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Abstract: Catheter ablation has emerged as an effective
treatment strategy for atrial fibrillation (AF) in recent
years. During AF, complex fractionated atrial electrograms
(CFAE) can be recorded and are known to be a potential
target for ablation. Automatic algorithms have been devel-
oped to simplify CFAE detection, but they are often based
on a single descriptor or a set of descriptors in combina-
tion with sharp decision classifiers. However, these meth-
ods do not reflect the progressive transition between CFAE
classes. The aim of this study was to develop an automatic
classification algorithm, which combines the information
of a complete set of descriptors and allows for progressive
and transparent decisions. We designed a method to auto-
matically analyze CFAE based on a set of descriptors rep-
resenting various aspects, such as shape, amplitude and
temporal characteristics. A fuzzy decision tree (FDT) was
trained and evaluated on 429 predefined electrograms.
CFAE were classified into four subgroups with a correct
rate of 81+3%. Electrograms with continuous activity were
detected with a correct rate of 100%. In addition, a per-
centage of certainty is given for each electrogram to enable
a comprehensive and transparent decision. The proposed
FDT is able to classify CFAE with respect to their progres-
sive transition and may allow objective and reproducible
CFAE interpretation for clinical use.
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Introduction

Atrial fibrillation (AF) is the most common cardiac
arrhythmia, which affects morbidity and mortality [6].
AF is therefore a major and growing expense for health
systems [11]. Catheter ablation has emerged as an effective
treatment strategy in the last years. Since the discovery
of foci inside the pulmonary veins (PVs) as a trigger for
paroxysmal AF in 1998 [12], the technique of pulmonary
vein isolation (PVI) has been established with acceptable
success rates [29]. However, clinical outcome of PVI in per-
sistent and long standing persistent AF is poor. This sug-
gests different underlying mechanisms [4, 39, 40] outside
the PV regions: multiple random propagating wavelets,
focal electrical discharges or breakthroughs, and local-
ized re-entrant activity with fibrillatory conduction [5].
However, differentiation during an electrophysiological
(EP) study is limited as specific electrogram character-
istics are not known. Ndrepepa et al. showed that per-
sistent AF presents with shorter cycle lengths and more
disorganized activity than paroxysmal AF [27]. Areas with
complex fractionated atrial electrograms (CFAE) have
been reported to potentially represent AF substrate sites
[1, 24]. Nademanee defined CFAE as fractionated electro-
grams composed of two deflections or more, and/or as the
perturbation of the baseline with continuous deflection of
a prolonged activation complex and a median cycle length
of <120 ms over a 10 s recording period [24]. This author
was the first to address CFAE as a target for catheter abla-
tion with respectable success rates [24], but their results
have not been reproduced by other groups [32, 33]. At
present, the definitions used for CFAE have been variable
and our understanding of its mechanistic significance
remains incomplete [20]. It has been shown that both, the
prevalence and distribution of CFAE differed significantly
when different CFAE definitions were utilized [21, 36, 43].
Furthermore, filter settings in clinical signal acquisition
systems can strongly influence the appearance of meas-
ured signals [14]. Although, the integration of automatic
CFAE detection algorithms in 3D mapping systems has
facilitated CFAE site retrieval, they vary in definition and
do not respect the progressive transition between the
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CFAE classes [33]. It is therefore of importance to work
out the different variants of CFAE and to develop math-
ematical algorithms which respect the fuzziness of these
electrograms.

Wells et al. classified bipolar atrial electrograms
during AF into four groups. Whereas type 1 and type 2
describes more regularized AF, type 3 is completely dis-
organized and type 4 is anything in between [42]. Alles-
sie et al. described the complete activation pattern of the
atrial wall obtained by high resolution mapping, and clas-
sified AF types according to the number of wavelets acti-
vating the atrial wall [1].

The detection of signals containing CFAE patterns
has been addressed in literature. Cuesta-Frau et al. [9]
used sample entropy to differentiate between CFAE and
non-CFAE signals despite the presence of measuring arti-
facts. Recurrence quantification analysis was success-
fully applied by Navoret and colleagues [26] in the same
context. Recurring patterns in CFAE were focused upon by
Ciaccio et al. [8], resulting in an approach using transform
coefficients on synchronized AF data.

