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An EEG/EOG-based hybrid brain-neural computer
interaction (BNCI) system to control an exoskeleton

for the paralyzed hand

Abstract: The loss of hand function can result in severe
physical and psychosocial impairment. Thus, compensa-
tion of a lost hand function using assistive robotics that
can be operated in daily life is very desirable. However,
versatile, intuitive, and reliable control of assistive robot-
ics is still an unsolved challenge. Here, we introduce a
novel brain/neural-computer interaction (BNCI) system
that integrates electroencephalography (EEG) and elec-
trooculography (EOG) to improve control of assistive
robotics in daily life environments. To evaluate the appli-
cability and performance of this hybrid approach, five
healthy volunteers (HV) (four men, average age 26.5+3.8
years) and a 34-year-old patient with complete finger
paralysis due to a brachial plexus injury (BPI) used EEG
(condition 1) and EEG/EOG (condition 2) to control grasp-
ing motions of a hand exoskeleton. All participants were
able to control the BNCI system (BNCI control perfor-
mance HV: 70.24+16.71%, BPI: 65.93+24.27%), but inclu-
sion of EOG significantly improved performance across all
participants (HV: 80.65+11.28, BPI: 76.03+18.32%). This
suggests that hybrid BNCI systems can achieve substan-
tially better control over assistive devices, e.g., a hand
exoskeleton, than systems using brain signals alone and
thus may increase applicability of brain-controlled assis-
tive devices in daily life environments.
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Introduction

While there is major progress in the development of assis-
tive devices built for instance to compensate for a lost
or paralyzed limb, for example, lightweight and versa-
tile prostheses or exoskeletons [3, 33] (Figure 1A), intui-
tive and reliable control of such bio-robotic devices is an
enormous challenge. Most available bio-robotic devices
use electromyography (EMG), as muscle activity-related
EMG activity is well assessable, and EMG control can be
quickly learned [16]. While many examples demonstrate
the versatility of such EMG control, e.g., to control arm
prostheses, exoskeletons [11, 25], or robotic legs [10] and
wheelchairs [6], EMG control depends on the availability
of sufficient muscle activity often compromised or absent
in certain patient populations, e.g., in amputees, stroke
survivors, or individuals suffering from severe spinal
cord or brachial plexus injuries (BPI). Also, tremor and
muscle fatigue can substantially reduce applicability and
reliability of EMG control [14, 26]. The development of
brain-machine interfaces (BMI) that translate electric or
metabolic brain activity into control signals of machines
or robots promised to overcome these limitations and
dependence of muscle activity [7, 17-19, 23, 24, 29] but is
associated with other challenges far from being mastered
yet [31]. While implantation of invasive BMI systems led
to impressive results, e.g., enabling a quadriplegic patient
to drink a cup of coffee [5], the risk of the necessary sur-
gical procedures and instability of decoding performance
are still to be evaluated in larger clinical trials. Also, many
patients refuse surgical procedures, and the cost-benefit
ratio often depends on the patients’ individual situation
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Figure1 (A) Lightweight and versatile hand exoskeleton allowing for grasping motions developed by The BioRobotics Institute, Scuola

Superiore di Studi Universitari e Perfezionamento Sant’Anna, Pisa, Italy
interaction (BNCI) system setup. (C) Scheme of a BNCI control loop.

[4]. Therefore, noninvasive BMI technology might repre-
sent a possible alternative but does not reach high reli-
ability and is susceptible to signal artifacts, particularly
when pursued in daily life environments. Furthermore,
brain activity, e.g., recorded by electroencephalography
(EEG), is highly nonstationary [13] requiring frequent
recalibration that interferes with fluent, self-paced (asyn-
chronous) control. Systems that combine or fuse different
input signals to control computers or external devices
were recently conceptualized as hybrid BMI [20] or hybrid
brain/neural-computer interaction (BNCI) systems [8] and
are currently broadly investigated [28].

