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Fuzzy decision tree to classify complex 
fractionated atrial electrograms

Abstract: Catheter ablation has emerged as an effective 
treatment strategy for atrial fibrillation (AF) in recent 
years. During AF, complex fractionated atrial electrograms 
(CFAE) can be recorded and are known to be a potential 
target for ablation. Automatic algorithms have been devel-
oped to simplify CFAE detection, but they are often based 
on a single descriptor or a set of descriptors in combina-
tion with sharp decision classifiers. However, these meth-
ods do not reflect the progressive transition between CFAE 
classes. The aim of this study was to develop an automatic 
classification algorithm, which combines the information 
of a complete set of descriptors and allows for progressive 
and transparent decisions. We designed a method to auto-
matically analyze CFAE based on a set of descriptors rep-
resenting various aspects, such as shape, amplitude and 
temporal characteristics. A fuzzy decision tree (FDT) was 
trained and evaluated on 429 predefined electrograms. 
CFAE were classified into four subgroups with a correct 
rate of 81±3%. Electrograms with continuous activity were 
detected with a correct rate of 100%. In addition, a per-
centage of certainty is given for each electrogram to enable 
a comprehensive and transparent decision. The proposed 
FDT is able to classify CFAE with respect to their progres-
sive transition and may allow objective and reproducible 
CFAE interpretation for clinical use.
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Introduction

Atrial fibrillation (AF) is the most common cardiac 
arrhythmia, which affects morbidity and mortality [6]. 
AF is therefore a major and growing expense for health 
systems [11]. Catheter ablation has emerged as an effective 
treatment strategy in the last years. Since the discovery 
of foci inside the pulmonary veins (PVs) as a trigger for 
paroxysmal AF in 1998 [12], the technique of pulmonary 
vein isolation (PVI) has been established with acceptable 
success rates [29]. However, clinical outcome of PVI in per-
sistent and long standing persistent AF is poor. This sug-
gests different underlying mechanisms [4, 39, 40] outside 
the PV regions: multiple random propagating wavelets, 
focal electrical discharges or breakthroughs, and local-
ized re-entrant activity with fibrillatory conduction [5]. 
However, differentiation during an electrophysiological 
(EP) study is limited as specific electrogram character-
istics are not known. Ndrepepa et  al. showed that per-
sistent AF presents with shorter cycle lengths and more 
disorganized activity than paroxysmal AF [27]. Areas with 
complex fractionated atrial electrograms (CFAE) have 
been reported to potentially represent AF substrate sites 
[1, 24]. Nademanee defined CFAE as fractionated electro-
grams composed of two deflections or more, and/or as the 
perturbation of the baseline with continuous deflection of 
a prolonged activation complex and a median cycle length 
of  < 120 ms over a 10 s recording period [24]. This author 
was the first to address CFAE as a target for catheter abla-
tion with respectable success rates [24], but their results 
have not been reproduced by other groups [32, 33]. At 
present, the definitions used for CFAE have been variable 
and our understanding of its mechanistic significance 
remains incomplete [20]. It has been shown that both, the 
prevalence and distribution of CFAE differed significantly 
when different CFAE definitions were utilized [21, 36, 43]. 
Furthermore, filter settings in clinical signal acquisition 
systems can strongly influence the appearance of meas-
ured signals [14]. Although, the integration of automatic 
CFAE detection algorithms in 3D mapping systems has 
facilitated CFAE site retrieval, they vary in definition and 
do not respect the progressive transition between the 
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CFAE classes [33]. It is therefore of importance to work 
out the different variants of CFAE and to develop math-
ematical algorithms which respect the fuzziness of these 
electrograms.

Wells et  al. classified bipolar atrial electrograms 
during AF into four groups. Whereas type 1 and type 2 
describes more regularized AF, type 3 is completely dis-
organized and type 4 is anything in between [42]. Alles-
sie et al. described the complete activation pattern of the 
atrial wall obtained by high resolution mapping, and clas-
sified AF types according to the number of wavelets acti-
vating the atrial wall [1].

The detection of signals containing CFAE patterns 
has been addressed in literature. Cuesta-Frau et  al. [9] 
used sample entropy to differentiate between CFAE and 
non-CFAE signals despite the presence of measuring arti-
facts. Recurrence quantification analysis was success-
fully applied by Navoret and colleagues [26] in the same 
context. Recurring patterns in CFAE were focused upon by 
Ciaccio et al. [8], resulting in an approach using transform 
coefficients on synchronized AF data.

There are some atrial electrogram decision making 
algorithms described in the literature [2, 18, 30] which 
are mainly based on the Wells classification. Kordik 
[18] defined an array of signal features which leads to a 
measure of the fractionation of a given signal. A neural net 
classifies the signals into four CFAE classes. They worked 
on a database with 113 annotated electrograms. Nollo et al. 
[30] defined features to describe the state of organization 
of CFAE. The best features were chosen on the basis of 
their Jeffries-Matusita distance. In a final step, a support-
vector-machine classifies CFAE into three classes. Their 
database included 100 annotated electrograms. The limi-
tations of these algorithms are, that they do not deliver a 
measure of certainty for the chosen classification.