There are some atrial electrogram decision making
algorithms described in the literature [2, 18, 30] which
are mainly based on the Wells classification. Kordik
[18] defined an array of signal features which leads to a
measure of the fractionation of a given signal. A neural net
classifies the signals into four CFAE classes. They worked
on a database with 113 annotated electrograms. Nollo et al.
[30] defined features to describe the state of organization
of CFAE. The best features were chosen on the basis of
their Jeffries-Matusita distance. In a final step, a support-
vector-machine classifies CFAE into three classes. Their
database included 100 annotated electrograms. The limi-
tations of these algorithms are, that they do not deliver a
measure of certainty for the chosen classification.

The aim of this study was to develop an algorithm
which addresses the fuzziness, i.e., the progressive transi-
tion between the CFAE classes, and presents a percentage
of certainty of the selected subgroups. This will objectivize
CFAE interpretation in a more reproducible and transpar-
ent way.

Methods

Study population

The study cohort consisted of 11 patients who underwent catheter
ablation of AF. The local Ethics Committee approved this study
(according to the declaration of Helsinki), and all patients gave
written informed consent. Eight patients had persistent and three
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paroxysmal AF. During the EP study, the left atrium was reconstructed
using a 3D mapping system (Ensite NavX, St. Jude Medical, St. Paul,
MN, USA) and PVI was performed. After PVI, bipolar electrograms
were recorded using circular multipolar mapping catheters (10 polar
Lasso, Biosense Webster, Diamond Bar, CA, USA; 14 polar OrbiterPV,
Bard Electrophysiology, Lowell, MA, USA; 14 polar Optima, St. Jude
Medical, St. Paul, MN, USA). After the procedure the electrograms
and xyz-coordinates were exported and retrospectively analyzed. All
together 605 recordings were analyzed. Each had a length of 5 s and
was sampled at 1.2 kHz. The data was prefiltered by the measurement
system with a high pass at 30 Hz and a low pass at 300 Hz.

For automatic classification, the Wells’ criteria [42] were modi-
fied by changing type 3 and 4. This led to a classification with a con-
tinuous increase in complexity (Figure 1).

Data preprocessing

All electrograms were preprocessed in the same way. Baseline wan-
dering and low-frequency noise were extracted from the atrial elec-
trograms using a discrete wavelet transform-based approach [16].
Based on the sample frequency (f,) the signal is decomposed up to
level n=1d(f,) and the approximation of level n is set to zero. After this
step, the signal is composed again. The high frequency disturbance
is removed by a conventional Butterworth low pass filter of order 4
with a cut off frequency of f,,=300 Hz [15]. After removing the noise
by means of signal processing, the 605 stationary 5 s signals were
classified by two physicians from different centers according to the
above predefined classes (see Table 1). After the classification pro-
cess, only electrograms with an unambiguous assignment were used
to train and test the fuzzy decision tree (FDT). So finally the database
consisted of 429 classified electrograms.

Descriptors of CFAE

To optimize the automatic electrogram characterization multiple fea-
tures were generated. In the following sections a list of descriptors is
delineated, reflecting the mathematical characteristics of CFAE.

Time domain descriptors based on non-linear energy operator: In
sinus rhythm or other regularized atrial activity, intracardiac record-
ings are only presenting deflections if an excitation wave front propa-
gates near the recording electrode. At baseline, no electrical activity
is present. Therefore, the electrograms can be divided into segments
with and without baseline crossings. Segments with baseline cross-
ings were defined as active. Localization of active segments during
AF is complicated, because they vary in length and number. A mathe-
matical expression of active segments can be described as the energy,
which forms the basis for time domain analysis.

Teager’s non-linear energy operator [NLEO, (1)] [38] forms the
basis of this descriptor. Adding an adaptive threshold on the low pass
filtered NLEO enabled the separation of active and inactive segments
[28, 38]. The output of the NLEO E, can be considered as an indica-
tion of the energy of the signal x(n) and it is proportional to the fre-
quency and amplitude of the signal. Based on this segmentation a set
of descriptors is defined.