As most neurological disorders or trauma leading to
paralysis leave the ability to move the eyes intact, e.g.,
spinal cord injuries or BPI, fusion of biosignals related to
the movement of the eyes and noninvasive recordings of
brain activity were recently suggested [27]. Such hybrid
BNCI system combining electrooculography (EOG) and
EEG (Figure 1B and C) promises to increase applicability
and reliability of assistive technology, e.g., to control a
hand exoskeleton [2] (Figure 1A). Here we introduce such
a system and provide proof-of-principle by evaluating its
applicability and performance in healthy volunteers and
an individual with complete finger paralysis due to a BPI.
Upon a visual signal (cue), participants were instructed
to either look at their hand, imaging grasping motions
or to relax without any intention to grasp. The intention
to grasp (i.e., motor intention) was inferred by detection
of motor imagery related modulations of EEG sensorimo-
tor rhythm (SMR, 8-15 Hz) quantified as event-related

[25]. (B) Illustration of a hybrid EEG/EOG brain/neural-computer

desynchronization and synchronization (ERD/ERS) [22]
and became translated into grasping motions of the exo-
skeleton. In a second condition, false positive detection of
motor intention could be interrupted by full left or right
eye movements. While previous BNCI studies focused on
EEG/EMG fusion [12], this is the first study that investi-
gated the applicability and performance of an EEG/EOG
approach in a patient with complete finger paralysis who
controlled grasping motions of a hand exoskeleton.

Materials and methods
Participants

Five healthy BMI-naive volunteers (HV) (four men, age 26.5%+3.8
years) and a 34-year old male patient with complete, flaccid hand
paralysis who suffered a left-sided traumatic BPI were recruited at
the University Hospital of Tiibingen. Healthy participants had to be
aged between 18 and 65 years, right-handed, with no known medical
conditions, and free of medication. Before the experiment, all par-
ticipants gave written informed consent approved by the University
of Tiibingen Ethics Board (401/2012B01). All healthy volunteers were
right-handed as assessed by the Edinburgh Handedness Inventory
[21], had no physical or neurological symptoms or past history of neu-
rological or psychiatric diseases, and did not take any medication on
a regular basis. The 34-year old patient had a traumatic BPI acquired
in a motorcycle accident 10 years before admission to the study. The
accident resulted in an incomplete root avulsion affecting C5-Thl
on the left side. According to the Medical Research Council scale
for muscle strength [15], the patient achieved the following scores
in arm and hand function (O=no motion and no palpable muscle
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contraction, 1=no motion but palpable muscle contraction, 2=move-
ment is possible but not against gravity, 3=active movement against
gravity, 4=active movement against gravity and resistance, 5=muscle
contracts normally against full resistance): finger extension, 0; finger
flexion, 1; elbow extension, 2; elbow flexion, 2; shoulder abduction,
1-2; and shoulder internal rotation, 2. While the patient had no sensi-
bility in the fingers and a hyposensitivity below the elbow, the outer
side of the upper arm was hypersensitive for tactile stimulation. Due
to cosmetic reasons, the patient preferred to place his hand into the
pocket of his jacket and avoided to wear an arm sling in his daily life.

Biosignal recordings and experimental setup

For BNCI control, EEG was recorded from seven sites (F3, T3, C3,
P3, CZ, GRND, and REF) using a wireless 32-channel EEG system
(MOVE®, BrainProducts GmbH, Gilching, Bayern, Germany). EEG
was sampled at 200 Hz and bandpass filtered between 0.4 Hz and 70
Hz. A lightweight and robust hand exoskeleton was used allowing for
grasping motions of the hand. The exoskeleton was linked to a BNCI
system using a custom version of BCI2000, a multipurpose standard
BCI platform (www.bci2000.0rg), integrating different biosignals and
translating them into control signals of the exoskeleton (Figure 1C).
All participants used the BNCI system under two conditions (condi-
tion 1/condition 2). Each condition consisted of three runs with 20
trials in each run (resulting in a total of 60 trials per condition). At
the beginning of the study, electric brain activity related to 20 exter-
nally paced imagined grasping movements was evaluated to iden-
tify the frequency and amplitude of SMR modulation in preparation
and execution of motor imagery (calibration run). Then, EEG was
recorded for 18 s at rest to calculate the baseline amplitude and vari-
ance of SMR in the absence of any motion or initiation of movement.
Inability to modulate SMR would result in exclusion from the study.
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Time-frequency representations (TFRs) were computed for each par-
ticipant to ensure that the BNCI is controlled by EEG and not EMG
or facial muscles (Figure 2). SMR-ERD was computed for the EEG
channel closest to the motor cortex (according to the international
1020 convention: HV, C3 controlling right hand motions; BPI, C4
controlling left hand motions) using the power method described
by Pfurtscheller and Aranibar [22]. Based on the SMR amplitude and
variance at rest, a threshold for detection of motor intention during
continuous direct brain control was defined. As threshold, a value at
two standard deviations of SMR variance at rest was used.

