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Abstract

Objectives: The present study is designed to explore the
process of epileptic patterns’ automatic detection, specif-
ically, epileptic spikes and high-frequency oscillations
(HFOs), via a selection of machine learning (ML) techniques.
The primary motivation for conducting such a research lies
mainly in the need to investigate the long-term electroen-
cephalography (EEG) recordings’ visual examination pro-
cess, often considered as a time-consuming and potentially
error-prone procedure, requiring a great deal of mental
focus and highly experimented neurologists. On attempting
to resolve such a challenge, a number of state-of-the-art ML
algorithms have been evaluated and compare in terms of
performance, to pinpoint the most effective algorithm fit for
accurately extracting epileptic EEG patterns.

Content: Based on intracranial as well as simulated EEG
data, the attained findings turn out to reveal that the ran-
domforest (RF) method proved to be the most consistently
effective approach, significantly outperforming the entirety
of examined methods in terms of EEG recordings epileptic-
pattern identification. Indeed, the RF classifier appeared to
record an average balanced classification rate (BCR) of
92.38 % in regard to spikes recognition process, and 78.77 %
in terms of HFOs detection.

Summary: Compared to other approaches, our results pro-
vide valuable insights into the RF classifier’s effectiveness as a
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powerful ML technique, fit for detecting EEG signals born
epileptic bursts.

Outlook: As a potential future work, we envisage to further
validate and sustain our major reached findings through
incorporating a larger EEG dataset. We also aim to explore the
generative adversarial networks (GANs) application so as to
generate synthetic EEG signals or combine signal generation
techniques with deep learning approaches. Through this new
vein of thought, we actually preconize to enhance and boost
the automated detection methods’ performance even more,
thereby, noticeably enhancing the epileptic EEG pattern
recognition area.

Keywords: epilepsy; iEEG signal; HFO; spike; machine
learning; random forest

Introduction

Since its inception in the 1950s, artificial intelligence (AI)
has been defined as a collection of technologies aimed to
replicate the fundamental cognitive processes of human
intelligence, including perception, interpretation, and
decision-making [1]. It is applicable in a wide range of do-
mains, particularly the healthcare area, wherein, it displays
a remarkable medical-service quality boosting potential. Al
is recognized to play a potentially central role in revolu-
tionizing the future of medicine, from facilitating computer-
aided surgeries, intelligent prosthetics, remote patient
monitoring, early disease diagnosis, to therapy monitoring
[2]. More recently, advancements recorded in data avail-
ahility, computing power, statistical and signal processing
theories have significantly propelled the area of Al, partic-
ularly, in terms of applying machine learning (ML) to
diagnose such neurological disorders as Alzheimer’s,
Parkinson’s, sleep disorders, and epilepsy [3-7]. In effect,
neurological disorders often exhibit distinctive patterns,
notably observable in electroencephalographic (EEG) signals
and magnetoencephalographic (MEG) recordings [8]. In this
respect, the present study focuses on investigating and iden-
tifying epileptic bursts, involving two primary abnormalities
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dubbed epileptic spikes (or sharp waves) and epileptic high
frequency oscillations (HFOs). Epileptic spikes (or sharp
waves) are characterized with brief, high-amplitude elec-
trical discharges noticeable in EEG or MEG recordings. More
specifically, they exhibit a duration span ranging from 20 to
200ms [9], as defined by the International Federation of
Societies for Electroencephalography and Clinical Neuro-
physiology [9-11]. As to the HFOs, they are defined as spon-
taneous rapidly oscillating patterns of high-frequency range,
specifically set within a frequency rate ranging from 80 to
500 Hz, and could persist for no less than three cycles [12-14].
More recently, however, very-high-frequency oscillations
(VHFOs, 500-1,000 Hz) and ultra-high-frequency oscillations
(UHFOs, 1,000-2,000 Hz) [15] have also been reported to
persist. Noteworthy, also, is that seizure segments are also
often deployed to analyze the epilepsy related mechanisms
rather than spikes and HFOs [16, 17], primarily involving
epileptic spikes and HFOs traces like patterns [18] that bear
potential manifold clinical utility. Firstly, these segments
have recently emerged as promising biomarkers and strong
contenders for epilepsy pre-surgical diagnosis [19]. Secondly,
they have remarkably contributed in accurately localizing
the seizure onset zone (SOZ) for refractory epilepsy affected
patients. The removal of pathological spikes, as well as the
HFOs generating tissue, has demonstrated an effective cor-
relation with improved surgical outcomes and increased
seizure-free results. Besides, epileptic patterns are consid-
ered as promising potential seizure-occurrence predicting
biomarkers, thereby, promoting life quality for pharmaco-
resistant epilepsy suffering individuals. Similarly, epileptic
bursts have also been applied to assess the effectiveness of
medication treatment. In addition, epileptic patterns have
noticeably contributed in deeply understanding the patho-
physiological and cerebral mechanisms involved in gener-
ating epileptic seizures [20, 21]. Initially, visual assessment
was frequently used in early epileptic patterns related
studies to identify the EEG electrodes’ recorded abnormal-
ities [22]. Yet, the visual identification and marking of
epileptic bursts in EEG signal forms has currently been
considered a highly challenging process, particularly
regarding HFO cases, owing mainly to their low EEG
signaling amplitudes. Actually, such a visual procedure
turns out to demonstrate three major limitations. Indeed,
not only does it display poor inter-rater agreement, due to
the reviewer’s perception influenced subjectivity, but it also
stands as a time-consuming process, susceptible to the in-
terpreter’s acquired experience and skill levels [17, 23].
Despite these persistent challenges, however, visual
inspection has been widely considered as the “ground truth” or
“gold standard” benchmark, useful for evaluating most of the
automated detection algorithms respective performance.
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Table 1: Overview of the ML based state-of-the-art epileptic pattern
detection methods.

