Home Layer recurrent neural network-based diagnosis of Parkinson’s disease using voice features
Article
Licensed
Unlicensed Requires Authentication

Layer recurrent neural network-based diagnosis of Parkinson’s disease using voice features

  • Zehra Karapinar Senturk ORCID logo EMAIL logo
Published/Copyright: June 3, 2022

Abstract

Parkinson’s disease (PD), a slow-progressing neurological disease, affects a large percentage of the world’s elderly population, and this population is expected to grow over the next decade. As a result, early detection is crucial for community health and the future of the globe in order to take proper safeguards and have a less arduous treatment procedure. Recent research has begun to focus on the motor system deficits caused by PD. Because practically most of the PD patients suffer from voice abnormalities, researchers working on automated diagnostic systems investigate vocal impairments. In this paper, we undertake extensive experiments with features extracted from voice signals. We propose a layer Recurrent Neural Network (RNN) based diagnosis for PD. To prove the efficiency of the model, different network models are compared. To the best of our knowledge, several neural network topologies, namely RNN, Cascade Forward Neural Networks (CFNN), and Feed Forward Neural Networks (FFNN), are used and compared for voice-based PD detection for the first time. In addition, the impacts of data normalization and feature selection (FS) are thoroughly examined. The findings reveal that normalization increases classifier performance and Laplacian-based FS outperforms. The proposed RNN model with 300 voice features achieves 99.74% accuracy.


Corresponding author: Zehra Karapinar Senturk, Computer Engineering Department, Faculty of Engineering, Duzce University, 81620, Duzce, Turkey, E-mail: ,

  1. Research funding: Funding not received for the study.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: A public dataset was used in this study and therefore, informed consent is not applicable for this study.

  5. Ethical approval: The data used in this research has previously been approved by Clinical Research Ethics Committee of Bahcesehir University, Turkey. The data was dominated for public research by Sakar et al. [33] in 2018.

Appendix: Experimental results for different network topologies and network types

Table A1:

Experimental results of RNN.

Experiment No Hidden neurons Normalization method Accuracy Conf. Mat.
1 RNN 5 95.3632
2 RNN 10
3 RNN [5 5] 94.8404 167 14
25 550
4 RNN [10 5] 96.8228 175 7
17 557
5 RNN 5 Range [−1, 1] 96.0193 171 9
21 555
6 RNN [5 5] Range [−1, 1] 96.9544 178 9
14 555
7 RNN 10 Range [−1, 1] 95.7579 176 16
16 548
8 RNN 12 Range [−1, 1] 95.1018 162 7
30 557
9 RNN [10 5] Range [−1, 1] 97.6105 183 9
9 555
10 RNN [10 10] Range [−1, 1] 96.5526 176 10
16 554
11 RNN [5 10] Range [−1, 1] 95.6228 168 9
24 555
12 RNN [5 5 5] Range [−1, 1] 94.8246 165 12
27 552
13 RNN 5 Z score 96.0193 171 9
21 555
14 RNN [5 5] Z score 96.9544 178 9
14 555
15 RNN 10 Z score 95.7579 176 16
16 548
16 RNN 12 Z score 95.1018 162 7
30 557
17 RNN [10 5] Z score 97.6105 183 9
9 555
18 RNN [10 10] Z score 96.2895 168 4
24 560
19 RNN [5 10] Z score 95.6228 168 9
24 555
20 RNN [5 5 5] Z score 94.8246 165 12
27 552
21 RNN 5 2-norm 96.0193 171 9
21 555
22 RNN [5 5] 2-norm 96.9544 178 9
14 555
23 RNN 10 2-norm 95.7579 176 16
16 548
24 RNN 12 2-norm 95.1018 162 7
30 557
25 RNN [10 5] 2-norm 97.6105 183 9
9 555
26 RNN [10 10] 2-norm 96.2895 168 4
24 560
27 RNN [5 10] 2-norm 95.6228 168 9
24 555
28 RNN [5 5 5] 2-norm 94.8246 165 12
27 552
29 RNN 5 Center 95.3632 169 12
23 552
30 RNN [5 5] Center 94.8404 167 14
25 550
31 RNN 10 Center 94.5684 171 20
21 544
32 RNN 12 Center 94.3018 168 19
24 545
33 RNN [10 5] Center 96.8228 175 7
17 557
34 RNN [10 10] Center 95.7579 171 11
21 553
35 RNN [5 10] Center 93.2561 163 22
29 542
36 RNN [5 5 5] Center 95.7632 170 10
22 554
37 RNN 5 Scale 96.0193 171 9
21 555
38 RNN [5 5] Scale 96.9544 178 9
14 555
39 RNN 10 Scale 95.7579 176 16
16 548
40 RNN 12 Scale 95.1018 162 7
30 557
41 RNN [10 5] Scale 97.6105 183 9
9 555
42 RNN [10 10] Scale 96.2895 168 4
24 560
43 RNN [5 10] Scale 95.6228 168 9
24 555
44 RNN [5 5 5] Scale 94.8246 165 12
27 552
Table A2:

