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An EEG/EOG-based hybrid brain-neural computer 
interaction (BNCI) system to control an exoskeleton 
for the paralyzed hand

Abstract: The loss of hand function can result in severe 
physical and psychosocial impairment. Thus, compensa-
tion of a lost hand function using assistive robotics that 
can be operated in daily life is very desirable. However, 
versatile, intuitive, and reliable control of assistive robot-
ics is still an unsolved challenge. Here, we introduce a 
novel brain/neural-computer interaction (BNCI) system 
that integrates electroencephalography (EEG) and elec-
trooculography (EOG) to improve control of assistive 
robotics in daily life environments. To evaluate the appli-
cability and performance of this hybrid approach, five 
healthy volunteers (HV) (four men, average age 26.5 ± 3.8 
years) and a 34-year-old patient with complete finger 
paralysis due to a brachial plexus injury (BPI) used EEG 
(condition 1) and EEG/EOG (condition 2) to control grasp-
ing motions of a hand exoskeleton. All participants were 
able to control the BNCI system (BNCI control perfor-
mance HV: 70.24 ± 16.71%, BPI: 65.93 ± 24.27%), but inclu-
sion of EOG significantly improved performance across all 
participants (HV: 80.65 ± 11.28, BPI: 76.03 ± 18.32%). This 
suggests that hybrid BNCI systems can achieve substan-
tially better control over assistive devices, e.g., a hand 
exoskeleton, than systems using brain signals alone and 
thus may increase applicability of brain-controlled assis-
tive devices in daily life environments.
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Introduction
While there is major progress in the development of assis-
tive devices built for instance to compensate for a lost 
or paralyzed limb, for example, lightweight and versa-
tile prostheses or exoskeletons [3, 33] (Figure 1A), intui-
tive and reliable control of such bio-robotic devices is an 
enormous challenge. Most available bio-robotic devices 
use electromyography (EMG), as muscle activity-related 
EMG activity is well assessable, and EMG control can be 
quickly learned [16]. While many examples demonstrate 
the versatility of such EMG control, e.g., to control arm 
prostheses, exoskeletons [11, 25], or robotic legs [10] and 
wheelchairs [6], EMG control depends on the availability 
of sufficient muscle activity often compromised or absent 
in certain patient populations, e.g., in amputees, stroke 
survivors, or individuals suffering from severe spinal 
cord or brachial plexus injuries (BPI). Also, tremor and 
muscle fatigue can substantially reduce applicability and 
reliability of EMG control [14, 26]. The development of 
brain-machine interfaces (BMI) that translate electric or 
metabolic brain activity into control signals of machines 
or robots promised to overcome these limitations and 
dependence of muscle activity [7, 17–19, 23, 24, 29] but is 
associated with other challenges far from being mastered 
yet [31]. While implantation of invasive BMI systems led 
to impressive results, e.g., enabling a quadriplegic patient 
to drink a cup of coffee [5], the risk of the necessary sur-
gical procedures and instability of decoding performance 
are still to be evaluated in larger clinical trials. Also, many 
patients refuse surgical procedures, and the cost-benefit 
ratio often depends on the patients’ individual situation 
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[4]. Therefore, noninvasive BMI technology might repre-
sent a possible alternative but does not reach high reli-
ability and is susceptible to signal artifacts, particularly 
when pursued in daily life environments. Furthermore, 
brain activity, e.g., recorded by electroencephalography 
(EEG), is highly nonstationary [13] requiring frequent 
recalibration that interferes with fluent, self-paced (asyn-
chronous) control. Systems that combine or fuse different 
input signals to control computers or external devices 
were recently conceptualized as hybrid BMI [20] or hybrid 
brain/neural-computer interaction (BNCI) systems [8] and 
are currently broadly investigated [28].

As most neurological disorders or trauma leading to 
paralysis leave the ability to move the eyes intact, e.g., 
spinal cord injuries or BPI, fusion of biosignals related to 
the movement of the eyes and noninvasive recordings of 
brain activity were recently suggested [27]. Such hybrid 
BNCI system combining electrooculography (EOG) and 
EEG (Figure 1B and C) promises to increase applicability 
and reliability of assistive technology, e.g., to control a 
hand exoskeleton [2] (Figure 1A). Here we introduce such 
a system and provide proof-of-principle by evaluating its 
applicability and performance in healthy volunteers and 
an individual with complete finger paralysis due to a BPI. 
Upon a visual signal (cue), participants were instructed 
to either look at their hand, imaging grasping motions 
or to relax without any intention to grasp. The intention 
to grasp (i.e., motor intention) was inferred by detection 
of motor imagery related modulations of EEG sensorimo-
tor rhythm (SMR, 8–15 Hz) quantified as event-related 

desynchronization and synchronization (ERD/ERS) [22] 
and became translated into grasping motions of the exo-
skeleton. In a second condition, false positive detection of 
motor intention could be interrupted by full left or right 
eye movements. While previous BNCI studies focused on 
EEG/EMG fusion [12], this is the first study that investi-
gated the applicability and performance of an EEG/EOG 
approach in a patient with complete finger paralysis who 
controlled grasping motions of a hand exoskeleton.