E =XI-X_ X 1)

ntl""n-1
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Figure 1: CFAE during atrial fibrillation.
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Left: schematic presentation of the four variants according to the modified classification by Wells et al. Right: recorded electrograms during
AF. CO is a non-fractionated atrial electrogram of high frequency, Clis a fractionated atrial electrogram with periodic activity, C2 is a mixture
of periodic fractionated and periodic non-fractionated atrial electrograms, and C3 is a high frequency atrial electrogram with continuous

activity.

The sum of the length of all active segments during a 5 s recording
divided by the total length of the signal is called “activity ratio” (AR,
descriptor D10).

M

AR:l L
RN

2
with L the length of the total signal, M the number of active seg-
ments and [, the length of an active segment i. Other descriptors are
the mean length of active segments (MLAS, descriptor D11) and the
standard deviation of active segments (sdMLAS, descriptor D12).
They are defined as

1/2
1 M 1 M 3
MLAS=" 3" "1 deLAS:(Mzizl(li —MLAS)ZJ G)

Five more descriptors are defined based on the found active seg-
ments. These are the number of active segments (NoAS, descriptor
D14), the mean number of zero crossings per active segment (ZCAS,
descriptor D16), the standard deviation of zero crossings per active
segment (sdZCAS, descriptor D18), the mean number of local max-
ima per active segment (LocMaxAS, descriptor D15) and the standard
deviation of local maxima per active segment (sdMaxAS, descriptor
D17). To analyze the signal curve within an active segment, a method
is used that interprets the output of the NLEO as a probability density

Table 1: Annotated CFAE.

CFAE-Class MDA MD B Coinciding
co 156 154 144
Cc1 107 143 84
c2 263 191 148
3 79 117 53

MD, physician; A and B

function. The standard deviation of this function is a measure of the
concentration of the signal curve in time direction. The mean of the
standard deviation of all active segments per signal is the descriptor
mean variance in time direction (MVarTD, descriptor D1).

Phase space descriptors: A combined view of the signal’s magni-
tude and the alteration at a position ¢, is enabled by the phase space.
Here, the derivative of the signal x’(t) is plotted over its magnitude
x(t). To weight the alteration and the magnitude equally, both are
normalized to their maximum. To analyze the distribution of the
samples in phase space, the phase space is divided into circular
regions. Therefore a maximal distance d___to the point of origin is
defined. The distance is calculated by

d(t)=[x"(t)*+x(t)*]" (4

is defined as the mean of the

‘max

To be more robust against outliers d

5% of the maximal distances (d,,.. )

1
0.05N

‘max

)
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2. d(t), withS={ild(t)ed

The aim of this definition is to use enough samples to lower the
influence of outliers to the outer boundary, but with a minimum of
samples. The phase space is divided into four regions depending on
the distance d_ . Region 1 encloses all sample values within a dis-
tance of 0.05 d__ . The border for region 2 is at 0.1d__, for region 3
at0.2d__, and for region 4 at d__ . The number of samples in each
region divided by the total number of samples is called “Phase Space
Sample Ratio” (PSSR 1, PSSR 2, PSSR 3, PSSR 4) (descriptors D3-D6).
Therefore, the PSSR will group periodic electrograms (e.g., sinus
rhythm) usually into region 1. For chaotic or non-periodic signals,
the assignment is more random. To reflect this behavior a binary
function is generated. This binary function equals “1”, if a sample
is located in region 4 and “0” otherwise. As the entropy mirrors the
information content of a random process, it is suitable to measure the
periodicity of this binary function. The entropy of the binary func-
tion is termed as entropy of phase space (EPS 4, descriptor D7). To
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evaluate the periodicity of the binary function, the standard devia-
tion of distances between two adjacent rising edges is calculated.
The resulting descriptor is called mean cycle length of phase space
(MCPS 4, descriptor D8).

Wavelet based descriptors: Fractionated activity exhibits com-
plex and time varying morphology. This is reflected by the broad
frequency spectrum present in those electrograms. Using a wavelet
based approach allows the analysis of different frequencies on mul-
tiple scales.