Authors, publication year, ML classifier Epileptic
reference pattern
mode
Elham bagheri et al., 2018, [24] Support vector Spikes
Nesrine Jrad et al., 2016, [25] machines (SVM) HFOs
Rekha Sahu et al., 2020, [26] Seizures
Fatma Krikid et al., 2022, [27] HFOs
Payal Khanwani et al., 2010, [28] Muli-layer perceptron  Spikes
Dimpelmann M et al., 2012, [29] (MLP) HFOs
Ummara Ayman et al., 2023, [30] Seizures
Ilakiyaselvan N et al., 2020, [31] Bayesian neural Seizures
Ummara Ayman et al., 2023, [30] networks (BNN) Seizures
A. Quintero-Rincén et al., 2017, [32]  K-nearest neighbor Spikes
Ilakiyaselvan N et al., 2020, [31] (KNN) Seizures
Ummara Ayman et al., 2023, [30] Seizures
Sahbi Chaibi et al., 2014, [23] Decision tree (DT) HFOs
Sadeem Nabeel et al., 2022, [33] Seizures
Ummara Ayman et al., 2023, [30] Seizures
Xiashuang Wang et al., 2019, [22] Random forest (RF) Seizures
Sadeem Nabeel et al., 2022, [33] Seizures
Rekha Sahu et al., 2020, [34] AdaBoost (ABs) Seizures
Sadeem Nabeel et al., 2022, [33] Logistic regression (LR) Seizures
A. Quintero-Rincén et al., 2017, [32]  Quadratic discriminant  Seizures
analysis (QDA)
Ummara Ayman et al., 2023, [30] Gradient boosting (GB) Seizures
Rekha Sahu et al., 2020, [34] Extra tree (ET) Seizures

To address the visual inspection associated shortcomings,
however, a high demand for an effective automated detection
of these patterns has been perceived, particularly for thorough
epileptic patterns elaborated studies to be achieved. To this end,
a wide range of seizures, HFOs and spikes detection approaches
have been developed and validated, providing various accu-
racy levels, predominantly tailored to fit the requirements
of individual research centers. Table 1, below, provides a
summary of the various ML-based state-of-the-art approaches
developed for the epileptic patterns detection purposes.

With respect to the present study, a special spikes and
high-frequency oscillations (HFOs) joint detection architecture
is put forward, using a number of machine learning
approaches already documented in some of the previously
published healthcare related studies. Moreover, we aim to
establish an experimental comparison between these
approaches, applying intracranial EEG data as a benchmark
criterion. In addition, we consider incorporating noisy intra-
cranial EEG data with signal-to-noise ratios (SNR) ranging
from -10 to 20 dB, for a thorough evaluation and an effective
validation of the advanced detection methods provided per-
formance. Our main objective lies in identifying the most
robust machine-learning technique likely to simultaneously
extract epileptic anomalies from both intracranial as well as
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noisy EEG data. The paper is organized as follows. Following
the introduction, Section 2 is devoted to depicting the applied
clinical database and gold standard, highlighting some of the
applied and compared machine learning (ML) techniques. The
section also involves a number of performance metrics used to
evaluate the different examined methods. As for Sections 3 and
4, we provide a comprehensive summary of the comparative
results major drawn findings and practical implications.
Finally, the ultimate section bears the main reached conclu-
sions, along with potential venues for future research.

Materials and methods
Epileptic patterns: database and visualization

Aspart of the present study, we seek to evaluate and compare a selection
of ML approaches so far available. For this purpose, we consider using
the same clinical database already applied in our previously conducted
studies [23, 35, 36]. More specifically, the intracranial EEG database was
recorded at the Montreal Neurological Institute and Hospital (MNI) in
Canada. The database contains EEG signals from an epileptic patient
with intractable epilepsy. The recorded iEEG signals were sampled at a
frequency of 2KHz and involve 24 bipolar iEEG channels recorded
during inter-ictal periods from the deepest contacts targeting the
bilateral mesial temporal lobe (MTL) structures. During the recording
process, a low-pass anti-aliasing filter with a cutoff frequency of 500 Hz
was applied. For the experiments and simulations to be effectively
conducted, a selection of techniques, approaches, methodologies, and
codings were implemented using the Anaconda-Python environment
and the Google Colab-based cloud platform. Noteworthy also, is that in
our study context, both of the spikes and HFOs identification processes
have been performed by an experienced neurologist’s visual annota-
tion. Actually, the visual inspection of the intracranial EEG recording
has revealed the presence of 416 distinguishable epileptic HFOs and 269
clearly identifiable epileptic spikes in total. These visually marked re-
sults should serve as a benchmark or gold standard, useful for evalu-
ating the compared ML models respective performances. In addition to
the experts marked intracranial EEG data, we have also incorporated
simulated scalp EEG recordings to evaluate the tested ML approaches’
effectiveness in terms of Gaussian noise effect. Nonetheless, scalp EEG
recordings often suffer from the persistence of various artefacts and
inconsistencies, likely to reduce their reliability as gold standards. To
address such a problem and establish a rather dependable benchmark
effectively replicating the output of scalp EEG, we have considered
introducing Gaussian noise to our intracranial EEG data, to be combined
with the data at signal-to-noise ratios (SNR), ranging from 20 to —10 dB.
Indeed, this methodology has enabled the establishment of a consistent
and reliable benchmark, useful for validating the investigated ML
models’ performance [36, 37]. To mitigate the potential bias associated
with examining specific data, we have undertaken to apply the following
criteria to select the appropriate channels useful for conducting the
present research. Firstly, we have ensured that the channels turn out to
display distinct interictal HFOs and spikes upon initial review. Secondly,
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only channels showcasing both frequent and infrequent epileptic events
have been considered to capture a comprehensive range of activity.
Moreover, the channels with varying background levels have been
selected to incorporate diversity. It is worth mentioning, at this level,
that the patient has provided informed consent in compliance with the
MNI research ethics board.