The aim of this study was to develop an algorithm 
which addresses the fuzziness, i.e., the progressive transi-
tion between the CFAE classes, and presents a percentage 
of certainty of the selected subgroups. This will objectivize 
CFAE interpretation in a more reproducible and transpar-
ent way.

Methods
Study population

The study cohort consisted of 11 patients who underwent catheter 
ablation of AF. The local Ethics Committee approved this study 
(according to the declaration of Helsinki), and all patients gave 
written informed consent. Eight patients had persistent and three 

paroxysmal AF. During the EP study, the left atrium was reconstructed 
using a 3D mapping system (Ensite NavX, St. Jude Medical, St. Paul, 
MN, USA) and PVI was performed. After PVI, bipolar electrograms 
were recorded using circular multipolar mapping catheters (10 polar 
Lasso, Biosense Webster, Diamond Bar, CA, USA; 14 polar OrbiterPV, 
Bard Electrophysiology, Lowell, MA, USA; 14 polar Optima, St. Jude 
Medical, St. Paul, MN, USA). After the procedure the electrograms 
and xyz-coordinates were exported and retrospectively analyzed. All 
together 605 recordings were analyzed. Each had a length of 5 s and 
was sampled at 1.2 kHz. The data was prefiltered by the measurement 
system with a high pass at 30 Hz and a low pass at 300 Hz.

For automatic classification, the Wells’ criteria [42] were modi-
fied by changing type 3 and 4. This led to a classification with a con-
tinuous increase in complexity (Figure 1).

Data preprocessing

All electrograms were preprocessed in the same way. Baseline wan-
dering and low-frequency noise were extracted from the atrial elec-
trograms using a discrete wavelet transform-based approach [16]. 
Based on the sample frequency (fs) the signal is decomposed up to 
level n = ld(fs) and the approximation of level n is set to zero. After this 
step, the signal is composed again. The high frequency disturbance 
is removed by a conventional Butterworth low pass filter of order 4 
with a cut off frequency of fLP = 300 Hz [15]. After removing the noise 
by means of signal processing, the 605 stationary 5  s signals were 
classified by two physicians from different centers according to the 
above predefined classes (see Table 1). After the classification pro-
cess, only electrograms with an unambiguous assignment were used 
to train and test the fuzzy decision tree (FDT). So finally the database 
consisted of 429 classified electrograms.

Descriptors of CFAE

To optimize the automatic electrogram characterization multiple fea-
tures were generated. In the following sections a list of descriptors is 
delineated, reflecting the mathematical characteristics of CFAE.

Time domain descriptors based on non-linear energy operator: In 
sinus rhythm or other regularized atrial activity, intracardiac record-
ings are only presenting deflections if an excitation wave front propa-
gates near the recording electrode. At baseline, no electrical activity 
is present. Therefore, the electrograms can be divided into segments 
with and without baseline crossings. Segments with baseline cross-
ings were defined as active. Localization of active segments during 
AF is complicated, because they vary in length and number. A mathe-
matical expression of active segments can be described as the energy, 
which forms the basis for time domain analysis.

Teager’s non-linear energy operator [NLEO, (1)] [38] forms the 
basis of this descriptor. Adding an adaptive threshold on the low pass 
filtered NLEO enabled the separation of active and inactive segments 
[28, 38]. The output of the NLEO En can be considered as an indica-
tion of the energy of the signal x(n) and it is proportional to the fre-
quency and amplitude of the signal. Based on this segmentation a set 
of descriptors is defined.

	 2
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The sum of the length of all active segments during a 5 s recording 
divided by the total length of the signal is called “activity ratio” (AR, 
descriptor D10).
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with L the length of the total signal, M the number of active seg-
ments and li the length of an active segment i. Other descriptors are 
the mean length of active segments (MLAS, descriptor D11) and the 
standard deviation of active segments (sdMLAS, descriptor D12). 
They are defined as
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Five more descriptors are defined based on the found active seg-
ments. These are the number of active segments (NoAS, descriptor 
D14), the mean number of zero crossings per active segment (ZCAS, 
descriptor D16), the standard deviation of zero crossings per active 
segment (sdZCAS, descriptor D18), the mean number of local max-
ima per active segment (LocMaxAS, descriptor D15) and the standard 
deviation of local maxima per active segment (sdMaxAS, descriptor 
D17). To analyze the signal curve within an active segment, a method 
is used that interprets the output of the NLEO as a probability density 

Figure 1: CFAE during atrial fibrillation.
Left: schematic presentation of the four variants according to the modified classification by Wells et al. Right: recorded electrograms during 
AF. C0 is a non-fractionated atrial electrogram of high frequency, C1 is a fractionated atrial electrogram with periodic activity, C2 is a mixture 
of periodic fractionated and periodic non-fractionated atrial electrograms, and C3 is a high frequency atrial electrogram with continuous 
activity.