According to the algorithm presented in [17] a descriptor is set
up, that counts the zero crossings in a given signal as a measure for
the fractionation of this signal. Therefore, the signal is decomposed
into coefficients with wavelet Coiflet 4 up to level 10. As shown by
[19] Coiflet 4 is a suitable wavelet to analyze fractionation of electro-
grams. The algorithm can detect regions with high magnitude and
high slew rate. As intracardiac electrograms often differ in terms of
frequency, the wavelet level with the largest magnitude is searched.
According to the algorithm from [17] this level is multiplied with the
two preceding (higher frequency) levels. As a result, active regions
will be emphasized and inactive regions will be suppressed. In the
resulting signal, x,, fractionated regions will be detected by a search
for zero crossings. The number of zero crossings in this wavelet based
electrograms are used as a descriptor (FracSig, descriptor D13).

Similarity of active segments: Faes et al. [10] described an algo-
rithm that compares the similarity of different regions of an intra-
cardiac electrogram. Inspired by Faes’ work a similarity analysis is
computed. The envelope of the absolute value of the analytical sig-
nal is calculated according to the algorithm described in [34]. The
envelope follows the shape of the signal, but is always positive. This
approach respects the increasing variation of the accurate shape in a
more fractionated electrogram. Active segments are extracted using
the NLEO-based segmentation algorithm. With these extracted seg-
ments a correlation matrix is built. First the segments are aligned
using cross-correlation. On the overlapping parts, the absolute value
of the correlation coefficient is calculated. On the basis of this cor-
relation matrix, a clustering is performed. Starting with cluster of the
two most similar segments, step by step the nearest similar segment
is added and the similarity between the new segment and the cluster
is computed. According to the definition of Kaufman and Rousseeuw
[13] the similarity between two clusters is calculated from

1
1 . .
s(R,Q) |RHQlZ“.ERJ.EQS(I,J) (©)

where |R| and |Q| are the cardinalities of both clusters, s(i, j) is the
similarity between element i from cluster R and element j from clus-
ter Q. Here, the number of elements of cluster Q is set to 1. Finally,
the mean value of the similarities of an active signal (Similarity AS,
descriptor D9) is computed.

Amplitude statistics based descriptors: The histogram of an elec-
trogram indicates the measured values during the time of record-
ing. Little electrical activity in atrial electrograms is resulting in an
amplitude around zero. So, the amplitude histogram has a high peak
around “0”, whereas the amplitude distribution of electrograms with
strong electrical activity is spread more widely and is more gaussian-
like. This behavior can be described with the fourth standardized
moment, the kurtosis [25]. To lower the impact of outliers the sig-
nal is divided into k segments with a length I. The global kurtosis
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(HistKurt, descriptor D2) is averaged over the kurtosis of the k seg-
ments. The segment length [_is set to 1 s to make sure that even in
sinus rhythm up to a heart frequency of 1 Hz there is at least one atrial
excitation in this segment.

. IRRLE! . . .
HlstI(urt=EZi:0 kurt051s(x( tIjl <t<(j+1)-1, )) @

Table 2 gives an overview of the 18 descriptors, most of them used by
the FDT for classification of the electrograms.

Classification/fuzzy decision tree

Building the fuzzy decision tree: As a major advantage, FDT avoids
sharp split nodes but instead assigns objects in a region around the
split point a relative affiliation to the following child nodes. This
fuzzy zone is realized using sigmoid functions of form:

1

z(o)=t- 1+exp{-o(v,-s)} ®

1
- 1+exp{-o(v -s)}

z(w)

r

)

as proposed by Chandra and Varghese [7]. z,and z are the affiliation
to the left and the right child node, s is the split point and v, is the
descriptor value of descriptor w. The coefficient ¢ is the standard
deviation of this descriptor on the training data. If the descriptor val-
ues are scaled with a factor a, the width of the fuzzy zone is changing
by @?. This is not intended.