Main parts of epileptic patterns’ recognition via machine
learning techniques

Overall, the proposed methodology involves the following stages: data
pre-processing, data splitting, feature extraction, model training,
hyperparameter optimization, and model evaluation using testing data,
which depict the automatic detection process of epileptic patterns by
means of machine learning techniques. It is worth recalling that ML
stands for a popular supervised learning model that initially involves a
training phase followed by a testing phase. It is actually at this level of
research that a breakdown of the methodology takes place. Indeed,
while the first step (Step 1) involves a processing of the EEG data, the
second step (Step 2) involves the EEG data splitting process, wherein, the
available data is divided into training and testing subsets using k-fold
cross-validation techniques. In effect, such a procedure is intended to
ensure that the model is actually well trained and evaluated in terms of
separate data. As to Step 3, it refers to the features’ extraction stage. Once
data are split, relevant features are computed and extracted out of each
labeled EEG event. Capturing significant characteristics of epileptic
patterns, these features could include statistical measures, a spectral
analysis, a time-frequency analysis, or any other temporal measures
likely to help collect important information from the EEG signals. After
the features are extracted, the dataset is transformed into a special
format fit for being processed via ML algorithms. It is now represented
under the form of a matrix or a set of vectors, wherein, each row rep-
resents an EEG event and each column stands for a single feature.
Regarding Step 4, it designates the training phase, wherein, the ML
model is trained on the EEG labeled data, which include both the
extracted features and the corresponding class labels indicating
whether an event is actually epileptic or not. The model is made to
learn to recognize patterns and make predictions based on the input
features. The ML algorithm applied in this specific methodology is
aimed to construct the most effective ML model fit for classifying EEG
data into two binary classes: (HFO, background) and (spike, back-
ground). Concerning Step 5, it involves the hyperparameters’ optimi-
zation process. It is actually by carefully tuning these hyperparameters
that researchers and practitioners usually strive to improve the ML
models’ accuracy, robustness, and ability to generalize latent data for
the sake of effectively detecting epileptic patterns. Then comes Step 6, or
the model evaluation stage, which follows the ML model training and
optimization process, to evaluate its performance as to the previously
detected latent data, often referred to as test data. This step serves to
ensure the model’s generalization capacity and assess its capability in
detecting epileptic patterns. Our suggested ML based methodology is
illustrated through Figure 1, below, depicting a straightforward flow-
chart of the steps involved in the automatic detection of epileptic
patterns via machine learning techniques. Ultimately, it is necessary to
carefully evaluate the ML model’s suitability and effectiveness, along
with its applicability to specific datasets, as a final step of the ML
process.
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Figure 1: Flowchart illustrating the advanced ML methodology.

Step 1: EEG data pre-processing step: The EEG data preprocessing
stage is critical for the automatic detection of epileptic patterns. It
involves preparing, organizing, cleaning, and enhancing (spectrum
equalization) the EEG data quality, to facilitate the extraction of
meaningful insights. As part of our study, several preprocessing tasks
have been performed on raw EEG data, including the denoising and
filtering procedures. For relevant features to be extracted, four signal
preprocessing domains have been utilized: temporal space, Fourier-
frequency domain analysis, Hilbert space, and time—frequency map,
each offering unique insights into the EEG data. In our context,
denoising techniques are applied in the temporal space to remove
unwanted artifacts and noise from the EEG signals, thereby, ensuring
that the subsequent analysis is actually focused on the relevant pat-
terns. Regarding the Fourier-frequency domain analysis, our analysis
is focused on the EEG signals’ frequency components, to help identify
the specific frequency ranges associated with epileptic bursts. As for
the high-frequency oscillations (HFOs) detection, an 80-500 Hz range
bandpass filter has been deployed, as suggested by a number of pub-
lished studies [14, 35, 37], and for the spikes recognition purposes, the
bandpass filter is set to range between 30 and 70 Hz, as recommended
in [35]. At the level of Hilbert space, however, the Hilbert transform has
been applied to the filtered EEG data, to help in instantaneously
drawing frequency, phase, and amplitude relevant information, likely
to provide valuable insights into the epileptic patterns’ underlying
mechanisms. In regard to the time—frequency mapping process, the
focus of our analysis is laid on the temporal changes of the EEG signals’
frequency content, to help detect any frequency-varying patterns
associated with epileptic activity. On implementing these preprocess-
ing operators in multiple domains, we envision to further enhance/
enhancing the EEG data quality and collect valuable data and insights,
critically useful for the automatic detection and analysis of epileptic
patterns.

Step 2: Features’ selection and extraction: A thorough observation of
epileptic pattern behavior through EEG data requires an accurate
feature extraction procedure for an effective capture of relevant char-
acteristics to be achieved. In regard to our devised methodology, a
comprehensive set of features have been compiled from various do-
mains, as detailed earlier, to represent the EEG signals under a feature
matrix form. Widely utilized in EEG classification tasks and clinical
contexts, these selected features have demonstrated promising horizons
in recognizing distinctive and identifiable EEG patterns. As illustrated
on Table 2, the category, name, and mathematical equation computed

Feature
Extraction

Features
extraction

Model Development
Spikes / HFOs recognition

Optimized model

Model

evaluation

Sensitivity BCR Specificity

for each of our EEG dataset labeled pattern, including spikes, HFOs, and
background activities, have been depicted. More specifically, a sum of 13
features have been extracted from the four set distinct domains. In the
temporal domain, such characteristics as the mean, standard devia-
tion, power, zero-crossing rate, and Shannon entropy of the filtered
EEG signal have been considered. These temporal features should
provide valuable information as to the EEG patterns’ time-domain
behavior. As for the spectral frequency-based characteristics, we have
considered implementing the mean of the Fast Fourier Transform
(FFT) spectrum, the number of FFT born peaks, along with their mean
associated value. These features should help in capturing the EEG sig-
nals associated frequency-domain properties. From the Hilbert domain,
we have undertaken to extract the mean of the Hilbert instantaneous
amplitude, phase and frequency, as features enabling to provide instan-
taneous insights into the amplitude, phase, and frequency variations of
the EEG patterns over time. In addition, special time—frequency mapping
drawn characteristics have also been outlined, including the time—fre-
quency map normalized energy, the normalized number of non-zero
pixels, and the number of maximums or “peaks” depicted in the time—
frequency representation. To note, the peaks’ detection procedure in the
time frequency representation has been maintained via the complex
MORLET wavelet [14, 35], enabling to effectively analyze the epileptic EEG
activities associated time—frequency characteristics. By incorporating
these various features, our aim has been to capture various epileptic-
pattern aspects persistent in the EEG signals, owing to the valuable
insights they provide regarding the EEG patterns’ behavior related
temporal, spectral, Hilbert, and time—frequency properties. For the
purpose of further refining the set features, we have considered
applying the recursive feature elimination (RFE) technique to the final
feature matrix, to help highlight the most significantly informative
characteristics and eliminate the irrelevant ones [38, 39]. Indeed, such
a process serves to maintain that the selected features are actually the
most effectively relevant and fit for classifying epileptic patterns.
Hence, by implementing the RFE approach, we aim to optimize the
features’ set to maintain an accurately efficient recognition of the EEG
data latent epileptic patterns.