Table 1: Annotated CFAE.

CFAE-Class MD A MD B Coinciding

C0 156 154 144
C1 107 143 84
C2 263 191 148
C3 79 117 53

MD, physician; A and B

function. The standard deviation of this function is a measure of the 
concentration of the signal curve in time direction. The mean of the 
standard deviation of all active segments per signal is the descriptor 
mean variance in time direction (MVarTD, descriptor D1).

Phase space descriptors: A combined view of the signal’s magni-
tude and the alteration at a position ti is enabled by the phase space. 
Here, the derivative of the signal x′(ti) is plotted over its magnitude 
x(ti). To weight the alteration and the magnitude equally, both are 
normalized to their maximum. To analyze the distribution of the 
samples in phase space, the phase space is divided into circular 
regions. Therefore a maximal distance dmax to the point of origin is 
defined. The distance is calculated by

	 = +′ 2 2 1/2( ) [ ( ) x( ) ]i i id t x t t � (4)

To be more robust against outliers dmax is defined as the mean of the 
5% of the maximal distances (d0.05max)
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The aim of this definition is to use enough samples to lower the 
influence of outliers to the outer boundary, but with a minimum of 
samples. The phase space is divided into four regions depending on 
the distance dmax. Region 1 encloses all sample values within a dis-
tance of 0.05 dmax. The border for region 2 is at 0.1 dmax, for region 3 
at 0.2 dmax, and for region 4 at dmax. The number of samples in each 
region divided by the total number of samples is called “Phase Space 
Sample Ratio” (PSSR 1, PSSR 2, PSSR 3, PSSR 4) (descriptors D3–D6). 
Therefore, the PSSR will group periodic electrograms (e.g., sinus 
rhythm) usually into region 1. For chaotic or non-periodic signals, 
the assignment is more random. To reflect this behavior a binary 
function is generated. This binary function equals “1”, if a sample 
is located in region 4 and “0” otherwise. As the entropy mirrors the 
information content of a random process, it is suitable to measure the 
periodicity of this binary function. The entropy of the binary func-
tion is termed as entropy of phase space (EPS 4, descriptor D7). To 
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evaluate the periodicity of the binary function, the standard devia-
tion of distances between two adjacent rising edges is calculated. 
The resulting descriptor is called mean cycle length of phase space 
(MCPS 4, descriptor D8).

Wavelet based descriptors: Fractionated activity exhibits com-
plex and time varying morphology. This is reflected by the broad 
frequency spectrum present in those electrograms. Using a wavelet 
based approach allows the analysis of different frequencies on mul-
tiple scales.

According to the algorithm presented in [17] a descriptor is set 
up, that counts the zero crossings in a given signal as a measure for 
the fractionation of this signal. Therefore, the signal is decomposed 
into coefficients with wavelet Coiflet 4 up to level 10. As shown by 
[19] Coiflet 4 is a suitable wavelet to analyze fractionation of electro-
grams. The algorithm can detect regions with high magnitude and 
high slew rate. As intracardiac electrograms often differ in terms of 
frequency, the wavelet level with the largest magnitude is searched. 
According to the algorithm from [17] this level is multiplied with the 
two preceding (higher frequency) levels. As a result, active regions 
will be emphasized and inactive regions will be suppressed. In the 
resulting signal, xres, fractionated regions will be detected by a search 
for zero crossings. The number of zero crossings in this wavelet based 
electrograms are used as a descriptor (FracSig, descriptor D13).

Similarity of active segments: Faes et  al. [10] described an algo-
rithm that compares the similarity of different regions of an intra-
cardiac electrogram. Inspired by Faes’ work a similarity analysis is 
computed. The envelope of the absolute value of the analytical sig-
nal is calculated according to the algorithm described in [34]. The 
envelope follows the shape of the signal, but is always positive. This 
approach respects the increasing variation of the accurate shape in a 
more fractionated electrogram. Active segments are extracted using 
the NLEO-based segmentation algorithm. With these extracted seg-
ments a correlation matrix is built. First the segments are aligned 
using cross-correlation. On the overlapping parts, the absolute value 
of the correlation coefficient is calculated. On the basis of this cor-
relation matrix, a clustering is performed. Starting with cluster of the 
two most similar segments, step by step the nearest similar segment 
is added and the similarity between the new segment and the cluster 
is computed. According to the definition of Kaufman and Rousseeuw 
[13] the similarity between two clusters is calculated from
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where |R| and |Q| are the cardinalities of both clusters, s(i, j) is the 
similarity between element i from cluster R and element j from clus-
ter Q. Here, the number of elements of cluster Q is set to 1. Finally, 
the mean value of the similarities of an active signal (Similarity AS, 
descriptor D9) is computed.

