Abstract
The present work proposes a novel, compact, intuitively simple and efficient structure to improve the sensitivity of a microelectromechanical system (MEMS) capacitive accelerometer using an arrangement of microlever as a displacement amplifier. The accelerometer is proposed to serve as a microphone in the fully implantable cochlear prosthetic system which can be surgically implanted at the middle ear bone structure. Therefore, the design parameters such as size, weight and resonant frequency require deliberation. The paper presents a novel analytical model considering the impact of the mechanical amplification along with the width of the microlever and the capacitive fringe effects on the performance of the sensor. The design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The accelerometer is designed within a sensing area of 1 mm2 and accomplishes a nominal capacitance of 4.85 pF and an excellent sensitivity of 5.91 fF/g.
-
Research funding: Authors state no funding involved from any public, commercial or not-for-profit agencies.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Conflict of interest: Authors state no conflict of interest.
References
1. Wang, D. Deep learning reinvents the hearing aid. IEEE Spect 2017;54:32–7. https://doi.org/10.1109/mspec.2017.7864754.10.1109/MSPEC.2017.7864754Search in Google Scholar PubMed PubMed Central
2. Varshney, S. Deafness in India. Indian J Otol 2016;22:73. https://doi.org/10.4103/0971-7749.182281.10.4103/0971-7749.182281Search in Google Scholar
3. Zeng, FG, Rebscher, S, Harrison, W, Sun, X, Feng, H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008;1:115–42. https://doi.org/10.1109/rbme.2008.2008250.10.1109/RBME.2008.2008250Search in Google Scholar PubMed PubMed Central
4. Zhao, Y, Dawant, BM, Noble, JH. Automatic selection of the active electrode set for image-guided cochlear implant programming. J Med Imaging 2016;3:035001. https://doi.org/10.1117/1.jmi.3.3.035001.10.1117/1.JMI.3.3.035001Search in Google Scholar PubMed PubMed Central
5. Haynes, DS, Young, JA, Wanna, GB, GlasscockIIIME. Middle ear implantable hearing devices: an overview. Trends Amplif 2009;13:206–14. https://doi.org/10.1177/1084713809346262.10.1177/1084713809346262Search in Google Scholar PubMed PubMed Central
6. Federspil, PA, Plinkert, PK. Restoring Hearing with Active Hearing Implants/Wiederherstellung des Gehörs mit aktiven Hörimplantaten. Biomed Tech 2004;49:78–82. https://doi.org/10.1515/bmt.2004.016.10.1515/BMT.2004.016Search in Google Scholar PubMed
7. Zenner, HP, Leysieffer, H. Total implantation of the implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss: the tübingen university experience. Otolaryng Clin N Am 2001;34:417–46. https://doi.org/10.1016/S0030-6665(05)70340-6.10.1016/S0030-6665(05)70340-6Search in Google Scholar
8. Leysieffer, H, Baumann, JW, Mayer, R, Müller, D, Müller, G, Schön, T, et al. A totally implantable hearing aid for inner ear deafness: TICA LZ 3001 HNO 1998;46:853–63. https://doi.org/10.1007/s001060050325.10.1007/s001060050325Search in Google Scholar PubMed
9. Briggs, RJ, Eder, HC, Seligman, PM, Cowan, RS, Plant, KL, Dalton, J, et al. Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 2008;29:114–9. https://doi.org/10.1097/mao.0b013e31814b242f.10.1097/MAO.0b013e31814b242fSearch in Google Scholar PubMed
10. Bruschini, L, Forli, F, Santoro, A, Bruschini, P, Berrettini, S. Fully implantable Otologics MET CarinaTM device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngol Ital 2009;29:79. https://doi.org/10.3109/00016481003671244.Search in Google Scholar PubMed