Step 3: Training-test split with cross-validation: Cross-validation is a
critically effective statistical technique, widely applied to assess the
machine learning models’ processes efficiency rate. It is particularly
useful for treating cases wherein the collected dataset is small or limited,
posing challenges for accurate modeling procedures. With respect to our
study context, the k-fold cross-validation approach has been deployed,
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Table 2: A depiction of the implemented EEG patterns’ highlighting features.

Feature Name

Mathematical equation

Temporal features  F1

F2

F3

F4

F5

Frequency features  F6

F7
F8

Hilbert features F9

F10
F11

Time-frequency F12
based features.

F13

Mean of filtered EEG signal

Standard deviation of filtered
EEG signal

Power of filtered EEG signal

Zero-crossing rate (ZCR)

Shannon entropy

Mean of FFT spectrum

Peaks number in FFT
spectrum

Mean amplitude of peaks
number

Mean of Hilbert instanta-
neous amplitude (MHA)

Mean of Hilbert instanta-
neous phase (MHP)

Mean of Hilbert instanta-
neous frequency (MHF)
Normalized energy of time-
frequency map

Normalized number of local
maxima (peaks)

N 2y sli]
N Li=1
s[i] denotes an individual value in the filtered EEG signal and n is its length in samples

(55
N

s[i] is an individual value in the filtered EEG signal and N is its length in samples, while S
denotes the signal mean.

N 2l Sk

s[i] is an individual value in the filtered EEG signal and N is its length in samples.

N1 ghs (sign[s(n)]—;fgn[s(nﬂ)])

s designates the filtered EEG signal and N its length in samples. sign(a) = +1 if >0, and —1
if a<0.

~YiLiP(sym(i]) x log, (P(sym(i]))

Where: P(syml[i]) is the probability of the outcome or symbol sym[i] and n is the length of
different symbols in the filtered EEG signal

e = 4 (Zis(me ™)

s[n] is an individual temporal value in the filtered EEG signal and N is the length of FFT
spectrum components.

Peaks = maxi <Z§;& s(n)e#)

L YN Peaks;
N is the length of detected peaks.
Xa(n) =x(n) + j x H[x(n)], where H[ ] represents the Hilbert operator and x(n) is the filtered

EEG signal MHA = & YN, |xa(n)

MHP = % Yo arglxa(n)).

MHF = =tz Tar arglxa(n + 1)) — arglxa(n)].

i [ X s (i, )]
Where M and N are the rows and columns of the map and S is the T-F map

i (211 [Peaksi[]
Where: M and N are the rows and columns numbers of the TF map, while V is the total

number of 2-D peaks detected in the TF map

wherein; k has been set to 10. More specifically, for rather compre-
hensive analysis purposes, we have considered splitting our study data
into ten equal-sized subgroups. For each iteration, our learning model
has been trained on nine subsets, among which, one subset has been
applied for testing purposes, i.e., 90 % of the applied data have been
applied during each iteration to train the ML model, while the
remaining 10 % have been used to evaluate the epileptic spikes and
HFOs’ prediction accuracy rates. Once the training phase has been
achieved, the optimized ML algorithm’s structure is applied to auto-
matically recognize the relevant HFOs and spikes. This recognition
process involves using a sliding window of 150 ms, enabling to scan the
entirety of the EEG dataset. This particular window size has been spe-
cifically selected to fit appropriately for measuring the database HFOs
and spike events’ average duration. For the sake of determining
whether a sample turns out to belong to the (HFO, spike) class (labeled 1),
or to the background class (labeled 0), the sliding window proceeds by
exclusively processing a single sample at a time. The spike or HFO class

designating windows have been assigned the value one, while a zero
value has been assigned to the remaining segments. After scanning the
entire EEG signals, the final step involves combining and storing all the
unit-value bearing segments, highlighting an epileptic EEG burst
probability.

Machine-learning algorithms

ML is a data-driven process, liable to potentially model rather complex
EEG data patterns, as compared to conventional methods. ML algo-
rithms have been applied to draw significant information from EEG data
for the purpose of distinguishing the various epilepsy associated brain
statuses, and accurately identifying the epileptogenic zone. These al-
gorithms utilize computed features to train ML classifiers, enabling
them to identify the various data born EEG patterns, and make relevant
predictions based on newly observed measurements. More recently,
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several machine learning methods have been widely used in this
respect. Worth citing among these methods, one could well mention the
support vector machines (SVM), multi-layer perceptron (MLP), Gaussian
Naive Bayes (GNB), K nearest neighbors (KNN), decision tree (DT),
AdaBoost (ABt), random forest (RF), logistic regression (LR), quadratic
discriminant analysis (QDA), Gradient boosting (GB), and extra trees
(ET).