Calibration and testing of the BNCI system

For BNCI control, EEG data were preprocessed using a small Lapla-
cian filter. Computation of SMR-ERD involved the power spectrum
estimation (an autoregressive model of order 16 using the Yule-
Walker algorithm) of the ongoing EEG signal associated with the
specified SMR frequency range within sample blocks of 100 ms. Each
trial consisted of 50 sample blocks. Changes of SMR after the first
seven sample blocks that related to the intention to move the fingers
were translated into passive hand closing motions driven by a motor-
ized exoskeleton. A full closing motion was reached when SMR-ERD
was detected across all 43 sample blocks. The onset of each trial dur-
ing which participants should imagine hand motions (task) or relax
(rest) was indicated by a visual signal presented on a computer dis-
play. Each trial (task and rest) had a duration of 5 s and was followed
by an inter-trial interval (ITI). The length of ITIs was random between
4 and 6 s. Hand motions driven by the exoskeleton could be elicited
during the trials throughout all three runs lasting in average 5.5 min.
The exoskeleton moved back to a neutral hand position at the end of
each trial. Resetting required 1s independent of the actual position of
the exoskeleton. BNCI control was overridden during that time, and

5s ERD

Figure 2 Time-frequency representation (TFR) of rest trials (left panel) and task trials (right panel) in a representative participant. Senso-
rimotor rhythm (SMR, 8-15 Hz) event-related desynchronization (ERD, dark blue) was detectable shortly after onset of the task (0 s) and
translated into grasping motions of a hand exoskeleton. Grasping motions were initiated if the ERD detection threshold was exceeded
within a sample block of 100 ms. A full closing motions was reached if ERD were detected in 43 successive sample blocks.
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these automatic movements were not included in the calculation of
BNCI control performance.

In healthy volunteers, muscle activity was monitored using EMG
from finger and arm flexors and extensors (m. brachioradialis, m.
flexor carpi ulnaris, m. biceps brachii, and m. triceps brachii) of both
arms to exclude overt motions during the task. Trials in which EMG
activity during imagery exceeded EMG activity recorded during rest
were excluded from further analysis. The number of trials that had to
be discarded was automatically added to each run, so that the total
number of valid trials across runs and conditions was identical. EOG
electrodes were placed according to the standard EOG placements at
the right outer canthus and the left outer canthus resulting in posi-
tive signals during left eye gaze and negative signals during right eye
gaze. At the beginning of the session, a baseline EOG value was cal-
culated while the participant was fixating on a cross. As a next step,
an EOG detection threshold for (full) left and right eye movements
was assessed. Participants were instructed to move the eyes either to
the left or to the right. The instruction to move the eyes was indicated
by left and right arrows displayed 15 times each in a random order.
After calculating the average maximum EOG values across all trials
for both eye movement directions, an EOG detection threshold was
set at two standard deviations below this value.

After three runs under condition 1 (BNCI control by EEG only),
all participants rested for approximately 10 min before BNCI control
under condition 2 (BNCI control with EEG/EOG) was continued. Dur-
ing condition 2, unintended grasping motions of the exoskeleton
could be interrupted with EOG signals related to left or right eye
movements and resulted in a reset of the hand exoskeleton into neu-
tral position. For the time of the reset (1 s), active BNCI control was
blocked and movements excluded from quantification of BNCI con-
trol performance.

Offline data analysis

The performance of BNCI control was quantified as the average per-
centage of time the exoskeleton was moving during each trial for
which the instruction was given to move the exoskeleton and trials
in which it should not be moved (false positive rate). For all outcome
measures, assumption of a normal distribution (Shapiro-Wilk test of
normality) was tested. After performing a Levene test for homoge-
neity of variances, a two-way repeated-measures ANOVA with type
III sum of squares and factors “group” (HV/BPI) as between-subject
factor and “condition” (condition1/condition2) as within-subject
variable was performed. To compare performance of BNCI control
between HV and BPI, as well as between the two conditions, post hoc
t-tests were used.

Results

In four participants and the BPI patient, 11 Hz was iden-
tified as the best frequency to detect motor imagery
related modulation of SMR-ERD. One participant showed
best motor imagery-related SMR modulation at 9 Hz. In
the BNCI calibration runs across participants, SMR-ERD
reached maximum peaks of 42.1+5.3% relative to the
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mean signal power during rest as assessed during the
calibration runs and had an average value of 26.2+4.3%.
The level of significance between the signal power at rest
and signal power during task across participants was
p=0.0106.