11. Pulcherio, JO, Bittencourt, AG, Burke, PR, da Costa Monsanto, R, de Brito, R, Tsuji, RK, et al. Carina® and Esteem®: a systematic review of fully implantable hearing devices. PLoS One 2014;9:e110636. https://doi.org/10.1371/journal.pone.0110636.10.1371/journal.pone.0110636Search in Google Scholar PubMed PubMed Central
12. Kraus, EM, Shohet, JA, Catalano, PJ. Envoy Esteem totally implantable hearing system: phase 2 trial, 1-year hearing results. Otolaryngol Head Neck Surg 2011;145:100–9. https://doi.org/10.1177/0194599811401709.10.1177/0194599811401709Search in Google Scholar PubMed
13. Memari, F, Asghari, A, Daneshi, A, Jalali, A. Safety and patient selection of totally implantable hearing aid surgery: envoy system, esteem. Eur Arch Otorhinolaryngol 2011;268:1421–5. https://doi.org/10.1007/s00405-011-1507-0.10.1007/s00405-011-1507-0Search in Google Scholar PubMed
14. Ko, WH, Zhang, R, Huang, P, Guo, J, Ye, X, Young, DJ, et al. Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Trans Biomed Circuits Syst 2009;3:277–85. https://doi.org/10.1109/tbcas.2009.2032267.10.1109/TBCAS.2009.2032267Search in Google Scholar PubMed
15. Zurcher, MA, Semaan, M, Megerian, CA, Ko, WH, Young, DJ. A MEMS capacitive accelerometer design as middle ear microphone based on ossicular chain micromechanic characterization at umbo for fully implantable cochlear prosthesis. Sensor Mater 2010;22:297–312. https://doi.org/10.18494/SAM.2010.629.10.18494/SAM.2010.629Search in Google Scholar
16. Young, DJ, Zurcher, MA, Semaan, M, Megerian, CA, Ko, WH. MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans Biomed Eng 2012;59:3283–92. https://doi.org/10.1109/tbme.2012.2195782.10.1109/TBME.2012.2195782Search in Google Scholar PubMed
17. Yip, M, Jin, R, Nakajima, HH, Stankovic, KM, Chandrakasan, AP. A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J Solid-State Circuits 2015;50:214–29. https://doi.org/10.1109/jssc.2014.2355822.10.1109/JSSC.2014.2355822Search in Google Scholar PubMed PubMed Central
18. Park, WT, O’Connor, KN, Chen, KL, Mallon, JR, Maetani, T, Dalal, P, et al. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed Microdevices 2007;9:939–49. https://doi.org/10.1007/s10544-007-9072-4.10.1007/s10544-007-9072-4Search in Google Scholar PubMed
19. Woo, ST, Shin, DH, Lim, HG, Seong, KW, Gottlieb, P, Puria, S, et al. A new trans-tympanic microphone approach for fully implantable hearing devices. Sensors 2015;15:22798–810. https://doi.org/10.3390/s150922798.10.3390/s150922798Search in Google Scholar PubMed PubMed Central
20. Koch, M, Eßinger, TM, Stoppe, T, Lasurashvili, N, Bornitz, M, Zahnert, T. Fully implantable hearing aid in the incudostapedial joint gap. Hear Res 2016;340:169–78. https://doi.org/10.1016/j.heares.2016.03.015.10.1016/j.heares.2016.03.015Search in Google Scholar PubMed
21. Liu, H, Cheng, J, Yang, J, Rao, Z, Cheng, G, Yang, S, et al. Concept and evaluation of a new piezoelectric transducer for an implantable middle ear hearing device. Sensors 2017;17:2515. https://doi.org/10.3390/s17112515.10.3390/s17112515Search in Google Scholar PubMed PubMed Central
22. Krishnan, G, Ananthasuresh, GK. Evaluation and design of displacement-amplifying compliant mechanisms for sensor applications. J Mech Des 2008;130:102304. https://doi.org/10.1115/1.2965599.10.1115/1.2965599Search in Google Scholar
23. Khan, S, Ananthasuresh, GK. Improving the sensitivity and bandwidth of in-plane capacitive microaccelerometers using compliant mechanical amplifiers. J Microelectromech Syst 2014;23:871–87. https://doi.org/10.1109/jmems.2014.2300231.10.1109/JMEMS.2014.2300231Search in Google Scholar