The support vector machines (SVM): it is a widely recognized
popular supervised learning algorithm fit for dealing with both of the
classification (SVC) and regression (SVR) associated problems. SVM
serves to retrieve an optimal hyperplane within a multidimensional

Number of epileptic patterns (spike or HFO)
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Gaussian Naive Bayes (Bayesian neural network: NN): in this
respect, the wide range of applied features are ranked under the set of
F={Fy, F, ..., Fx}, while the relating classes have been determined as C=
{Cy, Cy ..., Cy}. At thislevel, the Naive Bayes theorem [44] turns out to be
computed via the following equation:

P(Fi|C).P(C; ikeli i
Posterior probabilty = P(G|F;) = ( L (]1):) ©) _ hkelelsio(; (i:;};rlor o)

As the classification context is of a binary type (0,1), the set prob-
abilities of class 0 and class 1 are equally computed as follows:

P(C) =P(C) =

space enabling to effectively separate the relevant features. In this
respect, two primary types of SVC kernels are commonly used: the linear
kernel, and the radial basis function (RBF) kernel. In regard to our
specific study context, a preliminary test has demonstrated that the RBF
kernel proves to perform rather effectively than the kernel option.
Noteworthy, also, is that the RBF kernel involves two crucial parame-
ters: regularized coefficient C and gamma. While gamma designates the
kernel spread process, influencing the decision region, the C coefficient
stands for the SVC classifier specific parameter representing a penalty
for misclassifying a data point [40, 41]. With respect to our study case,
the gamma value is set to a fixed value of 0.01, while the C parameter is
set to the value of 1,000. Our choice of these two parameter values
relates to our previously conducted research reference findings rele-
vant to EEG patterns detection.

Multi-layer perceptron (MLP): The multi-layer perceptron (MLP) is
characterized with the wide range of parameters it displays, the most
significant among which one could cite the hidden layers’ size, the acti-
vation function, the weight optimization related solver, and the learning
rate. The MLP associated challenge, however, lies in determining the
number of hidden layers, whereby, information could flow easily from
the input layer to the output layer, as well as the number of neurons
persistent in each hidden layer. While it might seem that more hidden
layers could provide more features and yield better classification results,
a practical limit still persists. Indeed, increasing the number of hidden
layers could result in the emergence of a serious overfitting problem,
therefrom errors, such as false positives. Unfortunately, there is no
established theory or straightforward method to determine the optimal
architecture in terms of number of hidden layers and neurons in each
layer. Inversely, however, using an insufficient number of hidden layers
would result in an underfitting issue, wherein, the MLP turns out to be
unable to model complex data, leading to poor performance. It is there-
fore essential to conduct a validation process to select the most appro-
priately fit MLP architecture [42, 43]. Accordingly, our administered
preliminary test has revealed that the optimal internal architecture fit for
processing the neural network should involve a single input layer, a single
output layer, along with two hidden layers respectively enclosing 10 and
five neurons. As to the implemented activation function, frequently
applied in the relevant literature, it has been the relu. Regarding weight
optimization procedure, we have opted for a learning rate of 0.0001 and
the Adam solver.

Total number of events (spike + Background or HFO + Background)

=05 @

As the evidence P(F)is exclusively applied for the probability
normalization purposes, it is then dropped and considered constant.
Subsequently, for each pair (F;, C;) the sample mean p;; and standard
deviation oyare computed. In regard to the testing phase, a new test
point bearing the features of vector Fjis classified into a specific class
Cjonce the likelihood probability product turns out to be maximized as:

- e ®
II[P(FC)] =10 e i 3
] ZJTO'U'Z

Knearest neighbors (KNN): as one of the simplest ML techniques,
it assumes that similar things are too close to each other. In this respect,
the selected K value and distance metric stand as two major consider-
ations when using the KNN technique, which rests on a number of steps:
Firstly, select a K number of neighbors, and there is no predefined
statistical method applicable for determining the most optimally
favorable value of K. However, using error curves for various K values
related data training and validation purposes could help in effectively
determining the optimal K value. With respect to our particular study
context, the optimal K value has been fixed at the range of three. Then,
we proceed with computing the Euclidean distance of the chosen K
number of neighbors is, as maintained through the following equation:

Euclidean dist (d) = \/ (X - X0)? + (¥, - y,)° @

Take the K nearest neighbors as per the calculated Euclidean dis-
tance. Among these k neighbors, count the number of data points in each
category. Finally, assign the new test point to that category for which the
number of neighbors is the maximum [44-46].

Decision tree (DT): A decision tree is an important and well-
established machine learning technique that has been used for a wide
range of applications, especially for classification problems. Initially, the
tree starts with a root node, preceded with a series of branches with
intersections dubbed nodes, and ends up with leaves each corre-
sponding to a class to predict. Tree depth is referred to as the maximum
number of nodes persisting prior to reaching a leaf node. Within the
binary classification context, the hierarchical structure of a decision
tree rests on computing the information gain between the source S and
feature A, such as:

Gain (S,A) = Entropy (dataset)-entropy (feature) = Entropy
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symbols

=Entropy(S)— Y. P(S;)Entropy(S;) 5)
i=1

Computation of the Shannon entropy is performed via the
following equation:

Entropy (S) = -p,log, (p,) - p_log, (p_) 6)

wherein, S designates the samples’ set, p+ denotes the proportion of
positive samples and p-refers to the proportion of negative samples,
while P(S;) denotes the probability of a persistent feature A associated
symbol. Noteworthy, however, is that the Gini index might also be used
instead of the entropy. It is determined by deducting the squared
probabilities’ sum of each class from the unit. Mathematically, the Gini
index is expressed as:

Gini(n) = 1- 3 p;? ©)
i=1

Where: P; denotes the element’s probability for being classified under a
distinct class. Thus, entropy turns out to be a rather complex procedure
to undertake, owing mainly to its logarithms’ implementation require-
ment, therefore, the Gini index computation process proves to be a
rather prompt undertaking [23, 47].

The AdaBoost (ABt) classifier: it proceeds with constructing a
certain number of decision trees, N, throughout the training process. As
a first step, the algorithm initially undertakes to construct a decision
tree, wherein, any misclassified instances turn out to be identified as
errors by the modeling procedure, to be subsequently utilized as inputs.
This iterative process is reiterated until errors are effectively mini-
mized, and data are accurately predicted. Hence, N models, or decision
trees, are established based on the identified errors. This principle of
utilizing error-correcting models stands as a common process;
frequently applied by all types of boosting algorithms [48]. With respect
to our special study case, the optimal number of estimators or decision
trees has been set to twenty.