Amplitude statistics based descriptors: The histogram of an elec-
trogram indicates the measured values during the time of record-
ing. Little electrical activity in atrial electrograms is resulting in an 
amplitude around zero. So, the amplitude histogram has a high peak 
around “0”, whereas the amplitude distribution of electrograms with 
strong electrical activity is spread more widely and is more gaussian-
like. This behavior can be described with the fourth standardized 
moment, the kurtosis [25]. To lower the impact of outliers the sig-
nal is divided into k segments with a length ls. The global kurtosis 

(HistKurt, descriptor D2) is averaged over the kurtosis of the k seg-
ments. The segment length ls is set to 1 s to make sure that even in 
sinus rhythm up to a heart frequency of 1 Hz there is at least one atrial 
excitation in this segment.
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Table 2 gives an overview of the 18 descriptors, most of them used by 
the FDT for classification of the electrograms.

Classification/fuzzy decision tree

Building the fuzzy decision tree: As a major advantage, FDT avoids 
sharp split nodes but instead assigns objects in a region around the 
split point a relative affiliation to the following child nodes. This 
fuzzy zone is realized using sigmoid functions of form:
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as proposed by Chandra and Varghese [7]. zl and zr are the affiliation 
to the left and the right child node, s is the split point and v

ω
 is the 

descriptor value of descriptor ω. The coefficient σ is the standard 
deviation of this descriptor on the training data. If the descriptor val-
ues are scaled with a factor a, the width of the fuzzy zone is changing 
by a2. This is not intended.

In this decision tree, we defined a coefficient k to replace σ. The 
beginning zstart of the fuzzy zone is set when the sigmoid function 
equals 0.01 and the end zend is set when the sigmoid function equals 
0.99. In general zstart (x) = g and zend (x) = 1–g. The range of a descriptor 
is the interval [xmin, xmax]. The width of the fuzzy zone is chosen as 
part p∈[0, 1] of the interval length i = xmax–xmin. It is assumed that the 
fuzzy zone with width p·i is set symmetrically to the split point s. This 
leads to
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The sigmoid function is then expressed as
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Inserting (10) in (11) and solving for k results in
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with k1 = k2 one has
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The boundaries for the interval [xmin, xmax] have to be determined 
from the training data. To be robust against outlier, the upper bound-
ary value is set to 1.5 interquartile range of the upper quartile and the 
lower boundary to 1.5 interquartile range of the lower quartile. While 
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Table 2: Results of the mostly used descriptors.

Descriptor CFAE 0 CFAE 1 CFAE 2 CFAE 3

�µ iqr �µ iqr �µ iqr �µ iqr

D1 MVarTD 0.17 (0.01) 0.18 (0.02) 0.21 (0.02) 0.23 (0.03)
D2 HistKurt 22.62 (10.36) 12.88 (5.33) 9.76 (3.17) 6.83 (2.48)
D3 PSSR 1 0.88 (0.08) 0.70 (0.14) 0.52 (0.11) 0.35 (0.12)
D4 PSSR 2 0.02 (0.03) 0.07 (0.03) 0.13 (0,03) 0.14 (0.03)
D5 PSSR 3 0.01 (0.01) 0.04 (0.02) 0.08 (0.02) 0.11 (0.02)
D6 PSSR 4 0.10 (0.03) 0.18 (0.09) 0.26 (0.08) 0.40 (0.13)
D7 EPS 4 1.60 (0.19) 2.09 (0.44) 2.51 (0.26) 2.67 (0.08)
D8 MCPS 4 5.71 (0.32) 5.14 (0.31) 4.74 (0.20) 4.59 (0.14)
D9 Similarity AS -0.17 (0.42) -0.68 (0.26) -0.97 (0.17) -1.17 (0.21)
D10 AR 0.18 (0.06) 0.32 (0.15) 0.56 (0.17) 0.82 (0.14)
D11 MLAS [ms] 54.46 (13.42) 75.67 (31.97) 132.09 (62.60) 312.88 (271.54)
D12 sclMLAS [ms] 4.45 (13.95) 18.01 (13.58) 86.25 (78.23) 345.59 (334.66)
D13 FracSig 345.00 (112.00) 630.00 (273.50) 809.00 (265.00) 1152.00 (433.00)
D14 NoAS 18.00 (5.00) 26.00 (5.00) 24.00 (4.00) 15.00 (9.25)
D15 LocMaxAS 1.68 (0.29) 2.02 (0.41) 2.52 (0.40) 3.29 (0.78)
D16 ZCAS 1.44 (0.34) 1.76 (0.42) 2.27 (0.41) 3.06 (0.76)
D17 sdMaxAS 0.18 (1.76) 1.48 (1.01) 4.21 (1.69) 6.54 (2.03)
D18 sdZCAS -0.13 (1.78) 1.40 (1.01) 3.68 (1.70) 6.07 (2.09)