Experimental results of CFNN.

Experiment No Hidden neurons Normalization method Accuracy Conf. Mat.
1 CFNN 5 93.9088 172 26
20 538
2 CFNN 10 92.8474 171 33
21 531
3 CFNN [5 5] 93.6263 174 30
18 534
4 CFNN [10 10] 96.6842 181 14
11 550
5 CFNN 5 Range [−1, 1] 95.093 175 20
17 544
6 CFNN [5 5] Range [−1, 1] 95.2263 175 19
17 545
7 CFNN 10 Range [−1, 1] 94.5649 173 22
19 542
8 CFNN 12 Range [−1, 1] 93.6333 176 32
16 532
9 CFNN [10 5] Range [−1, 1] 95.4912 171 13
21 551
10 CFNN [10 10] Range [−1, 1] 95.8825 176 15
16 549
11 CFNN [5 10] Range [−1, 1] 94.0351 170 23
22 541
12 CFNN [5 5 5] Range [−1, 1] 95.6246 175 16
17 548
13 CFNN 5 Z score 95.093 175 20
17 544
14 CFNN [5 5] Z score 95.2263 175 19
17 545
15 CFNN 10 Z score 94.5649 173 22
19 542
16 CFNN 12 Z score 93.6333 176 32
16 532
17 CFNN [10 5] Z score 95.4912 171 13
21 551
18 CFNN [10 10] Z score 95.8825 176 15
16 549
19 CFNN [5 10] Z score 94.0351 170 23
22 541
20 CFNN [5 5 5] Z score 95.6246 175 16
17 548
21 CFNN 5 2-norm 95.093 175 20
17 544
22 CFNN [5 5] 2-norm 95.2263 175 19
17 545
23 CFNN 10 2-norm 94.5649 173 22
19 542
24 CFNN 12 2-norm 93.6333 176 32
16 532
25 CFNN [10 5] 2-norm 95.4912 171 13
21 551
26 CFNN [10 10] 2-norm 95.8825 176 15
16 549
27 CFNN [5 10] 2-norm 94.0351 170 23
22 541
28 CFNN [5 5 5] 2-norm 95.6246 175 16
17 548
29 CFNN 5 Center 93.9088 172 26
20 538
30 CFNN [5 5] Center 93.6263 174 30
18 534
31 CFNN 10 Center 92.8474 171 33
21 531
32 CFNN 12 Center 94.7 175 23
17 541
33 CFNN [10 5] Center 91.2561 163 37
29 527
34 CFNN [10 10] Center 96.6842 181 14
11 550
35 CFNN [5 10] Center 95.6175 173 14
19 550
36 CFNN [5 5 5] Center 93.9035 177 31
15 533
37 CFNN 5 Scale 95.093 175 20
17 544
38 CFNN [5 5] Scale 95.2263 175 19
17 545
39 CFNN 10 Scale 94.5649 173 22
19 542
40 CFNN 12 Scale 93.633 176 32
16 532
41 CFNN [10 5] Scale 95.4912 171 13
21 551
42 CFNN [10 10] Scale 95.8825 176 15
16 549
43 CFNN [5 10] Scale 94.0351 170 23
22 541
44 CFNN [5 5 5] Scale 95.6246 175 16
17 548
Table A3:

Experimental results of FFNN.

