Home A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach
Article
Licensed
Unlicensed Requires Authentication

A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach

  • Apoorva Dwivedi EMAIL logo and Gargi Khanna
Published/Copyright: July 3, 2020

Abstract

The present work proposes a novel, compact, intuitively simple and efficient structure to improve the sensitivity of a microelectromechanical system (MEMS) capacitive accelerometer using an arrangement of microlever as a displacement amplifier. The accelerometer is proposed to serve as a microphone in the fully implantable cochlear prosthetic system which can be surgically implanted at the middle ear bone structure. Therefore, the design parameters such as size, weight and resonant frequency require deliberation. The paper presents a novel analytical model considering the impact of the mechanical amplification along with the width of the microlever and the capacitive fringe effects on the performance of the sensor. The design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The accelerometer is designed within a sensing area of 1 mm2 and accomplishes a nominal capacitance of 4.85 pF and an excellent sensitivity of 5.91 fF/g.


Corresponding author: Apoorva Dwivedi, Electronics and Communications Engineering Department, NIT Hamirpur, Hamirpur, 177005, Himachal Pradesh, India, E-mail:

  1. Research funding: Authors state no funding involved from any public, commercial or not-for-profit agencies.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Informed consent: Informed consent was obtained from all individuals included in this study.

  4. Conflict of interest: Authors state no conflict of interest.

References

1. Wang, D. Deep learning reinvents the hearing aid. IEEE Spect 2017;54:32–7. https://doi.org/10.1109/mspec.2017.7864754.10.1109/MSPEC.2017.7864754Search in Google Scholar PubMed PubMed Central

2. Varshney, S. Deafness in India. Indian J Otol 2016;22:73. https://doi.org/10.4103/0971-7749.182281.10.4103/0971-7749.182281Search in Google Scholar

3. Zeng, FG, Rebscher, S, Harrison, W, Sun, X, Feng, H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008;1:115–42. https://doi.org/10.1109/rbme.2008.2008250.10.1109/RBME.2008.2008250Search in Google Scholar PubMed PubMed Central

4. Zhao, Y, Dawant, BM, Noble, JH. Automatic selection of the active electrode set for image-guided cochlear implant programming. J Med Imaging 2016;3:035001. https://doi.org/10.1117/1.jmi.3.3.035001.10.1117/1.JMI.3.3.035001Search in Google Scholar PubMed PubMed Central

5. Haynes, DS, Young, JA, Wanna, GB, GlasscockIIIME. Middle ear implantable hearing devices: an overview. Trends Amplif 2009;13:206–14. https://doi.org/10.1177/1084713809346262.10.1177/1084713809346262Search in Google Scholar PubMed PubMed Central

6. Federspil, PA, Plinkert, PK. Restoring Hearing with Active Hearing Implants/Wiederherstellung des Gehörs mit aktiven Hörimplantaten. Biomed Tech 2004;49:78–82. https://doi.org/10.1515/bmt.2004.016.10.1515/BMT.2004.016Search in Google Scholar PubMed

7. Zenner, HP, Leysieffer, H. Total implantation of the implex TICA hearing amplifier implant for high-frequency sensorineural hearing loss: the tübingen university experience. Otolaryng Clin N Am 2001;34:417–46. https://doi.org/10.1016/S0030-6665(05)70340-6.10.1016/S0030-6665(05)70340-6Search in Google Scholar

8. Leysieffer, H, Baumann, JW, Mayer, R, Müller, D, Müller, G, Schön, T, et al. A totally implantable hearing aid for inner ear deafness: TICA LZ 3001 HNO 1998;46:853–63. https://doi.org/10.1007/s001060050325.10.1007/s001060050325Search in Google Scholar PubMed

9. Briggs, RJ, Eder, HC, Seligman, PM, Cowan, RS, Plant, KL, Dalton, J, et al. Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 2008;29:114–9. https://doi.org/10.1097/mao.0b013e31814b242f.10.1097/MAO.0b013e31814b242fSearch in Google Scholar PubMed

10. Bruschini, L, Forli, F, Santoro, A, Bruschini, P, Berrettini, S. Fully implantable Otologics MET CarinaTM device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results. Acta Otorhinolaryngol Ital 2009;29:79. https://doi.org/10.3109/00016481003671244.Search in Google Scholar PubMed

11. Pulcherio, JO, Bittencourt, AG, Burke, PR, da Costa Monsanto, R, de Brito, R, Tsuji, RK, et al. Carina® and Esteem®: a systematic review of fully implantable hearing devices. PLoS One 2014;9:e110636. https://doi.org/10.1371/journal.pone.0110636.10.1371/journal.pone.0110636Search in Google Scholar PubMed PubMed Central

12. Kraus, EM, Shohet, JA, Catalano, PJ. Envoy Esteem totally implantable hearing system: phase 2 trial, 1-year hearing results. Otolaryngol Head Neck Surg 2011;145:100–9. https://doi.org/10.1177/0194599811401709.10.1177/0194599811401709Search in Google Scholar PubMed

13. Memari, F, Asghari, A, Daneshi, A, Jalali, A. Safety and patient selection of totally implantable hearing aid surgery: envoy system, esteem. Eur Arch Otorhinolaryngol 2011;268:1421–5. https://doi.org/10.1007/s00405-011-1507-0.10.1007/s00405-011-1507-0Search in Google Scholar PubMed