Median ( µ� ) and interquartile range (iqr) per CFAE class are given.

training the decision tree, the aim is to find a split point at a node 
t, so that the relative membership of the objects to the right class 
is increasing. The Gini diversity index (GDI) is a regular criterion to 
evaluate possible split points [3]. The adaption of the GDI for usage 
in a FDT was made by Chandra et al. [7]:
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where J is the number of classes; ( )N vt  is sum of the fuzzy-member-
ship values of records of child node tv with chosen split point sj on 
descriptor j. N(t) is the sum of the fuzzy-membership values of records 
in the tth partition before split. ( )vt

jN  is the sum of the product of 
fuzzy-membership values of the attribute and the fuzzy-membership 
values of the corresponding record for class j. The GDI is a rating cri-
terion to find possible split candidates. To find those split points for a 
descriptor vector we do the following:

–– sort descriptor values in descending order,
–– set the positions where the class affiliation is changing as can-

didates for a split point,
–– set the split point to the arithmetic mean of both neighboring 

descriptor values.

According to this algorithm for each descriptor vector the split point 
candidates are found. Finally, the candidate with the smallest GDI is 
chosen. The width of the fuzzy zone can be varied according to the 
distribution of classes over a descriptor. If there is a large overlap, 
the fuzzy zone should be larger than in the case of separated classes.

In this work, the best width of the fuzzy zone was determined by 
choosing the best result from a set of different fuzzy zones (Figure 2). 
For each fuzzy zone a 10 × 10 cross validation was realized and the 
mean error rate for each fuzzy zone was computed. The best error 
rate was achieved for a fuzzy zone with a width of 20%.

To make a decision on the class belonging of a given record, the 
decision tree needs an inference instruction. In contrast to a decision 
tree with sharp split values, where a record will get the class mem-
bership of the leaf node to which it is assigned, here, a test record 
can be assigned to more than one leaf node by a FDT. The inference 
instruction for a given record XTest considers the fuzzy membership to 
a leaf node z(ti, XTest) and its class membership c(ti). The fuzzy mem-
bership of a leaf node results from the product of fuzzy memberships 
of the passed nodes. The total class membership of a record XTest is 
defined as

	 = = ⋅∑total Test Test( ) ( ) ( , )i ii
c X c t z t X � (15)

The classification of a record results in partial affiliation to the 
CFAE classes. From these partial affiliations, the resulting CFAE class 
is derived by a majority decision. The classified record will get the 
CFAE class label of the class with the highest percentage. The per-
centage can also be shown as a measure of certainty.

Figure 2: Evaluation of different fuzzy zone widths to find the 
“best” fuzzy zone width. Displayed is the error rate as result of a 
10 × 10 cross validation for each width.
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Chandra and Varghese used different sharp stop criteria to limit 
the growth of the tree while training [7]. This technique has some lim-
itations. Therefore, the stop criteria of this decision tree were given 
very weak definitions. This led to an oversized tree at first. In an addi-
tional step this oversized tree was optimized to the best size [3]. The 
aim of pruning was to optimize the tree in regard to the complexity 
and the predictive accuracy. A sequence of trees is produced by the 
use of cost-complexity-pruning [3]. Out of this sequence the best tree 
is chosen by evaluating the error rate in consideration with the size 
of the FDT. The final tree for the classification in a clinical context will 
be generated on the whole set of available classification data. The 
best tree is chosen again after cross validation and optimization by 
evaluating the size and error rate.

Validation and statistical analysis

The standard way to evaluate a classificator is to perform a 10 × 10 
cross validation [3]. This means the data set has to be separated into 
10 equal subsets. The tree is trained with nine subsets and tested with 
the remaining “unknown” subset. The correct rates and error rates are 
computed and rated. This “training, testing and evaluation” step has 
to be repeated until each of the 10 subsets was used to test the tree. 
This whole procedure is repeated 10 times with different randomly 
created subsets, which leads to a total of 100 trees that are evaluated.

To optimize this tree, the evaluation has not only been done on 
the CFAE database but also on datasets from the UCI Machine Learn-
ing Database [22]. The UCI database is a regular database to test and 
evaluate machine learning algorithms. From this database five data 
sets [Iris, Wine, Wisconsin Breast Cancer (WBC), Haberman’s Sur-
vival (HS), and Glas Identification (GI)] have been chosen to evalu-
ate the FDT. Data sets with continuous feature values and multi-class 
assignments have been chosen to be most similar to the CFAE data. 
Finally the results have been compared to different decision tree 
algorithms (CART [3], SLIQ [23], C4.5 [35], FDTx [7]).