Experiment No Hidden neurons Normalization method Accuracy Conf. Mat.
1 FFNN 5 92.7158 142 5
50 559
2 FFNN 10 94.707 162 10
30 554
3 FFNN [5 5] 95.0965 171 16
21 548
4 FFNN 5 Range [−1, 1] 93.8982 175 29
17 535
5 FFNN [5 5] Range [−1, 1] 96.8228 179 11
13 553
6 FFNN 10 Range [−1, 1] 95.8912 178 17
14 547
7 FFNN 12 Range [−1, 1] 96.0211 176 14
16 550
8 FFNN [10 5] Range [−1, 1] 95.7667 167 7
25 557
9 FFNN [10 10] Range [−1, 1] 94.7018 164 12
28 552
10 FFNN [5 10] Range [−1, 1] 94.0386 167 20
25 544
11 FFNN [5 5 5] Range [−1, 1] 94.9526 174 20
18 544
12 FFNN 5 Z score 93.8982 175 29
17 535
13 FFNN [5 5] Z score 96.8228 179 11
13 553
14 FFNN 10 Z score 95.8912 178 17
14 547
15 FFNN 12 Z score 96.0211 176 14
16 550
16 FFNN [10 5] Z score 95.7667 167 7
25 557
17 FFNN [10 10] Z score 94.7018 164 12
28 552
18 FFNN [5 10] Z score 94.0386 167 20
25 544
19 FFNN [5 5 5] Z score 94.9526 174 20
18 544
20 FFNN 5 2-norm 93.8982 175 29
17 535
21 FFNN [5 5] 2-norm 96.8228 179 11
13 553
22 FFNN 10 2-norm 95.8912 178 17
14 547
23 FFNN 12 2-norm 96.0211 176 14
16 550
24 FFNN [10 5] 2-norm 95.7667 167 7
25 557
25 FFNN [10 10] 2-norm 94.7018 164 12
28 552
26 FFNN [5 10] 2-norm 94.0386 167 20
25 544
27 FFNN [5 5 5] 2-norm 94.9526 174 20
18 544
28 FFNN 5 Center 92.7158 142 5
50 559
29 FFNN [5 5] Center 95.0965 171 16
21 548
30 FFNN 10 Center 94.707 162 10
30 554
31 FFNN 12 Center 93.3684 150 8
42 556
32 FFNN [10 5] Center 96.6789 176 9
16 555
33 FFNN [10 10] Center 95.7614 169 9
23 555
34 FFNN [5 10] Center 92.9825 159 20
33 544
35 FFNN [5 5 5] Center 94.9526 174 20
18 544
36 FFNN 5 Scale 93.8982 175 29
17 535
37 FFNN [5 5] Scale 96.8228 179 11
13 553
38 FFNN 10 Scale 95.8912 178 17
14 547
39 FFNN 12 Scale 96.0211 176 14
16 550
40 FFNN [10 5] Scale 95.7667 167 7
25 557
41 FFNN [10 10] Scale 94.7018 164 12
28 552
42 FFNN [5 10] Scale 94.0386 167 20
25 544
43 FFNN [5 5 5] Scale 94.9526 174 20
18 544

References

1. Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatr 2008;79:368–76. https://doi.org/10.1136/jnnp.2007.131045.Search in Google Scholar PubMed