Materials and methods
Participants

Five healthy BMI-naïve volunteers (HV) (four men, age 26.5 ± 3.8 
years) and a 34-year old male patient with complete, flaccid hand 
paralysis who suffered a left-sided traumatic BPI were recruited at 
the University Hospital of Tübingen. Healthy participants had to be 
aged between 18 and 65 years, right-handed, with no known medical 
conditions, and free of medication. Before the experiment, all par-
ticipants gave written informed consent approved by the University 
of Tübingen Ethics Board (401/2012B01). All healthy volunteers were 
right-handed as assessed by the Edinburgh Handedness Inventory 
[21], had no physical or neurological symptoms or past history of neu-
rological or psychiatric diseases, and did not take any medication on 
a regular basis. The 34-year old patient had a traumatic BPI acquired 
in a motorcycle accident 10 years before admission to the study. The 
accident resulted in an incomplete root avulsion affecting C5–Th1 
on the left side. According to the Medical Research Council scale 
for muscle strength [15], the patient achieved the following scores 
in arm and hand function (0 = no motion and no palpable muscle 
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Figure 1 (A) Lightweight and versatile hand exoskeleton allowing for grasping motions developed by The BioRobotics Institute, Scuola 
Superiore di Studi Universitari e Perfezionamento Sant’Anna, Pisa, Italy [25]. (B) Illustration of a hybrid EEG/EOG brain/neural-computer 
interaction (BNCI) system setup. (C) Scheme of a BNCI control loop.



S.R. Soekadar et al.: EEG/EOG-based hybrid BNCI systems      201

contraction, 1 = no motion but palpable muscle contraction, 2 = move-
ment is possible but not against gravity, 3 = active movement against 
gravity, 4 = active movement against gravity and resistance, 5 = muscle 
contracts normally against full resistance): finger extension, 0; finger 
flexion, 1; elbow extension, 2; elbow flexion, 2; shoulder abduction, 
1–2; and shoulder internal rotation, 2. While the patient had no sensi-
bility in the fingers and a hyposensitivity below the elbow, the outer 
side of the upper arm was hypersensitive for tactile stimulation. Due 
to cosmetic reasons, the patient preferred to place his hand into the 
pocket of his jacket and avoided to wear an arm sling in his daily life.

Biosignal recordings and experimental setup

For BNCI control, EEG was recorded from seven sites (F3, T3, C3, 
P3, CZ, GRND, and REF) using a wireless 32-channel EEG system 
(MOVE®, BrainProducts GmbH, Gilching, Bayern, Germany). EEG 
was sampled at 200 Hz and bandpass filtered between 0.4 Hz and 70 
Hz. A lightweight and robust hand exoskeleton was used allowing for 
grasping motions of the hand. The exoskeleton was linked to a BNCI 
system using a custom version of BCI2000, a multipurpose standard 
BCI platform (www.bci2000.org), integrating different biosignals and 
translating them into control signals of the exoskeleton (Figure 1C). 
All participants used the BNCI system under two conditions (condi-
tion 1/condition 2). Each condition consisted of three runs with 20 
trials in each run (resulting in a total of 60 trials per condition). At 
the beginning of the study, electric brain activity related to 20 exter-
nally paced imagined grasping movements was evaluated to iden-
tify the frequency and amplitude of SMR modulation in preparation 
and execution of motor imagery (calibration run). Then, EEG was 
recorded for 18 s at rest to calculate the baseline amplitude and vari-
ance of SMR in the absence of any motion or initiation of movement. 
Inability to modulate SMR would result in exclusion from the study. 

Time-frequency representations (TFRs) were computed for each par-
ticipant to ensure that the BNCI is controlled by EEG and not EMG 
or facial muscles (Figure 2). SMR-ERD was computed for the EEG 
channel closest to the motor cortex (according to the international 
10-20 convention: HV, C3 controlling right hand motions; BPI, C4 
controlling left hand motions) using the power method described 
by Pfurtscheller and Aranibar [22]. Based on the SMR amplitude and 
variance at rest, a threshold for detection of motor intention during 
continuous direct brain control was defined. As threshold, a value at 
two standard deviations of SMR variance at rest was used.