14. Ko, WH, Zhang, R, Huang, P, Guo, J, Ye, X, Young, DJ, et al. Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Trans Biomed Circuits Syst 2009;3:277–85. https://doi.org/10.1109/tbcas.2009.2032267.10.1109/TBCAS.2009.2032267Search in Google Scholar PubMed

15. Zurcher, MA, Semaan, M, Megerian, CA, Ko, WH, Young, DJ. A MEMS capacitive accelerometer design as middle ear microphone based on ossicular chain micromechanic characterization at umbo for fully implantable cochlear prosthesis. Sensor Mater 2010;22:297–312. https://doi.org/10.18494/SAM.2010.629.10.18494/SAM.2010.629Search in Google Scholar

16. Young, DJ, Zurcher, MA, Semaan, M, Megerian, CA, Ko, WH. MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans Biomed Eng 2012;59:3283–92. https://doi.org/10.1109/tbme.2012.2195782.10.1109/TBME.2012.2195782Search in Google Scholar PubMed

17. Yip, M, Jin, R, Nakajima, HH, Stankovic, KM, Chandrakasan, AP. A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J Solid-State Circuits 2015;50:214–29. https://doi.org/10.1109/jssc.2014.2355822.10.1109/JSSC.2014.2355822Search in Google Scholar PubMed PubMed Central

18. Park, WT, O’Connor, KN, Chen, KL, Mallon, JR, Maetani, T, Dalal, P, et al. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed Microdevices 2007;9:939–49. https://doi.org/10.1007/s10544-007-9072-4.10.1007/s10544-007-9072-4Search in Google Scholar PubMed

19. Woo, ST, Shin, DH, Lim, HG, Seong, KW, Gottlieb, P, Puria, S, et al. A new trans-tympanic microphone approach for fully implantable hearing devices. Sensors 2015;15:22798–810. https://doi.org/10.3390/s150922798.10.3390/s150922798Search in Google Scholar PubMed PubMed Central

20. Koch, M, Eßinger, TM, Stoppe, T, Lasurashvili, N, Bornitz, M, Zahnert, T. Fully implantable hearing aid in the incudostapedial joint gap. Hear Res 2016;340:169–78. https://doi.org/10.1016/j.heares.2016.03.015.10.1016/j.heares.2016.03.015Search in Google Scholar PubMed

21. Liu, H, Cheng, J, Yang, J, Rao, Z, Cheng, G, Yang, S, et al. Concept and evaluation of a new piezoelectric transducer for an implantable middle ear hearing device. Sensors 2017;17:2515. https://doi.org/10.3390/s17112515.10.3390/s17112515Search in Google Scholar PubMed PubMed Central

22. Krishnan, G, Ananthasuresh, GK. Evaluation and design of displacement-amplifying compliant mechanisms for sensor applications. J Mech Des 2008;130:102304. https://doi.org/10.1115/1.2965599.10.1115/1.2965599Search in Google Scholar

23. Khan, S, Ananthasuresh, GK. Improving the sensitivity and bandwidth of in-plane capacitive microaccelerometers using compliant mechanical amplifiers. J Microelectromech Syst 2014;23:871–87. https://doi.org/10.1109/jmems.2014.2300231.10.1109/JMEMS.2014.2300231Search in Google Scholar

24. Bolzmacher, C, Bauer, K, Schmid, U, Hafez, M, Seidel, H. Displacement amplification of piezoelectric microactuators with a micromachined leverage unit. Sens Actuators A Phys 2010;157:61–7. https://doi.org/10.1016/j.sna.2009.10.014.10.1016/j.sna.2009.10.014Search in Google Scholar

25. Su, XP, Yang, HS. Single-stage microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscipl Optim 2001;21:246–52. https://doi.org/10.1007/s001580050189.10.1007/s001580050189Search in Google Scholar

26. Su, XP, Yang, HS. Two-stage compliant microleverage mechanism optimization in a resonant accelerometer. Struct Multidiscipl Optim 2001;22:328–34. https://doi.org/10.1007/s00158-001-0153-3.10.1007/s00158-001-0153-3Search in Google Scholar

27. Zeimpekis, I, Sari, I, Kraft, M. Characterization of a mechanical motion amplifier applied to a MEMS accelerometer. J Microelectromech Syst 2012; 21:1032–42. https://doi.org/10.1109/jmems.2012.2196491.10.1109/JMEMS.2012.2196491Search in Google Scholar

28. Zeimpekis, I, Sari, I, Kraft, M. Deflection amplification mechanism in a capacitive accelerometer. In: 16th international solid-state sensors, actuators and microsystems conference (ICSSSAM), 2011. IEEE, Beijing, China; 2011.10.1109/TRANSDUCERS.2011.5969184Search in Google Scholar

29. Catalán Izquierdo, S, Bueno Barrachina, JM, Cañas Peñuelas, CS, Cavallé Sesé, F. Capacitance evaluation on parallel-plate capacitors by means of finite element analysis. Renew Energy Power Qual J 2009;1:613–6. https://doi.org/10.24084/repqj07.451.10.24084/repqj07.451Search in Google Scholar

Received: 2017-10-17
Accepted: 2020-04-21
Published Online: 2020-07-03
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bmt-2017-0183/pdf
Scroll to top button