2. Von Campenhausen, S, Bornschein, B, Wick, R, Bötzel, K, Sampaio, C, Poewe, W, et al.. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol 2005;15:473–90. https://doi.org/10.1016/j.euroneuro.2005.04.007.Search in Google Scholar PubMed

3. Dorsey, ER, Sherer, T, Okun, MS, Bloem, BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018;8:S3–8. https://doi.org/10.3233/JPD-181474.Search in Google Scholar PubMed PubMed Central

4. Yang, W, Hamilton, JL, Kopil, C, Beck, JC, Tanner, CM, Albin, RL, et al.. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis 2020;6:1–9. https://doi.org/10.1038/s41531-020-0117-1.Search in Google Scholar PubMed PubMed Central

5. Solana-Lavalle, G, Rosas-Romero, R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Comput Methods Progr Biomed 2021;198:105793. https://doi.org/10.1016/j.cmpb.2020.105793.Search in Google Scholar PubMed

6. Singh, G, Vadera, M, Samavedham, L, Lim, ECH. Machine learning-based framework for multi-class diagnosis of neurodegenerative diseases: a study on Parkinson’s disease. IFAC-PapersOnLine 2016;49:990–5. https://doi.org/10.1016/j.ifacol.2016.07.331.Search in Google Scholar

7. Salvatore, C, Cerasa, A, Castiglioni, I, Gallivanone, F, Augimeri, A, Lopez, M, et al.. Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. J Neurosci Methods 2014;222:230–7. https://doi.org/10.1016/j.jneumeth.2013.11.016.Search in Google Scholar PubMed

8. Abdulhay, E, Arunkumar, N, Narasimhan, K, Vellaiappan, E, Venkatraman, V. Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Generat Comput Syst 2018;83:366–73. https://doi.org/10.1016/j.future.2018.02.009.Search in Google Scholar

9. Balaji, E, Brindha, D, Elumalai, VK, Umesh, K. Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease. Med Eng Phys 2021;91:54–64. https://doi.org/10.1016/j.medengphy.2021.03.005.Search in Google Scholar PubMed

10. Balaji, E, Brindha, D, Balakrishnan, R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput 2020;94:106494. https://doi.org/10.1016/j.asoc.2020.106494.Search in Google Scholar

11. Oh, SL, Hagiwara, Y, Raghavendra, U, Yuvaraj, R, Arunkumar, N, Murugappan, M, et al.. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 2018;32:10927–33. https://doi.org/10.1007/s00521-018-3689-5.Search in Google Scholar

12. Lee, S, Hussein, R, Ward, R, Jane Wang, Z, McKeown, MJ. A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease. J Neurosci Methods 2021;361:109282. https://doi.org/10.1016/j.jneumeth.2021.109282.Search in Google Scholar PubMed PubMed Central

13. Maidan, I, Zifman, N, Hausdorff, JM, Giladi, N, Levy-Lamdan, O, Mirelman, A. A multimodal approach using TMS and EEG reveals neurophysiological changes in Parkinson’s disease. Park Relat Disord 2021;89:28–33. https://doi.org/10.1016/j.parkreldis.2021.06.018.Search in Google Scholar PubMed

14. Khare, SK, Bajaj, V, Acharya, UR. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern Biomed Eng 2021;41:679–89. https://doi.org/10.1016/j.bbe.2021.04.008.Search in Google Scholar

15. Parisi, L, RaviChandran, N, Manaog, ML. Feature-driven machine learning to improve early diagnosis of Parkinson’s disease. Expert Syst Appl 2018;110:182–90. https://doi.org/10.1016/j.eswa.2018.06.003.Search in Google Scholar

16. Karapinar Senturk, Z. Early diagnosis of Parkinson’s disease using machine learning algorithms. Med Hypotheses 2020;138:109603. https://doi.org/10.1016/j.mehy.2020.109603.Search in Google Scholar PubMed

17. Sakar, BE, Serbes, G, Sakar, CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease. PLoS One 2017;12:e0182428. https://doi.org/10.1371/journal.pone.0182428.Search in Google Scholar PubMed PubMed Central