24. Bolzmacher, C, Bauer, K, Schmid, U, Hafez, M, Seidel, H. Displacement amplification of piezoelectric microactuators with a micromachined leverage unit. Sens Actuators A Phys 2010;157:61–7. https://doi.org/10.1016/j.sna.2009.10.014.10.1016/j.sna.2009.10.014Search in Google Scholar
25. Su, XP, Yang, HS. Single-stage microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscipl Optim 2001;21:246–52. https://doi.org/10.1007/s001580050189.10.1007/s001580050189Search in Google Scholar
26. Su, XP, Yang, HS. Two-stage compliant microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscipl Optim 2001;22:328–34. https://doi.org/10.1007/s00158-001-0153-3.10.1007/s00158-001-0153-3Search in Google Scholar
27. Zeimpekis, I, Sari, I, Kraft, M. Characterization of a mechanical motion amplifier applied to a MEMS accelerometer. J Microelectromech Syst 2012; 21:1032–42. https://doi.org/10.1109/jmems.2012.2196491.10.1109/JMEMS.2012.2196491Search in Google Scholar
28. Zeimpekis, I, Sari, I, Kraft, M. Deflection amplification mechanism in a capacitive accelerometer. In: 16th international solid-state sensors, actuators and microsystems conference (ICSSSAM), 2011. IEEE, Beijing, China; 2011.10.1109/TRANSDUCERS.2011.5969184Search in Google Scholar
29. Catalán Izquierdo, S, Bueno Barrachina, JM, Cañas Peñuelas, CS, Cavallé Sesé, F. Capacitance evaluation on parallel-plate capacitors by means of finite element analysis. Renew Energy Power Qual J 2009;1:613–6. https://doi.org/10.24084/repqj07.451.10.24084/repqj07.451Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- A review of foot pose and trajectory estimation methods using inertial and auxiliary sensors for kinematic gait analysis
- EEG Source Imaging (ESI) utility in clinical practice
- Research articles
- A multi-source co-frequency stimulus method for electroencephalogram (EEG) enhancement
- Analysis of statistical coefficients and autoregressive parameters over intrinsic mode functions (IMFs) for epileptic seizure detection
- Scalp electroencephalography (sEEG) based advanced prediction of epileptic seizure time and identification of epileptogenic region
- A simple model to detect atrial fibrillation via visual imaging
- Insertion torque/time integral as a measure of primary implant stability
- A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach
- Integrating artificial neural network and scoring systems to increase the prediction accuracy of patient mortality and organ dysfunction
- Sparse-FCM and Deep Convolutional Neural Network for the segmentation and classification of acute lymphoblastic leukaemia
Articles in the same Issue
- Frontmatter
- Reviews
- A review of foot pose and trajectory estimation methods using inertial and auxiliary sensors for kinematic gait analysis
- EEG Source Imaging (ESI) utility in clinical practice
- Research articles
- A multi-source co-frequency stimulus method for electroencephalogram (EEG) enhancement
- Analysis of statistical coefficients and autoregressive parameters over intrinsic mode functions (IMFs) for epileptic seizure detection
- Scalp electroencephalography (sEEG) based advanced prediction of epileptic seizure time and identification of epileptogenic region
- A simple model to detect atrial fibrillation via visual imaging
- Insertion torque/time integral as a measure of primary implant stability
- A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach
- Integrating artificial neural network and scoring systems to increase the prediction accuracy of patient mortality and organ dysfunction
- Sparse-FCM and Deep Convolutional Neural Network for the segmentation and classification of acute lymphoblastic leukaemia