POAG patients, unlike myocilin expression in
the corresponding TM cultures (108). These results suggested
that myocilin expression is not altered systemically but rather
that myocilin expression may contribute to POAG pathogen-
esis in specific tissues such as TM.

Nitric oxide synthase

In blood vessels, a key regulator of resistance changes is the
intercellular (and sometimes intracellular) gaseous modula-
tor, nitric oxide (NO) (109). Production of vascular NO is
regulated in several ways: by circulating hormones acting
on endothelial cell NO synthase (eNOS); by non-adrenergic,
non-cholinergic, perivascular nerves acting through neuronal
NOS (bNOS; NOS-1); by blood flow acting through mechan-
ical distortion of vessels (shear stress); and by cytokines and
perhaps other factors acting on inducible NOS (iNOS) present
in vascular smooth muscle. Increased synthesis of NO leads
to smooth muscle relaxation, increase in luminal diameter,
and a reduction in vascular resistance. Although studies (110)
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have reported that rats demonstrate little NOS-1 activity in
their ocular outflow pathway, an enrichment (relative to other
ocular tissues) of eNOS (NOS-3) in the human outflow sys-
tem (TM, Schlemm’s canal, and collecting channels) and in
the ciliary muscle, especially its anterior longitudinal portion
has been shown (111). The long ciliary muscle is known to
send tendinous insertions into the TM and, by contraction and
relaxation, to affect the complex TM anatomy and to alter
outflow resistance (112). Direct topical or intracameral appli-
cation of NO agonists has been reported to alter outflow facil-
ity (113, 114), and some clinical reports have indicated that
systemic administration of the NO-mimicking nitrovasodila-
tors can lower IOP at doses that do not alter systemic blood
pressure. Interestingly, the magnitude of the IOP decrease
observed in such cases has sometimes been observed to be
greater in patients with POAG than in patients with ocular
normal-tension or in those with angle-closure glaucoma. In
another study, the authors (115) hypothesized that in vivo
iNOS overexpression in the chronic progress of POAG could
contribute to TM cell damage, through protein nitration by
reactive peroxynitrite. This process can be an important link in
the chain of events leading to the oxidative damage observed
in severe POAG (116, 117). Furthermore, the increased nitro-
tyrosine in severe POAG may serve as a marker of oxidative
stress in the progression of cell death in POAG (115).

PGDS

Prostaglandin H2 D-isomerase (PGDS) is responsible for the
biosynthesis of prostaglandin D2 in the central nervous sys-
tem. It is a bifunctional protein that acts as both a retinoid
transporter and a prostaglandin D2-producing enzyme (118).
Elevated PGDS levels have been observed in the serum of
patients with renal impairment, diabetes mellitus, and hyper-
tension. Recently, the ability of PGDS to induce apoptosis
in a variety of cell types including epithelial cells, neuronal
cells, and vascular smooth muscle cells was demonstrated
(119). Therefore, it was suggested that PGDS might mediate
the apoptosis of TM. A significant increase of PGDS in the
AH of POAG patients compared to controls has been proved
by Western blotting analysis (46).

Phospholipase A,

Phospholipase A, (PLA) belongs to a superfamily of enzymes
that catalyzes the hydrolysis of the sn-2 ester bond in phospho-
lipids. The hydrolysis products are free fatty acids and lyso-
phospholipids. Different PLA, isoenzymes have been found
and classified into several groups (from I to XIV) based on
their structures, subcellular distributions, cellular functions,
and enzymatic characteristics (120). The PLA, concentration
of tears was measured with time-resolved fluoroimmuno-
assay in patients with senile cataract and patients with POAG,
and when compared with the PLA, concentration of tears in
healthy controls, no significant differences were found (121).
However, recently it was shown that secretory PLA,-IIA
(SPLA-ITA) is overexpressed in the TM of POAG eyes. This
result supports the hypothesis that oxidative stress may play a

significant role in the pathogenesis of POAG. sPLA -IIA has
been proposed as an inflammatory marker of cardiovascular
disease, and therefore, higher expression of macrophage-de-
rived sPLA,-ITA in POAG compared to normal controls sup-
ports the view that vascular diseases and POAG may share
common pathophysiological mechanisms (122).

Transferrin

Transferrin is a member of a large family of iron binding pro-
teins that transports ferric iron and possibly zinc between the
sites of absorption, storage, and utilization. Because transfer-
rin is present in blood at a concentration that is approximately
200-fold higher than in AH, it is a particularly good marker for
studying the integrity of the blood-aqueous barrier. In com-
bination with other growth modulating substances, transfer-
rin regulates the growth and maintenance of many cells of the
anterior segment of the eye in vivo and in vitro, and it also
has been implicated in the pathophysiologic changes of glau-
coma (123). However, despite the presence of transferrin and
its receptor-binding sites in intraocular tissues, the lack of a
significant proliferative activity in the tissues that border the
anterior chamber of the eye probably can be attributed to the
bioavailability of transferrin to its target cells. This process
might depend on circulating transferrin receptors shed by the
cells that maintain the capacity to bind transferrin and on the
interactive effects of other growth-modulating substances that,
not only regulate the expression of transferrin receptors on the
cell surface, but also are increased quantitatively in AH (123).
Elevated transferrin has been observed in the AH of POAG
patients, which has been attributed to elevated IOP (46).