18. Sakar, BE, Isenkul, ME, Sakar, CO, Sertbas, A, Gurgen, F, Delil, S, et al.. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 2013;17:828–34. https://doi.org/10.1109/jbhi.2013.2245674.Search in Google Scholar

19. Tăuţan, AM, Ionescu, B, Santarnecchi, E. Artificial intelligence in neurodegenerative diseases: a review of available tools with a focus on machine learning techniques. Artif Intell Med 2021;117:102081. https://doi.org/10.1016/j.artmed.2021.102081.Search in Google Scholar PubMed

20. Khan, T. Parkinson’s disease assessment using speech anomalies: a review. 2014. Available from: https://scholar.google.com/scholar?q=Parkinsons%20disease%20assessment%20using%20speech%20anomalies:%20a%20review.Search in Google Scholar

21. Rusz, J, Tykalova, T, Novotny, M, Zogala, D, Sonka, K, Ruzicka, E, et al.. Defining speech subtypes in de novo Parkinson disease: response to long-term levodopa therapy. Neurology 2021;97:E2124–35. https://doi.org/10.1212/WNL.0000000000012878.Search in Google Scholar PubMed

22. Dawson, VL, Dawson, TM. Promising disease-modifying therapies for Parkinson’s disease. Sci Transl Med 2019;11:eaba1659. https://doi.org/10.1126/scitranslmed.aba1659.Search in Google Scholar PubMed

23. Rusz, J, Hlavnička, J, Novotný, M, Tykalová, T, Pelletier, A, Montplaisir, J, et al.. Speech biomarkers in rapid eye movement sleep behavior disorder and Parkinson disease. Ann Neurol 2021;90:62–75. https://doi.org/10.1002/ana.26085.Search in Google Scholar PubMed PubMed Central

24. Kuresan, H, Samiappan, D, Maneesh Reddy, P, Sai Mahesh, R, Sriharsha, K. Parkinson’s disease analysis using speech signal processing – a research inclination for graduates. Mater Today Proc 2021.10.1016/j.matpr.2020.12.1203Search in Google Scholar

25. Kara, S, Güven, A, Öner, AÖ. Utilization of artificial neural networks in the diagnosis of optic nerve diseases. Comput Biol Med 2006;36:428–37. https://doi.org/10.1016/j.compbiomed.2005.01.003.Search in Google Scholar PubMed

26. Hosseini, HG, Luo, D, Reynolds, KJ. The comparison of different feed forward neural network architectures for ECG signal diagnosis. Med Eng Phys 2006;28:372–8. https://doi.org/10.1016/j.medengphy.2005.06.006.Search in Google Scholar PubMed

27. Omiotek, Z, Burda, A, Wójcik, W. The use of decision tree induction and artificial neural networks for automatic diagnosis of Hashimoto’s disease. Expert Syst Appl 2013;40:6684–9. https://doi.org/10.1016/j.eswa.2013.03.022.Search in Google Scholar

28. Senturk, ZK, Kara, R. Breast cancer diagnosis via data mining: performance analysis of seven different algorithms. Comput Sci Eng 2014;4:35–46. https://doi.org/10.5121/cseij.2014.4104.Search in Google Scholar

29. Karapınar Şentürk, Z. Artificial neural networks based decision support system for the detection of diabetic retinopathy artificial neural networks based decision support system for the detection of diabetic retinopathy. Sakarya Univ J Sci 2020;24:424–31.10.16984/saufenbilder.630482Search in Google Scholar

30. Er, MB, Isik, E, Isik, I. Parkinson’s detection based on combined CNN and LSTM using enhanced speech signals with Variational mode decomposition. Biomed Signal Process Control 2021;70:103006. https://doi.org/10.1016/j.bspc.2021.103006.Search in Google Scholar