Random forest (RF): It is a supervised ML algorithm widely used
for classification and regression problems solving purposes. It proceeds
by constructing multiple decision trees on different samples of the
dataset. Rather than relying on a single decision tree, the RF undertakes
to combine the entirety of the trees emanating predictions to construct a
final majority-vote based prediction. Once faced with a new test point,
the algorithm undertakes to determine each decision tree relevant
prediction and assigns the new data point to the majority of votes
receiving category. Thus, increasing the number of trees in the random
forest modeling process generally helps in improving accuracy and
mitigating overfitting issues [44, 49, 50]. In regard to our study case, we
have considered setting up the optimal number of estimators or decision
trees to twenty.

Logistic regression (LR): it is a linear regression model fit for
modeling regression tasks, though inappropriate for classification
modeling purposes. Noteworthy, however, is that the LR stands as a
powerful statistical algorithm specifically designed for predicting bi-
nary classes [51]. It helps in modeling the probability associated with
two possible outcomes, and is commonly used for dealing with binary
classification problems. It can also be further extended to handle
multi-class classification tasks using the “one vs. all” framework.
Rather than directly predicting classes, the LR undertakes to compute
the probability of an event’s occurrence, thus providing a valuable
tasks’ classification framework.
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Discriminant analysis (DA): DA generally provides a three-fold
analysis [52], respectively dubbed as a linear discriminant analysis (LDA),
a quadratic discriminant analysis (QDA), and a regularized linear
discriminant (RDA) analysis. In the context of our study case, the
administered preliminary test reveals well that the QDA appears to be
rather suited and effectively performing in detecting epileptic patterns. It
is worth recalling, in this respect, that the QDA can be drawn from simple
probabilistic models enabling to compute the class distribution condi-
tional upon the data P(X|y=K)regarding each class k. Subsequently, pre-
dictions can be determined for each feature by means of the Bayes rule:

P(y = Kx)= P (xly = k).P(y = k)/P(x) ®)

Gradient boosting (GB): Gradient boosting classifiers stand for a set
of machine learning algorithms that combine multiple weak learning
models, creating a strong predictive model. Each model in the sequence
learns to correct the previous model made errors. The entirety of the
models emanating predictions are then combined using simple averaging
statistics. Actually, the GB models associated popularity is owed mainly to
their noticeable effectiveness in classifying complex datasets [53-55],
wherein, regression trees represent the base estimators even in classifi-
cation tasks. Comparatively, however, the AdaBoost was the first boosting
algorithm specifically designed with a proper loss function. In effect,
gradient boosting is a rather generic algorithm allowing to retrieve
approximate solutions to the additive modeling problem, rendering it more
effectively flexible than the AdaBoost framework. Concerning our study
case, an optimal number of 50 estimators or decision trees has been opted
for.

Extra trees (ET) algorithm: it is a widely used random-forest type of
machine learning algorithm that helps in jointly combining a set of mul-
tiple decision trees’ derived predictions. Although ET algorithm applies a
rather simple decision-tree constructing approach, compared to random
forest, it is often liable to achieve similar or even more effective perfor-
mance, through its ability to create several unpruned decision trees from
asingle training dataset [56]. Regarding regression tasks, predictions are
made by averaging the decision trees drawn predictions, while
majority-voting process is used for classification task purposes. Con-
cerning our specific study case, the number of estimators, or decision
trees, has been set to 80 as the ideal option.

The ML models’ performance evaluation

Several applicable metrics are available for assessing the ML ap-
proaches achieved performance. Regarding the EEG analysis context,
however, the gold standard is typically applied as the spikes and high-
frequency oscillations (HFOs) provided EEG data relating annotations,
skilfully performed by an experimented neurologist or epileptologist.
On assessing the performance of automated detection algorithms, the
detection results need be compared to the visual inspection results,
which entails calculating the true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) parameters respective
values. The true positives (TPs) rates correspond to the number of cases
wherein both of the algorithm and the neurologist appear to correctly
detect the epileptic pattern. As to the false positives (FPs), they refer to
the number of cases wherein the algorithm proves to wrongly identify a
background activity as an epileptic pattern, correctly identified by the
expert. Concerning the true negatives (TNs), they designate the number
of cases wherein both of the expert and the algorithm turn out to
correctly identify the epileptic background activity. As regards the false
negatives (FNs), they highlight the cases wherein the algorithm
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mistakenly classifies an epileptic pattern as a background activity,
correctly identified by the specialist expert. Based on these four pa-
rameters, various evaluative metrics [57] turn out to be applicable to
assess the various ML classifiers respective performance, such as:

TP
TP + FN

Sensitivity = 9

Accordingly, the sensitivity metric serves to measure the algo-
rithms’ capacity level to accurately detect, identify and classify any
persistent spikes or high-frequency oscillations (HFOs), by quantifying
the algorithm’s capability in effectively capturing such events, while
ensuring that they are not missed or falsely identified. Hence:

TN
Specificity = ™™

+FP (10

The specificity metric provides useful information regarding the
algorithm’s capability to accurately identify true negative events. More
specifically; the balanced classification rate (BCR), or balanced accuracy
metric, provides insights as to the algorithm’s ability in detecting the
epileptic patterns and rejecting the non-epileptic patterns in the ensuing
detection results, particularly, on dealing with unbalanced data. In fact,
balanced accuracy denotes a metric reflecting the average value be-
tween sensitivity and specificity [57], and is computed as:

1 TP TN

BOR =2 | TP+ PN "IN+ PP

1)

It is important to note that the BCR yielded value ranges from 0 to
100 %. Accordingly, a balanced accuracy of 100 % indicates a perfect
classification performance, wherein, both sensitivity and specificity are
actually maximized.