Transthyretin

Transthyretin (TTR) is a tetrameric plasma protein and usu-
ally responsible for the transportation of thyroxine and retinol
(124). Sometimes TTR and its variants lead to extracellular
polymerization of insoluble protein fibrils called amyloid
deposits. The mechanism of the accumulation is still not
known. Findings of increased levels of TTR in the AH of glau-
coma patients indicate that this protein might play a role in the
pathogenesis of glaucoma. Interfering protein precipitations
of TTR might cause a mechanical barrier for aqueous fluid
that could consequently lead to glaucoma in some patients.
There are some theoretical explanations about elevated TTR
levels in glaucomatous AH. In animal experiments, TTR syn-
thesis in ciliary pigment epithelium was shown (125). This
location of TTR synthesis could explain the local influence
of this protein in the anterior chamber of the eye without hav-
ing a systemic effect. Another study on rats showed a wide-
spread ocular distribution of TTR including retinal pigment
epithelium and retinal ganglion cells (126). Possibly dying
retinal ganglion cells in glaucoma patients dispense their
TTR in the AH, which leads to higher TTR concentrations in
patients. Transthyretin has been identified in studies of rheu-
matoid arthritis, Alzheimer’s disease, and POAG (127), and
significant differences in the concentration of TTR in the AH
between POAG patients and controls were found (46, 127).
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Table 1 Classification and comparison of the candidate biomarkers discussed in this review.

Candidate biomarker Type Measured in
30-HSD Enzyme Blood
ANGPTL7 Protein T™, AH
Antibody for glycosaminoglycans Antibody Serum
Antibody for GST Antibody Serum
Antibody for NSE Antibody Serum
Antibody for heat shock proteins Antibody Serum
Antibody for anti-Helicobacter pylori Antibody AH, serum
Antibody for Chlamydia pneumoniae Antibody Serum

AP A Compound nucleotide AH

BDNF Protein Serum
Caspase-14 Enzyme AH

CD44H Protein T™, AH
Cellular senescence Antagonistic pleiotropic response AH

Cystatin C Protein AH

Cytokines Proteins AH, TM, serum
Erythropoietin Hormone AH

GRP78 Protein ™

Hepcidin Hormone AH
Homocysteine Amino acid AH, plasma, tear fluid
Hydroxyproline Imino acid AH, plasma
Myocilin Protein AH, TM

Nitric oxide synthase Enzyme TM, Schlemm’s canal and collecting channels
PGDS Enzyme AH, TM, serum
Phospholipase A, Enzyme ™

Transferrin Protein AH
Transthyretin Protein AH

Conclusions - expert opinion

In this review we summarized the cumulative knowledge
regarding the biomarkers which have been associated with
POAG but remain to be validated in the preferred detection
tissue for the disease. Molecular markers including antibodies
and proteomic markers have been discussed, while genetic
markers have been excluded due to the fact that they have been
extensively reviewed recently. These markers are compared
and classified in Table 1. Specific sensitive screening tools,
including these biomarkers, are needed to effectively identify
individuals who will benefit from therapy. It will be important
to carefully select patients who will respond better to targeted
therapies (e.g., cell based and viral gene transfer therapies).
It is also important that treatment should be initiated when
it will have the best impact on the disease. Technologies that
will make it possible to monitor damaged ganglion cells at
stages when they can still be rescued need to be developed.
In vivo imaging of retinal cell apoptosis suggests that in the
future it could be possible to identify ganglion cells enter-
ing apoptosis in POAG patients. Such advancement will also
make it possible to determine the efficacy of therapy. We can
expect that a patient’s risk for POAG will be established using
a combination of genetic, clinical and biochemical markers,
an assessment of ganglion cell disease will be made by novel
imaging techniques, and appropriate therapy will be initiated
to restore ganglion cell health. The use of the biomarkers dis-
cussed here and of those which will be identified in the future,

will allow early disease detection and timely therapy targeted
to molecular disease mechanisms, significantly improving the
quality of life of POAG patients.

Highlights

* Primary open-angle glaucoma is described distinctly as a
multifactorial optic neuropathy that is chronic and progres-
sive with a characteristic acquired loss of optic nerve fibers.

* A biomarker is specifically measured with adequate accu-
racy and precision and evaluated as an indicator of normal
biological or pathogenic processes, or to monitor pharma-
cologic responses to a therapeutic intervention.

e Biomarkers can be useful tools to identify individuals at
risk and to measure the outcomes of therapies.

* Biomarkers measured in blood, aqueous humor, or tissues,
alone or in combination with each other, could be crucial
for the early diagnosis of primary open-angle glaucoma.

 The analytical value of the molecular tests for the detection
of the discussed biomarkers will be guaranteed by valida-
tion of the relevant methods.
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