Calibration and testing of the BNCI system

For BNCI control, EEG data were preprocessed using a small Lapla-
cian filter. Computation of SMR-ERD involved the power spectrum 
estimation (an autoregressive model of order 16 using the Yule-
Walker algorithm) of the ongoing EEG signal associated with the 
specified SMR frequency range within sample blocks of 100 ms. Each 
trial consisted of 50 sample blocks. Changes of SMR after the first 
seven sample blocks that related to the intention to move the fingers 
were translated into passive hand closing motions driven by a motor-
ized exoskeleton. A full closing motion was reached when SMR-ERD 
was detected across all 43 sample blocks. The onset of each trial dur-
ing which participants should imagine hand motions (task) or relax 
(rest) was indicated by a visual signal presented on a computer dis-
play. Each trial (task and rest) had a duration of 5 s and was followed 
by an inter-trial interval (ITI). The length of ITIs was random between 
4 and 6 s. Hand motions driven by the exoskeleton could be elicited 
during the trials throughout all three runs lasting in average 5.5 min. 
The exoskeleton moved back to a neutral hand position at the end of 
each trial. Resetting required 1 s independent of the actual position of 
the exoskeleton. BNCI control was overridden during that time, and 

Figure 2 Time-frequency representation (TFR) of rest trials (left panel) and task trials (right panel) in a representative participant. Senso-
rimotor rhythm (SMR, 8–15 Hz) event-related desynchronization (ERD, dark blue) was detectable shortly after onset of the task (0 s) and 
translated into grasping motions of a hand exoskeleton. Grasping motions were initiated if the ERD detection threshold was exceeded 
within a sample block of 100 ms. A full closing motions was reached if ERD were detected in 43 successive sample blocks.
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these automatic movements were not included in the calculation of 
BNCI control performance.

In healthy volunteers, muscle activity was monitored using EMG 
from finger and arm flexors and extensors (m. brachioradialis, m. 
flexor carpi ulnaris, m. biceps brachii, and m. triceps brachii) of both 
arms to exclude overt motions during the task. Trials in which EMG 
activity during imagery exceeded EMG activity recorded during rest 
were excluded from further analysis. The number of trials that had to 
be discarded was automatically added to each run, so that the total 
number of valid trials across runs and conditions was identical. EOG 
electrodes were placed according to the standard EOG placements at 
the right outer canthus and the left outer canthus resulting in posi-
tive signals during left eye gaze and negative signals during right eye 
gaze. At the beginning of the session, a baseline EOG value was cal-
culated while the participant was fixating on a cross. As a next step, 
an EOG detection threshold for (full) left and right eye movements 
was assessed. Participants were instructed to move the eyes either to 
the left or to the right. The instruction to move the eyes was indicated 
by left and right arrows displayed 15 times each in a random order. 
After calculating the average maximum EOG values across all trials 
for both eye movement directions, an EOG detection threshold was 
set at two standard deviations below this value.

After three runs under condition 1 (BNCI control by EEG only), 
all participants rested for approximately 10 min before BNCI control 
under condition 2 (BNCI control with EEG/EOG) was continued. Dur-
ing condition 2, unintended grasping motions of the exoskeleton 
could be interrupted with EOG signals related to left or right eye 
movements and resulted in a reset of the hand exoskeleton into neu-
tral position. For the time of the reset (1 s), active BNCI control was 
blocked and movements excluded from quantification of BNCI con-
trol performance.

Offline data analysis

The performance of BNCI control was quantified as the average per-
centage of time the exoskeleton was moving during each trial for 
which the instruction was given to move the exoskeleton and trials 
in which it should not be moved (false positive rate). For all outcome 
measures, assumption of a normal distribution (Shapiro-Wilk test of 
normality) was tested. After performing a Levene test for homoge-
neity of variances, a two-way repeated-measures ANOVA with type 
III sum of squares and factors “group” (HV/BPI) as between-subject 
factor and “condition” (condition1/condition2) as within-subject 
variable was performed. To compare performance of BNCI control 
between HV and BPI, as well as between the two conditions, post hoc 
t-tests were used.

Results
In four participants and the BPI patient, 11 Hz was iden-
tified as the best frequency to detect motor imagery 
related modulation of SMR-ERD. One participant showed 
best motor imagery-related SMR modulation at 9 Hz. In 
the BNCI calibration runs across participants, SMR-ERD 
reached maximum peaks of 42.1 ± 5.3% relative to the 
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Figure 3 Percent of time the exoskeleton was moving during trials 
and inter-trial intervals in healthy volunteers (HV, black circles) 
and in the individual with severe brachial plexus injury (BPI, red 
crosses) under condition 1 (EEG control only) and condition 2 (hybrid 
EEG/EOG control).

mean signal power during rest as assessed during the 
calibration runs and had an average value of 26.2 ± 4.3%. 
The level of significance between the signal power at rest 
and signal power during task across participants was 
p = 0.0106.