Evaluation of clinical data

To evaluate the distribution of the CFAE classes in clinical cases, 
bipolar electrograms were recorded for 5 s with a 300 Hz filter setting. 
Anatomical and electrical information were exported from the sys-
tem and the 3D anatomical shells as well as the corresponding elec-
trograms were reconstructed. At first, the algorithm was set to detect 
and display the mean cycle length (CL) of AF (mean dV/dt), with a 
deflection width of 10 ms and a refractory period of 37 ms. Electro-
grams with a mean CL > 120 ms were color coded in violet, 120–70 ms 
in rainbow colors and  < 70 ms in white. The resulting map was com-
pared to the CFAE classification map using the FDT.

Results

Descriptors

All descriptors have been calculated using the database 
described previously. In the training phase, the FDT chooses 

the best descriptors to separate the classes depending on 
the cost function (e.g., GDI). The results of the 18 most fre-
quently used descriptors are shown in Table 2.

For each CFAE class the median ( µ� ) and the inter-
quartile range (iqr) per descriptor is shown. The µ�  and 
the iqr give an overview of the distribution of the descrip-
tor values and the power to separate CFAE classes of each 
descriptor. Generally, there is no descriptor that can sep-
arate between all four CFAE classes alone. However, the 
descriptors can separate between different CFAE class 
groups. For example the descriptors PSSR 3 (D5) and AR 
(D10) can separate C0 from C3. The mean NoAS (D14) can 
be used to separate C0 and C3 from C1 and C2. The boxplots 
of these descriptors are depicted in Figure 3. To evaluate 
the results of the phase space descriptors, the numbers 
of samples per region are divided by the total number 
of samples per signal. The boxplot of the PSSR 3 (D5) is 
depicted in Figure 3. As can be seen, the median values 
are significantly different on a 5% level (boxplot notches) 
for all four CFAE classes. Also there is no overlapping of 
the iqr. The same applies to the AR. The range for the AR 
varies between 0 (no activity) and 1 (continuous activity). 
It increases from 0.18 (C0) to 0.32 (C1) and from 0.56 (C2) to 
0.82 (C3). An increasing value is correlated therefore with 
an increase in entropy of the electrogram. The entropy of 
the number of hits in the different regions of the phase 
space (EPS 4) is an often used descriptor, too. EPS 4 can 
be used to distinguish between C0 and C2 and C3. The 
median values for NoAS (D14) are 18 (C0), 26 (C1), 24 (C2), 
and 15 (C3), respectively. The values are increasing from 
CFAE class C0 to class C1. The frequency and fractionation 
is also increasing from C0 to C1. For C1 and C2, the NoAS 
are nearly the same as these two states are similar with 
regard to the number of CFAE. For C3 the activity is getting 
more continuous and therefore the NoAS (D14) is decreas-
ing again. In the case of continuous activity it will be one. 
Finally, the NoAS can separate C0 and C3 from C1 and C2. 
There is an overlap in the iqr of C1 and C2, but, although 
the value range is very similar the µ�  are significantly dif-
ferent. For this four delineated descriptors the µ�  are sig-
nificantly different on a 5% level for all CFAE classes.

On the one hand, with increasing atrial activity the 
signals have more deflections and zero crossings and the 
iso-electric line is vanishing. Hence, the amplitude histo-
gram is broad and the HistKurt (D2) has small or negative 
values. Sinus rhythm electrograms, on the other hand, 
mainly present an iso-electric line with some deflection 
other than zero. Therefore, the amplitude histogram has a 
pronounced peak. In this case the kurtosis values will be 
larger than for the ones for the continuous activity. This 
behavior is reflected by descriptors D1 and D2. When the 
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heart rhythm evolves from sinus rhythm to AF the similar-
ity of activation patterns gets lost [37]. As a consequence 
the active segments are getting dissimilar (D9).

Class C0 and C1 electrograms contain mostly regions 
without alteration (iso-electric line is prominent). This 
type of signals will be represented primarily in the phase 
space in region 1 and 2, whereas CFAE class C2 and C3 will 
be more prominent in region 3 and 4. Also the alterations 
of C2 and C3 signals make them lie more in the outer limits 
of the phase space. Descriptors D3–D8 mirror this. Going 
from the origin to the boundary of the phase space the 
number of C0 samples is decreasing while the number of 
C3 samples are increasing. PSSR 3 (region 3) contains 1% 
of C0, 4% of C1, 8% of C2, and 11% of C3 signals. EPS 4 
and MCPS 4 give an information of the presence of a CFAE 
class in phase space region 4. These descriptors reflect 
the same outcome as the descriptor PSSR. The descriptors 
D13, D15, D16, D17, and D18, which reflect the fractionation 

of the signal, are increasing from C0 to C3, too. This corre-
sponds to the increasing atrial activity and the increasing 
number of active fractionated segments (Figure 3).