Results

The recently published studies [14, 36, 37] have demon-
strated that visual inspection of spikes and high-frequency
oscillations (HFOs) in EEG signals offers valuable insights
into different aspects of the epileptic seizures’ underlying
mechanisms, including the localization of the seizure onset
zone (SOZ). Nevertheless, this manual or visual marking
procedure turns out to be a time-consuming procedure,
susceptible to prevailing errors, which makes the develop-
ment of an effectively automated HFOs and spikes’ detection
tool a crucial necessity for the systematic analysis of
epileptic patterns, to serve as potentially useful and reliable
clinical biomarkers of epilepsy. As far as the present
research is concerned, our focus of interest is laid on
depicting the epileptic patterns’ identification process,
namely, spikes and HFOs, through the implementation of
various existing machine learning approaches, specifically
designed to handle and cope with diverse healthcare sce-
narios. As an initial step, we have considered applying the
recursive feature elimination (RFE) approach to select the
most appropriate HFOs’ detection characteristics, thereby,
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identifying the filtered EEG signal’s power rate, its associ-
ated standard deviation, and average Hilbert instantaneous
amplitude, as useful features. As for the spikes’ detection
procedure, we have undertaken to select the filtered EEG
signal and the Hilbert instantaneous amplitude respective
means as discriminative features. Table 3, below, depicts
the performance evaluation rates recorded by the various
ML classifiers, tested for spikes and HFOs recognition effec-
tiveness in terms of specified selective features, measured
through the sensitivity, specificity and BCR metrics.

As highlighted through Table 3, and on comparing the
various ML approaches scored results, one could well high-
light the following remarks. First, The Gaussian Naive Bayes
classifier turns out to record the highest spike and HFO
identification sensitivity scores. Second, the decision tree
(DT) classifier appears to score the highest HFO identifica-
tion specificity. Moreover; the AdaBoost classifier proves to
stand as the most highly reliable spike recognition method.
Additionally, the BCR performance the random forest (RF)
classifier turns out to reveal the highest HFO detection
related performance, recording a BCR metric score of
94.50 %. As to spike detection, the DT classifier is discovered
to noticeably outperform all the other examined methods,
recording a BCR score of 92.55%. The BCR metric plays a
crucial role in conducting our study, as it serves to compare
the classifiers’ overall performance in detecting epileptic
EEG patterns. It helps in simultaneously maximizing both of
the sensitivity and specificity factors. To ensure the validity
of our already achieved findings, we have undertaken to
re-examine the investigated machine learning (ML) tech-
niques displayed performances using simulated scalp EEG

Table 3: Established comparison between the different ML classifiers’
recorded performance.

Classifier Sensitivity, % Specificity, % BCR, %
Spikes HFOs  Spikes HFOs  Spikes  HFOs
SVM 90.69 96.35 89.45 91.68 90.07 94.01
MLP 87.98 85.88 94.53 92.90 91.25 89.39
BNN 95.73  98.54 64.45 80.92 80.09 89.73
KNN 87.98 94.40 93.75 91.44 90.86 92.92
DT 93.18 90.69 91.93  95.31 92.55 93.00
RF 88.75 96.35 95.31 92.66 92.03 | 94.50
ABt 88.37 95.86 95.70 91.68 92.03 93.77
LR 94.18 94.40 85.15 90.46 89.66 92.43
QDA 94.57 98.05 74.21 77.75 84.39 87.90
GB 89.14 96.35 95.31 92.42 92.22 94.38
ET 89.53 93.43 90.23 93.39 89.88 93.41

Bold values represent the best statistically significant results.
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Figure 2: Distinct EEG signals synchronization with varying noise levels.

data with different signal-to-noise ratios (SNR). This special
novel methodology is applied to evaluate the ML methods’
resilience when exposed to additional Gaussian noise asso-
ciated with intracranial EEG data. This approach is widely
recognized as an efficient tool, highly useful for effectively
comparing algorithms within the context of EEG data anal-
ysis [25, 36, 37]. It is worth highlighting, in this regard, that
the typical rate of SNR values in human scalp EEG usually
ranges between 20 and -10dB [25, 36, 37], therefore, the
incorporated simulated EEG data selected signal-to-noise
ratios (SNR) are set to bear levels ranging from 20 to —10 dB.
Noteworthy, also, is that even though scalp EEG data are
extremely important in evaluating the effectiveness of ML
techniques, they are susceptible to artifacts, such as eye
movement and muscular artifacts, which might well
compromise their reliability as a gold standard. A useful
alternative might therefore lie in applying intracranial EEG
data mixed with Gaussian noise to serve as a reliable
benchmark for assessing the various ML techniques associ-
ated performance. At this study level, we consider it neces-
sary to examine the ML classifiers respective behavior under
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various levels of signal-to-noise ratio (SNR). In this context,
BCR metric values have been computed with respect to each
SNR level. Specifically, wherein, SNR values are set to range
from 20 to —10 dB, in conformity with the typical ranges of
scalp EEG noise levels. A sample illustration of the scalp EEG
signals’ simulation with varying SNR levels is depicted
through Figure 2, below.

At this level, we consider investigating the various ML
methods respective performances in presence of Gaussian
noise. For each signal-to-noise ratio (SNR), the epileptic
patterns’ (spike, HFO) detection associated BCR performance
values have been drawn by averaging the BCR results over 10
trials. Both of Figure 3 and Table 4 display the investigated
methods’ results reached in terms of automated spikes
detection at various SNR levels. The BCR values have been
compared to determine the impact of noise on the accuracy
of epileptic patterns’ detection via each ML method. Our
initial results turn out to indicate well that the RF-based
method proves to record the highest BCR average value
across all SNR levels, highlighting its high-level reliability in
terms of spike detection process. In addition, Table 4 also
reveals that the RF-based approach appears to score the
highest BCR average value at all SNR levels, making it the
most efficient HFOs identification method. Using both of the
iEEG and noise associated data, the attained results tend to
reveal that the RF method turns out to perform exceptionally
well in terms of HFOs and spikes detecting process.

Figure 4 displays a graphical representation of the
proposed approach, showcasing the RF classifier’s highly
effective performance and accuracy in detecting iEEG sig-
nals latent spike events. Accordingly, three true positive
spikes have been correctly identified, while one false posi-
tive detection has been proved to persist, liable to elimina-
tion by duration thresholding via a post-treatment step.