31. Hosseini-Kivanani, N, Camilo Vásquez-Correa, J, Stede, M, Nöth, E. Automated cross-language intelligibility analysis of Parkinson’s disease patients using speech recognition technologies. In: 57th Annual meeting of the Association for Computational Linguistics: Student Research Workshop. Florence: Association for Computational Linguistics; 2019.10.18653/v1/P19-2010Search in Google Scholar

32. Gürüler, H. A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl 2017;28:1657–66.10.1007/s00521-015-2142-2Search in Google Scholar

33. Sakar, CO, Serbes, G, Gunduz, A, Tunc, HC, Nizam, H, Sakar, BE, et al.. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019;74:255–63. https://doi.org/10.1016/j.asoc.2018.10.022.Search in Google Scholar

34. Gunduz, H. Deep learning-based Parkinson’s disease classification using vocal feature sets. IEEE Access 2019;7:115540–51. https://doi.org/10.1109/access.2019.2936564.Search in Google Scholar

35. Goyal, J, Khandnor, P, Aseri, TC. A hybrid approach for Parkinson’s disease diagnosis with resonance and time-frequency based features from speech signals. Expert Syst Appl 2021;182:115283. https://doi.org/10.1016/j.eswa.2021.115283.Search in Google Scholar

36. UCI Machine Learning Repository: Parkinsons Data Set. Available at: https://archive.ics.uci.edu/ml/datasets/parkinsons.Search in Google Scholar

37. Rusz, J, Tykalová, T, Novotný, M, Zogala, D, Růžička, E, Dušek, P. Automated speech analysis in early untreated Parkinson’s disease: relation to gender and dopaminergic transporter imaging. Eur J Neurol 2022;29:81–90. https://doi.org/10.1111/ene.15099.Search in Google Scholar PubMed

38. Rusz, J, Tykalová, T, Novotný, M, Růžička, E, Dušek, P. Distinct patterns of speech disorder in early-onset and late-onset de-novo Parkinson’s disease. NPJ Parkinsons Dis 2021;7:1–8. https://doi.org/10.1038/s41531-021-00243-1.Search in Google Scholar PubMed PubMed Central

39. Boersma, P, Weenink, D. Praat: doing phonetics by computer. 2011. Available at: https://www.fon.hum.uva.nl/praat/.Search in Google Scholar

40. MathWorks. Audio Toolbox – MATLAB & Simulink. Available at: https://www.mathworks.com/products/audio.html.Search in Google Scholar

41. Peng, H, Long, F, Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27:1226–38. https://doi.org/10.1109/tpami.2005.159.Search in Google Scholar PubMed

42. Sakar, CO, Kursun, O, Gurgen, F. A feature selection method based on kernel canonical correlation analysis and the minimum redundancy–maximum relevance filter method. Expert Syst Appl 2012;39:3432–7. https://doi.org/10.1016/j.eswa.2011.09.031.Search in Google Scholar

43. Kaya, D. The mRMR-CNN based influential support decision system approach to classify EEG signals. Measurement 2020;156:107602. https://doi.org/10.1016/j.measurement.2020.107602.Search in Google Scholar

44. Eroğlu, Y, Yildirim, M, Çinar, A. Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Comput Biol Med 2021;133:104407. https://doi.org/10.1016/j.compbiomed.2021.104407.Search in Google Scholar PubMed

45. Yuan, F, Lu, L, Zhang, YH, Wang, SP, Cai, YD. Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method. Math Biosci 2018;304:1–8. https://doi.org/10.1016/j.mbs.2018.08.001.Search in Google Scholar PubMed

46. Dogan, A, Akay, M, Barua, PD, Baygin, M, Dogan, S, Tuncer, T, et al.. PrimePatNet87: prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition. Comput Biol Med 2021;138:104867. https://doi.org/10.1016/j.compbiomed.2021.104867.Search in Google Scholar PubMed