Validation of the tree implementation

The FDT presented in this work was compared to the results 
of decision trees with sharp split values and the FDT by 
Chandra and Varghese (FDTx) [7]. Table 3 gives an overview 
of the results. Presented is the error rate and standard devi-
ation for each classifier after a 10 × 10 cross validation. The 
results for FDTx and SLIQ were obtained from [7] and the 
results for CART and C4.5 were obtained from [31]. The deci-
sion trees CART, SLIQ, and C4.5 have sharp split values; the 
FDT by Chandra and Varghese uses a sigmoidal function 
as decision border. FDT is the tree presented in this work. 
In addition to the error rate, the fuzzy zone width for each 

Figure 3: Boxplots of four descriptors used by the decision tree depicted in Figure 4.
Red crosses mark outliers.

Table 3: Comparison of different decision tree algorithms.

CART SLIQ C4.5 FDTx FDT Fuzzy zone width

Iris 93.5±0.8 98.0±3.2 95.1±0.6 98.0±3.2 96.1±4.8 0.10
Wine 89.3±0.8 88.3±8.1 92.7±1.1 88.9±4.5 89.1±7.2 0.01
WBC – 93.3±4.8 – 96.4±4.9 92.4±3.6 0.20
HS – 65.8±10.8 – 72.6±7.8 74.4±7.2 0.05
GI 67.7±1.6 65.0±16.0 68.6±2.0 68.6±8.7 69.4±8.7 0.10

Shown are the error rate (%)±the standard deviation (%) after 10 × 10 cross validation. CART and C4.5 data are obtained from Olaru and 
Wehenkel [31], SLIQ and FDTx are obtained from Chandra and Varghese [7]. Wisconsin Breast Cancer (WBC), Haberman’s Survival (HS), Glas 
Identification (GI).
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Figure 4: Example of the optimal tree chosen from the cross validation process.
At each node the chosen descriptor and its split value is depicted. For each leaf node the membership result is shown. The correct rate for 
this tree is 86.1%.

data set is given. When comparing with other classifiers 
for the data sets Iris, Wine and WBC, the proposed FDT 
delivers comparable results. Focusing on the results of the 
Haberman’s Survival and the Glas Identification data sets, 
the FDT is significantly superior.

Resulting fuzzy decision tree

Applying a 10 × 10 cross validation on the presented FDT 
with a fuzzy zone width of 20% results in a mean correct 
rate of 80.65±3.3%. Correct rates for the different CFAE 
classes are C0: 83.1±4.4%, C1: 81.0±8.1%, C2: 75.8±8.4%, 
C3: 82.7±17.8%. The distribution of the wrong assign-
ments of signals per class is shown in Table  4. Increas-
ing the training data will lead to an increased accuracy of 
the FDT. The depicted tree in Figure 4 is chosen from the 
sequence of cross validated trees. This tree has a correct 
rate of 86.1% (Figure 4).

Table 4: Wrong assignments per CFAE class in %.

CFAE 0 CFAE 1 CFAE 2 CFAE 3

CFAE 0 X 72 24 4
CFAE 1 37 X 63 1
CFAE 2 2 49 X 49
CFAE 3 0 0 100 X

Visualization of CFAE classes

Using the CFAE mean algorithm, areas with high atrial fre-
quencies were located in different areas of the left atrium. 
A loose correlation between CFAE class 2 and 3 could be 
estimated. Interestingly, in the FDT map electrograms with 
continuous activity (C3) were surrounded by C2 and C1. C3 
were present mainly around the PV ostia, the anterior wall 
and the inferior part of the posterior wall (Figure 5).

Discussion
The ablation of persistent AF is still challenging. Up to 
date, intracardiac electrograms are the only information 
which can be obtained during the procedure. But these 
electrograms present a broad variation. Current detection 
algorithms for CFAE are mainly based on single character-
istics but do not respect the full complexity of the electro-
grams. Therefore, it seems appropriate to use more than 
one descriptor. Based on the modified Wells’ criteria, we 
classified CFAE into four subgroups with a continuously 
increase in complexity (C0–C3). The FDT can be used to 
classify electrograms which present a progressive tran-
sition between the different classes. This overcomes the 
results sensitivity/vulnerability against small changes of 
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the descriptor’s value, which is one of the main shortcom-
ings of decision trees with sharp split points [7]. Instead 
of using sharp split points to separate classes, the FDT 
assigns test objects within the fuzzy zone to classes with 
a specific probability. In this tree, several descriptors are 
introduced to describe the different characteristics of 
CFAE. The tree classifies a given signal into one of the four 
groups and presents a percentage of certainty.

Teager’s NLEO was used to differentiate between 
active and passive segments of the electrograms with 
simultaneous consideration of frequency and ampli-
tude. The MLAS (D11), sdMLAS (D12) as well as AR (D10) 
are increasing from C0–C3 which reflects a faster and 
more complex local activation. These algorithms are 
therefore able to distinguish between no activity and 
continuous activity. The NoAS (D14) can separate C0 
and C3 from C1 and C2 and the EPS (D7) between C0 and 
C3. PSSR 3 (D5) and the AR (D10) are able to distinguish 
between C1 and C2.