Across all participants, an average 8.4%3.6% of the
trials had to be discarded due to EMG activity. For con-
dition 1, evaluation of percent of time the exoskeleton
was moving during each trial resulted in 75.45+16.99%
in HV and 61.78+22.17% in BPI. During the trials in which
no motions should be elicited, the exoskeleton moved
for 32.57+£21.23% (HV) and 29.93+25.77% (BPI), respec-
tively, of the total time (Figure 3, Table 1). Accordingly,
HV achieved an overall BNCI control performance of
70.24+16.71%, while BPI achieved 65.93+24.27% during
condition 1 (Table 1).

During condition 2, the percent of time the exoskeleton
was moving during trials reached 76.38+10.67% in HV and
63.48+16.88% in BPI, while the exoskeleton moved during
14.50+10.0% (HV) and 11.43%£8.5% (BPI) of the trials in
which the exoskeleton should not be moved (Figure 4). The
EOG detection threshold was exceeded in 42.21+21.66%
(HV) and 35.38+41.37% (BPI) of these trials (Table 2). This
corresponded to a BNCI control performance of 80.65+11.28
(HV) and 76.03+18.32% (BPI), respectively. During condi-
tion 2, comparison of BNCI control performance between
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Figure 3 Percent of time the exoskeleton was moving during trials
and inter-trial intervals in healthy volunteers (HV, black circles)

and in the individual with severe brachial plexus injury (BPI, red
crosses) under condition 1 (EEG control only) and condition 2 (hybrid
EEG/EOG control).
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Table1 Percent of time the exoskeleton was moving during each
trial.

Participant Movement time Movement time BNCI control
during taskin% during restin% performance in%
Condition 1
Average 75.45+16.99 32.57+21.23 70.24+16.71
1 70.48+26.38 53.24+27.29 55.15+29.10
2 72.89+25.57 28.37+34.54 72.01+31.90
3 85.80+21.11 59.58+30.32 57.26+34.95
4 77.04+20.09 20.49+28.37 78.86+26.31
5 66.26+25.69 11.34+23.27 81.66+26.04
BPI 61.78+22.17 29.93+25.77 65.93+24.27
Condition 2
Average 76.38+10.67 14.5+10.00 80.65+11.28
1 76.05+24.87 7.68+8.44 87.80+14.26
2 49.38+13.51 12.78+15.78 77.84+21.73
3 82.24+24.65 11.40+9.59 85.89+13.63
4 86.29+21.71 23.94+25.30 76.74+24.72
5 87.00+22.73 20.06+31.16 79.85+29.59
BPI 63.48+16.88 11.43+8.05 76.03+18.32
Condition 2 (hybrid EEG/EOG control)
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Figure 4 Percent of time the exoskeleton was moving during trials
and inter-trial intervals in healthy volunteers (HV, black circles)

and in the individual with severe brachial plexus injury (BPI, red
crosses) under condition 1 (EEG control only) and condition 2 (hybrid
EEG/EOG control).

the conditions (EEG, EEG/EOG) and groups (HV, BPI) using
a repeated-measures ANOVA (rmANOVA) revealed a main
effect for “condition” (F(1, 32)=7.4724, p<0.01, #*) but not
for “group” (F(1, 32)=0.0592, p=0.809) and no interaction
between the factors (F(1, 32)=0.0598, p=0.808). A post
hoc t-test indicated no difference in BNCI performance
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Table 2 Percent of task trials interrupted by EOG.

Participant % of task trials interrupted by EOG
Average 42.21+421.66
1 63.83+31.35
2 27.88+3.52
3 54.14+24.39
4 76.95+17.14
5 38.52+17.66
BPI 35.38+41.37

between HV and BPI under condition 1, while performance
improved significantly in both HV and BPI, between condi-
tion 1 and condition 2 (p<0.05, *). Also, there was no dif-
ference in BNCI performance between HV and BPI under
condition 2, indicating that EOG improved BNCI control
performance similarly in HV and the paralyzed partici-
pant. After the experiment, all participants reported that
they experienced the exoskeleton’s movement contingent
upon their imagination of grasping motions and that
control under condition 1 (EEG only) was more difficult
and exhausting compared to condition 2 (hybrid EEG/EOG
control). They further stated that they felt more in control
of the device under condition 2 with the system promptly
responding to their eye’s movement and that they did not
experience any changes in control within sequential runs
in either condition.