Across all participants, an average 8.4 ± 3.6% of the 
trials had to be discarded due to EMG activity. For con-
dition 1, evaluation of percent of time the exoskeleton 
was moving during each trial resulted in 75.45 ± 16.99% 
in HV and 61.78 ± 22.17% in BPI. During the trials in which 
no motions should be elicited, the exoskeleton moved 
for 32.57 ± 21.23% (HV) and 29.93 ± 25.77% (BPI), respec-
tively, of the total time (Figure 3, Table 1). Accordingly, 
HV achieved an overall BNCI control performance of 
70.24 ± 16.71%, while BPI achieved 65.93 ± 24.27% during 
condition 1 (Table 1).

During condition 2, the percent of time the exoskeleton 
was moving during trials reached 76.38 ± 10.67% in HV and 
63.48 ± 16.88% in BPI, while the exoskeleton moved during 
14.50 ± 10.0% (HV) and 11.43 ± 8.5% (BPI) of the trials in 
which the exoskeleton should not be moved (Figure 4). The 
EOG detection threshold was exceeded in 42.21 ± 21.66% 
(HV) and 35.38 ± 41.37% (BPI) of these trials (Table 2). This 
corresponded to a BNCI control performance of 80.65 ± 11.28 
(HV) and 76.03 ± 18.32% (BPI), respectively. During condi-
tion 2, comparison of BNCI control performance between 
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the conditions (EEG, EEG/EOG) and groups (HV, BPI) using 
a repeated-measures ANOVA (rmANOVA) revealed a main 
effect for “condition” (F(1, 32) = 7.4724, p < 0.01, **) but not 
for “group” (F(1, 32) = 0.0592, p = 0.809) and no interaction 
between the factors (F(1, 32) = 0.0598, p = 0.808). A post 
hoc t-test indicated no difference in BNCI performance 

Table 1 Percent of time the exoskeleton was moving during each 
trial.

Participant  Movement time 
during task in%

  Movement time 
during rest in%

  BNCI control 
performance in%

Condition 1
 Average   75.45+16.99  32.57+21.23  70.24+16.71
 1   70.48+26.38  53.24+27.29  55.15+29.10
 2   72.89+25.57  28.37+34.54  72.01+31.90
 3   85.80+21.11  59.58+30.32  57.26+34.95
 4   77.04+20.09  20.49+28.37  78.86+26.31
 5   66.26+25.69  11.34+23.27  81.66+26.04
 BPI   61.78+22.17  29.93+25.77  65.93+24.27
Condition 2
 Average   76.38+10.67  14.5+10.00  80.65+11.28
 1   76.05+24.87  7.68+8.44  87.80+14.26
 2   49.38+13.51  12.78+15.78  77.84+21.73
 3   82.24+24.65  11.40+9.59  85.89+13.63
 4   86.29+21.71  23.94+25.30  76.74+24.72
 5   87.00+22.73  20.06+31.16  79.85+29.59
 BPI   63.48+16.88  11.43+8.05  76.03+18.32
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Figure 4 Percent of time the exoskeleton was moving during trials 
and inter-trial intervals in healthy volunteers (HV, black circles) 
and in the individual with severe brachial plexus injury (BPI, red 
crosses) under condition 1 (EEG control only) and condition 2 (hybrid 
EEG/EOG control).

Table 2 Percent of task trials interrupted by EOG.

Participant  % of task trials interrupted by EOG

Average   42.21+21.66
1   63.83+31.35
2   27.88+3.52
3   54.14+24.39
4   76.95+17.14
5   38.52+17.66
BPI   35.38+41.37

between HV and BPI under condition 1, while performance 
improved significantly in both HV and BPI, between condi-
tion 1 and condition 2 (p < 0.05, *). Also, there was no dif-
ference in BNCI performance between HV and BPI under 
condition 2, indicating that EOG improved BNCI control 
performance similarly in HV and the paralyzed partici-
pant. After the experiment, all participants reported that 
they experienced the exoskeleton’s movement contingent 
upon their imagination of grasping motions and that 
control under condition 1 (EEG only) was more difficult 
and exhausting compared to condition 2 (hybrid EEG/EOG 
control). They further stated that they felt more in control 
of the device under condition 2 with the system promptly 
responding to their eye’s movement and that they did not 
experience any changes in control within sequential runs 
in either condition.