1 =t SM

-

oT

SNR{dBE)

Figure 3: Spikes and HFOs detection attained BCR values achieved via various SNR and ML techniques. Left: spikes relevant BCR curves; right: BCR curves

for HFOs.
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Table 4: BCR performances with and without noise.

ML method SVM MLP BNN KNN DT ABt RF LR QDA GB ET

BCR value using noisy EEG data Spikes 73.49 76.70 90.45 8490 91.62 88.49 9273 81.745 90.49 81.74 89.72

HFOs  57.67 56.19 5805 589 5955 6220 6377 57.00 60.13 60.65 61.45

BCR value using intracranial iEEG data Spikes  90.07 91.25 80.09 90.86 92.55 92.03 92.03 89.66 8439 9222 89.88

HFOs  94.01 8939 89.73 9292 93.00 94.50 93.77 9243 87.90 9438 93.41

Average BCR value using iEEG + noisy data  Spikes  81.78 83.97 8527 8788 9208 90.26 92.38 8570 8744  86.98 89.8

HFOs 75.84 7279 7389 7591 7627 7835 7877 7471 7401 7751 7743

Bold values represent the best statistically significant results. Values in italics represent the average results between BCR value using noisy EEG data and

BCR value using intracranial iEEG data.
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Figure 4: A screenshot of the RF classifier achieved spikes and HFOs detection results (left: spikes detection case, right: HFOs detection case).

Similarly, Figure 4 also provides another illustration of the
proposed RF classifier’s remarkable accuracy in identifying
high-frequency oscillations (HFOs) and successful detection
of the entirety of the EEG segment persistent HFO events.

Discussion

In sum, the ML models do not seem to contribute in the
epileptic patterns detection process on an equal basis.
Overall, the RF classifier proves to stand as one of the most
efficient designs, effectively useful for simultaneously
recognizing spikes and HFOs patterns in EEG signals. Indeed,
it has consistently demonstrated high average BCR values
when used within an intracranial EEG and noisy EEG data
context. Noteworthy, however, is that the achieved BCR
performance value (78.77 %), associated with HFOs detec-
tion, has been discovered to be fairly poor. Actually, two
main high-frequency oscillations (HFOs) detection related
drawbacks have been retained. The first relates to the HFOs’
low amplitudes, making them less sensitive to algorithmic
applications. As to the second drawback, it relates to the
issue of HFOs’ false detection, as elaborately addressed in

[35], a study thoroughly examining the outcomes of three
commonly used filtering methods. In effect, spurious fre-
quency components, primarily resulting from the filtering of
transient activities, such as sharp spikes without HFOs and
artifacts, might well result in spurious HFOs detection. With
respect to the spikes detection context, also, the achieved
BCR value (92.38 %) does not seem to reflect a highly signif-
icant performance. False spike detection could be owed to
the persistence of rhythmic EMG and eye-blink associated
artifacts [58]. Still, achieving a 100 % BCR score, by perfectly
detecting the entirety of the EEG signals persistent true HFOs
and spikes, while rejecting all background activities, turns
out to be an extremely challenging task, as trade-off between
sensitivity and specificity proves to be a typically unavoid-
able issue. As a conclusion, and given the fact that an indi-
vidual method might not single-handedly suffice to
effectively eliminate all false detections, integrating multiple
machine learning (ML) approaches into a single hybrid
model [59, 60] could well provide a rather effective solution,
whereby, the false high-frequency oscillations (HFOs) and
false spikes detection associated challenges could be effi-
ciently addressed. Such an integrative architecture, we
reckon, should help remarkably in determining whether the
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various devised methodologies achieved outcomes do actu-
ally jointly agree and converge, or disagree and diverge,
based on a voting process evaluative framework. Moreover,
implementing a morphological filtering procedure, as an
EEG signals’ pre-processing stage, would also provide a
further significant solution, whereby, the currently achieved
results could be noticeably boosted [27].

Conclusions & perspectives

As a time-consuming, subjective, and potentially error-
prone research area, visual monitoring of epileptic EEG
patterns in epilepsy recordings poses several challenges,
particularly, regarding the scalp EEG data visualization
process. It is in this context that the present study can be
set, with the aim of supporting neuroscientists and
biomedical engineers on studying epileptic biomarkers,
particularly in a context marked with a rising demand for
sensitive, specific, accurate, and effective techniques,
whereby, epileptic patterns in EEG signals could be effec-
tively identified. In this respect, advanced machine
learning (ML) techniques have emerged as valuable tools
to help in swiftly and accurately detecting epileptic pat-
terns in EEG recordings, highly surpassing the limitations
of visual screening by neurologists. Indeed, ML-based
methods have proven to be beneficial not only in diag-
nosing the epileptogenic zone (EZ) and detecting epilepsy,
but also in enhancing the understanding of the functional
relevance of high-frequency oscillations (HFOs) and spikes,
both in normal and pathological brain processes. In this
regard, the present research undertakes to assess 11
commonly used ML methods specifically designed for
epileptic patterns recognition purposes. Actually, a num-
ber of important key findings have been reached, after
evaluating the robustness of various approaches. First, the
RF classifier has been discovered to stand as the most
successfully effective method for detecting epileptic pat-
terns in EEG signals. Yet, even though the RF classifier
appears to outperform other ML methods, recording the
scores of 92.38 % for spikes recognition and 78.77 % for
HFOs classification, the need to improve such perfor-
mances remains still imposed, with the aim of maximally
reducing false detection of spurious HFOs and false spikes
in EEG. To cope with these challenges, we envision inte-
grating the entirety of the relevant ML algorithms into a
single hybrid model, whereby, determine the various
advanced methodologies agreement and/or disagreement
elements could be efficiently highlighted and resolved via
an effective voting process. As a potential future work, we
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envisage to further validate and sustain our major reached
findings through incorporating a larger EEG dataset. We
also aim to explore the generative adversarial networks
(GANSs) application so as to generate synthetic EEG signals or
combine signal generation techniques with deep learning
approaches. Through this new vein of thought, we actually
preconize to enhance and boost the automated detection
methods’ performance even more, thereby, noticeably
enhancing the epileptic EEG pattern recognition area.
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