Discussion

We have introduced a novel hybrid BNCI system merging
EEG and EOG signals to control a hand exoskeleton and
tested this system in a group of five healthy volunteers
and a patient with complete flaccid finger paralysis after
severe traumatic BPI. Following calibration, participants
used motor imagery of hand grasping motions to control
the hand exoskeleton using EEG only (condition 1). While
all participants were able to control the BNCI system in a
semi-autonomous control mode in which visual cues were
presented to evaluate the degree of control at an average
performance of 70.24+16.71% (HV) and 65.93+24.27%
(BPI), inclusion of EOG control significantly improved
performance to 80.65+11.28 (HV) and 76.03+18.32% (BPI),
respectively (Figure 5).

Whereas synchronous, externally cued EEG-based BNCI
control with repeated re-calibration of the system is associ-
ated with frequent interruptions of control (e.g., every 5 or 10
s), such operation mode can provide significantly higher per-
formances ranging up to 80-90% [32] per trial in average but
limits the system’s practicality in daily life where continuous
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Figure 5 Performance of hybrid BNCI control of healthy volunteers
(HV) and the patient with complete finger paralysis due to a severe
brachial plexus injury (BPI) in each trial. Trials were averaged across
HV participants. Fusion of EEG/EOG signals significantly improved
BNCI control performance in HV and BPI.

control during an extended period of time (in the range of
a few minutes) is desirable. Therefore, a semi-autonomous
paradigm was used in which participants controlled the BNCI
system without any re-calibration for approximately 10 min
in total, while a visual cue was presented to indicate when
to perform a grasping motion. To assess the performance of
the system in fully asynchronous mode, a real grasping task
without a visual cue needs to be performed. Currently, there
is no BMI or BNCI system available reaching 100% classifica-
tion accuracy or control performance of a robotic device or
hand exoskeleton. This does not only limit the applicability
of these systems but becomes a serious safety issue when
unintended commands or movements are performed. Due to
the susceptibility of EMG to fatigue, our findings suggest that
inclusion of a biosignal providing high reliability and acces-
sibility such as EOG might improve assistive systems in daily
life environments. Future research is necessary to show if
such novel approach can indeed improve control of assistive
devices in daily life environments. It is for instance unclear
whether the EOG error correction mechanism has a negative
impact on the ability to manipulate objects that require large
eye deflections.

While not tested here, additional inclusion of EMG
might further improve the system’s degrees of freedom
and reliability.

While we aimed to provide proof-of-principle that
a patient with complete chronic finger paralysis can
improve control of exoskeleton-driven grasping motions

DE GRUYTER

when using a hybrid EEG/EOG BNCI system as compared
to EEG control only, it was not the aim of this study to eval-
uate possible functional benefits related to the use of this
system. Most likely, only patients with sufficient shoulder
and elbow function, e.g., after high cervical spinal cord
injury, will benefit from such device.

To compensate for the susceptibility to fatigue or
decreasing EMG signal quality over time, adaptive weight-
ing of fused biosignals might further enhance daily-life
applicability. While the ability to modulate SMR was com-
parable between the severely paralyzed BPI patient and
healthy volunteers, individuals with brain lesions, e.g.,
following stroke or a traumatic brain injury, in which this
ability is compromised might not have achieved such good
control. It was shown, however, that the majority of chronic
stroke patients with severe paralysis could learn to modulate
ipsilesional SMR [1]. This suggests that the introduced EEG/
EOG BNCI system might be also applicable in these patient
populations, e.g., in the context of BMI-related neuroreha-
bilition that strives to increase ipsilesional brain activity
by providing closed-loop sensory feedback [30]. Alterna-
tively, in stroke patients in which voluntary modulation of
ipsilesional brain activity is insufficient for control, signals
from the contralesional, unaffected motor areas might be
used [9]. Besides restoring the patients’ ability for grasping
motions using a hand exoskeleton, it is unclear, though,
whether such application would lead to motor recovery.

Conclusion

Hybrid BNCI systems that fuse biosignals from different
sources, e.g., EEG and EOG, can lead to better perfor-
mance in control of a hand exoskeleton than systems that
use brain signals alone. Future studies should investigate
to what extend such hybrid BNCIs can increase applicabil-
ity of assistive devices in real life scenarios and identify
the main factors influencing user acceptance.
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