47. Pashaei, E, Pashaei, E. Gene selection using hybrid dragonfly black hole algorithm: a case study on RNA-seq COVID-19 data. Anal Biochem 2021;627:114242. https://doi.org/10.1016/j.ab.2021.114242.Search in Google Scholar PubMed

48. He, X, Cai, D, Niyogi, P. Laplacian score for feature selection. In: NIPS Proceedings 2005.Search in Google Scholar

49. Barile, C, Casavola, C, Pappalettera, G, Paramsamy Kannan, V. Laplacian score and K-means data clustering for damage characterization of adhesively bonded CFRP composites by means of acoustic emission technique. Appl Acoust 2022;185:108425. https://doi.org/10.1016/j.apacoust.2021.108425.Search in Google Scholar

50. Mohd Saufi, MSR, Hassan, KA. Remaining useful life prediction using an integrated Laplacian-LSTM network on machinery components. Appl Soft Comput 2021;112:107817. https://doi.org/10.1016/j.asoc.2021.107817.Search in Google Scholar

51. Yan, X, Liu, Y, Huang, D, Jia, M. A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved Laplacian score. Struct Health Monit 2020;20:1169–95. https://doi.org/10.1177/1475921720948620.Search in Google Scholar

52. Elman, JL. Finding structure in time. Cognit Sci 1990;14:179–211. https://doi.org/10.1207/s15516709cog1402_1.Search in Google Scholar

53. Ribeiro, LCF, Afonso, LCS, Papa, JP. Bag of samplings for computer-assisted Parkinson’s disease diagnosis based on recurrent neural networks. Comput Biol Med 2019;115:103477. https://doi.org/10.1016/j.compbiomed.2019.103477.Search in Google Scholar PubMed

54. Öztemel, E. Yapay Sinir Ağları, 4th ed. İstanbul: Papatya Bilim; 2016.Search in Google Scholar

55. Hogan, CA, Rajpurkar, P, Sowrirajan, H, Phillips, NA, Le, AT, Wu, M, et al.. Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza. EBioMedicine 2021;71:103546. https://doi.org/10.1016/j.ebiom.2021.103546.Search in Google Scholar PubMed PubMed Central

56. Skodda, S, Visser, W, Schlegel, U. Gender-related patterns of dysprosody in Parkinson disease and correlation between speech variables and motor symptoms. J Voice 2011;25:76–82. https://doi.org/10.1016/j.jvoice.2009.07.005.Search in Google Scholar PubMed

57. Rusz, J, Novotny, M, Hlavnicka, J, Tykalova, T, Ruzicka, E. High-accuracy voice-based classification between patients with Parkinson’s disease and other neurological diseases may Be an easy task with inappropriate experimental design. IEEE Trans Neural Syst Rehabil Eng 2017;25:1319–21. https://doi.org/10.1109/tnsre.2016.2621885.Search in Google Scholar PubMed

58. Suphinnapong, P, Phokaewvarangkul, O, Thubthong, N, Teeramongkonrasmee, A, Mahattanasakul, P, Lorwattanapongsa, P, et al.. Objective vowel sound characteristics and their relationship with motor dysfunction in Asian Parkinson’s disease patients. J Neurol Sci 2021;426:117487. https://doi.org/10.1016/j.jns.2021.117487.Search in Google Scholar PubMed

59. Rusz, J, Tykalova, T, Ramig, LO, Tripoliti, E. Guidelines for speech recording and acoustic analyses in dysarthrias of movement disorders. Mov Disord 2021;36:803–14. https://doi.org/10.1002/mds.28465.Search in Google Scholar PubMed

60. Rusz, J, Švihlík, J, Krýže, P, Novotný, M, Tykalová, T. Reproducibility of voice analysis with machine learning. Mov Disord 2021;36:1282–3. https://doi.org/10.1002/mds.28604.Search in Google Scholar PubMed

Received: 2022-01-13
Accepted: 2022-05-18
Published Online: 2022-06-03
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bmt-2022-0022/html?lang=en
Scroll to top button