Discussion
We have introduced a novel hybrid BNCI system merging 
EEG and EOG signals to control a hand exoskeleton and 
tested this system in a group of five healthy volunteers 
and a patient with complete flaccid finger paralysis after 
severe traumatic BPI. Following calibration, participants 
used motor imagery of hand grasping motions to control 
the hand exoskeleton using EEG only (condition 1). While 
all participants were able to control the BNCI system in a 
semi-autonomous control mode in which visual cues were 
presented to evaluate the degree of control at an average 
performance of 70.24 ± 16.71% (HV) and 65.93 ± 24.27% 
(BPI), inclusion of EOG control significantly improved 
performance to 80.65 ± 11.28 (HV) and 76.03 ± 18.32% (BPI), 
respectively (Figure 5).

Whereas synchronous, externally cued EEG-based BNCI 
control with repeated re-calibration of the system is associ-
ated with frequent interruptions of control (e.g., every 5 or 10 
s), such operation mode can provide significantly higher per-
formances ranging up to 80–90% [32] per trial in average but 
limits the system’s practicality in daily life where continuous 
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control during an extended period of time (in the range of 
a few minutes) is desirable. Therefore, a semi-autonomous 
paradigm was used in which participants controlled the BNCI 
system without any re-calibration for approximately 10 min 
in total, while a visual cue was presented to indicate when 
to perform a grasping motion. To assess the performance of 
the system in fully asynchronous mode, a real grasping task 
without a visual cue needs to be performed. Currently, there 
is no BMI or BNCI system available reaching 100% classifica-
tion accuracy or control performance of a robotic device or 
hand exoskeleton. This does not only limit the applicability 
of these systems but becomes a serious safety issue when 
unintended commands or movements are performed. Due to 
the susceptibility of EMG to fatigue, our findings suggest that 
inclusion of a biosignal providing high reliability and acces-
sibility such as EOG might improve assistive systems in daily 
life environments. Future research is necessary to show if 
such novel approach can indeed improve control of assistive 
devices in daily life environments. It is for instance unclear 
whether the EOG error correction mechanism has a negative 
impact on the ability to manipulate objects that require large 
eye deflections.

While not tested here, additional inclusion of EMG 
might further improve the system’s degrees of freedom 
and reliability.

While we aimed to provide proof-of-principle that 
a patient with complete chronic finger paralysis can 
improve control of exoskeleton-driven grasping motions 
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Figure 5 Performance of hybrid BNCI control of healthy volunteers 
(HV) and the patient with complete finger paralysis due to a severe 
brachial plexus injury (BPI) in each trial. Trials were averaged across 
HV participants. Fusion of EEG/EOG signals significantly improved 
BNCI control performance in HV and BPI.

when using a hybrid EEG/EOG BNCI system as compared 
to EEG control only, it was not the aim of this study to eval-
uate possible functional benefits related to the use of this 
system. Most likely, only patients with sufficient shoulder 
and elbow function, e.g., after high cervical spinal cord 
injury, will benefit from such device.

To compensate for the susceptibility to fatigue or 
decreasing EMG signal quality over time, adaptive weight-
ing of fused biosignals might further enhance daily-life 
applicability. While the ability to modulate SMR was com-
parable between the severely paralyzed BPI patient and 
healthy volunteers, individuals with brain lesions, e.g., 
following stroke or a traumatic brain injury, in which this 
ability is compromised might not have achieved such good 
control. It was shown, however, that the majority of chronic 
stroke patients with severe paralysis could learn to modulate 
ipsilesional SMR [1]. This suggests that the introduced EEG/
EOG BNCI system might be also applicable in these patient 
populations, e.g., in the context of BMI-related neuroreha-
bilition that strives to increase ipsilesional brain activity 
by providing closed-loop sensory feedback [30]. Alterna-
tively, in stroke patients in which voluntary modulation of 
ipsilesional brain activity is insufficient for control, signals 
from the contralesional, unaffected motor areas might be 
used [9]. Besides restoring the patients’ ability for grasping 
motions using a hand exoskeleton, it is unclear, though, 
whether such application would lead to motor recovery.

Conclusion
Hybrid BNCI systems that fuse biosignals from different 
sources, e.g., EEG and EOG, can lead to better perfor-
mance in control of a hand exoskeleton than systems that 
use brain signals alone. Future studies should investigate 
to what extend such hybrid BNCIs can increase applicabil-
ity of assistive devices in real life scenarios and identify 
the main factors influencing user acceptance.
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