In the training phase, 18 descriptors in 100 different 
trees were analyzed and the correct rate of the CFAE clas-
sification was analyzed.

The performance of the FDT improves the more data is 
used to train the tree. In this study 429 signals with coin-
ciding interpretation were analyzed. The smallest group 

of CFAE classes was C3 with 53 electrograms. Therefore, a 
maximum of 53 electrograms could be used in each CFAE 
class for the cross validation. To overcome the problem 
that a 10 × 10 cross validation would lead into a statistical 
analysis with only 5 signals, we performed a 10 × 5 cross 
validation. Using this technique, 11 signals remained to 
test the tree.

The width of the fuzzy zone for the FDT was set to 
20%. Although another model, based on the GDI for dif-
ferent kind of class contribution (normally and unequally 
distributed, different overlap regions), revealed small 
fuzzy regions. In our experience, an increased fuzzy zone 
improves the power of the FDT (Figure 2).

The evaluation by the cross validation process esti-
mates the correct rate of the method. This value is correct 
whilst the training data set reflects reality data. To gen-
erate a FDT working with a new data set or in a clinical 
setting, the tree will be trained with all available data [41]. 
The correct rate for this new classifier can be estimated 
from the mean correct rate of the cross validation. There-
fore, a mean correct rate of 81±3% can be expected. The 
depicted tree in Figure 4 is chosen from the sequence of 
cross validated trees. This tree has a correct rate of 86.1%. 
This reflects the possibility, that with a wider set of train-
ing data, the outcome of the FDT can still be improved. In 
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Figure 5: Example of a clinical evaluation of the CFAE classes using the FDT in comparison to a CFAE mean map.
View of the posterior wall with left upper and lower pulmonary vein (left) and right upper and lower pulmonary vein (PV) (right). 
(A) automated CFAE mapping algorithm (Ensite NavX). Bipolar electrograms were recorded for 5 s, filter settings were at 30–500 Hz. The 
algorithm was set to detect and display the mean CL of atrial fibrillation (mean dV/dt), with a deflection width of 10 ms and a refractory 
period of 37 ms. Electrograms with a mean CL > 120 ms were color coded in violet, 120–70 ms in rainbow colors and  < 70 ms in white. 
(B) CFAE classes using the FDT. C0 (blue): non-fractionated atrial electrogram of high frequency, C1 (green): fractionated atrial electrogram 
with periodic activity, C2 (yellow): mixture of periodic fractionated and periodic non-fractionated atrial electrograms; C3 (red): electrogram 
with continuous activity. Electrograms with continuous activity C3 are surrounded by C2 and C1. C3 were present mainly around the PV ostia 
and the inferior part of the posterior wall.
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addition to the classification results, a percentage of cer-
tainty is given for each electrogram.

Compared to other algorithms, the proposed tree pre-
sents similar correct rates for Iris, Wine, and WBC data sets. 
For the Haberman’s Survival and Glas Identification data 
sets the proposed FDT is significantly superior. The reason 
for that might be the more fuzzy features of these data sets. 
This implies the strength of the proposed tree on fuzzy data.

In clinical use, the algorithm is able to display four 
different CFAE subgroups. This enables a more transpar-
ent and objective way of CFAE interpretation. For CFAE 
ablation, the most promising electrograms present contin-
uous activity. These electrograms can be detected in 100% 
of the cases and accentuated in the 3D map. However, the 
classification of the CFAE allows a more detailed evalua-
tion and may improve the knowledge about the stability 
and instability of certain areas during AF. This may restrict 
the search for characteristic electrograms sustaining AF.

Conclusion
CFAE express an important element of the AF substrate. We 
propose a new algorithm for automatic CFAE classification. 
According to the modified classification by Wells et  al., 
CFAE were divided into four subgroups [42]. The subgroups 
were defined as non-fractionated with high frequency, frac-
tionated with periodic activity, instable electrograms with 
a mixture of periodic fractionated and periodic non-frac-
tionated atrial electrograms, and continuous activity. The 
algorithm is based on a FDT including 18 descriptors. Given 
a set of training data, a FDT classifier can be constructed. 
The training algorithm automatically chooses the ideal 
combination of descriptors and split points to the classifi-
cation of training data. Obviously, this can lead to a tree, 
which only uses a subset of the offered set of descriptors as 
shown in the example tree (Figure 4). Using this tree, CFAE 
were sorted to one of the subgroups with a correct rate of at 
least 81%±3%. Electrograms with continuous activity were 
detected correctly 100% of the time. In addition, a percent-
age of certainty is given for each electrogram. The FDT is 
therefore able to classify CFAE with respect to their progres-
sive transition. This will objectify CFAE interpretation in a 
more reproducible and transparent way.

Limitations

This is a retrospective analysis of electrograms recorded 
from patients with AF. Prospective studies are needed to 
evaluate the clinical impact of this algorithm.
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