In this decision tree, we defined a coefficient k to replace ¢. The
beginning z__ of the fuzzy zone is set when the sigmoid function
equals 0.01 and the end z__, is set when the sigmoid function equals
0.99. In general z__, (x)=g and z,, (x)=1-g. The range of a descriptor
is the interval [x_,, x__]. The width of the fuzzy zone is chosen as
part pe [0, 1] of the interval length i=x__ —x,__ . It is assumed that the
fuzzy zone with width p-i is set symmetrically to the split point s. This

leads to

Zn (s—%}g and z,, (s+%)=l—g. (10)
The sigmoid function is then expressed as
z( X)—% (11)
" 1+exp{-k(sx)}’
Inserting (10) in (11) and solving for k results in
In(g)-In(1-g) In(g)-In(1-g)
k =- , k= , 12
! (pi)/2 ? (pi)/2 2
with k =k, one has
k. 2lIn(1-g)-In(g) 13)

pi
The boundaries for the interval [x_, , x__ ] have to be determined
from the training data. To be robust against outlier, the upper bound-
ary value is set to 1.5 interquartile range of the upper quartile and the
lower boundary to 1.5 interquartile range of the lower quartile. While
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Table 2: Results of the mostly used descriptors.

Descriptor CFAEO CFAE1 CFAE 2 CFAE3

i iqr i iqr I iqr Y iqr
D1 MVarTD 0.17 (0.01) 0.18 (0.02) 0.21 (0.02) 0.23 (0.03)
D2 HistKurt 22.62 (10.36) 12.88 (5.33) 9.76 (3.17) 6.83 (2.48)
D3 PSSR 1 0.88 (0.08) 0.70 (0.14) 0.52 (0.11) 0.35 (0.12)
D4 PSSR 2 0.02 (0.03) 0.07 (0.03) 0.13 (0,03) 0.14 (0.03)
D5 PSSR 3 0.01 (0.01) 0.04 (0.02) 0.08 (0.02) 0.11 (0.02)
D6 PSSR 4 0.10 (0.03) 0.18 (0.09) 0.26 (0.08) 0.40 (0.13)
D7 EPS 4 1.60 (0.19) 2.09 (0.44) 2.51 (0.26) 2.67 (0.08)
D8 MCPS 4 5.71 (0.32) 5.14 (0.31) 4.74 (0.20) 4.59 (0.14)
D9 Similarity AS -0.17 (0.42) -0.68 (0.26) -0.97 (0.17) -1.17 (0.21)
D10 AR 0.18 (0.06) 0.32 (0.15) 0.56 (0.17) 0.82 (0.14)
D11 MLAS [ms] 54.46 (13.42) 75.67 (31.97) 132.09 (62.60) 312.88 (271.54)
D12 scIMLAS [ms] 4.45 (13.95) 18.01 (13.58) 86.25 (78.23) 345.59 (334.66)
D13 FracSig 345.00 (112.00) 630.00 (273.50) 809.00 (265.00) 1152.00 (433.00)
D14 NoAS 18.00 (5.00) 26.00 (5.00) 24.00 (4.00) 15.00 (9.25)
D15 LocMaxAS 1.68 (0.29) 2.02 (0.41) 2.52 (0.40) 3.29 (0.78)
D16 ZCAS 1.44 (0.34) 1.76 (0.42) 2.27 (0.41) 3.06 (0.76)
D17 sdMaxAS 0.18 (1.76) 1.48 (1.01) 4.21 (1.69) 6.54 (2.03)
D18 sdZCAS -0.13 (1.78) 1.40 (1.01) 3.68 (1.70) 6.07 (2.09)

Median ( 2 ) and interquartile range (igr) per CFAE class are given.

training the decision tree, the aim is to find a split point at a node
t, so that the relative membership of the objects to the right class
is increasing. The Gini diversity index (GDI) is a regular criterion to
evaluate possible split points [3]. The adaption of the GDI for usage
in a FDT was made by Chandra et al. [7]:

2
2 N J N
GDI(S}')=ZV:1 N(t) '*:1_21'—1 N](rv) (14)

where J is the number of classes; N ) is sum of the fuzzy-member-

ship values of records of child node ¢, with chosen split point s;on

descriptor j. NV is the sum of the fuzzy-membership values of records

in the t™ partition before split. N](. ) s the sum of the product of

fuzzy-membership values of the attribute and the fuzzy-membership

values of the corresponding record for class j. The GDI is a rating cri-

terion to find possible split candidates. To find those split points for a

descriptor vector we do the following:

—  sort descriptor values in descending order,

—  set the positions where the class affiliation is changing as can-
didates for a split point,

—  set the split point to the arithmetic mean of both neighboring
descriptor values.

According to this algorithm for each descriptor vector the split point
candidates are found. Finally, the candidate with the smallest GDI is
chosen. The width of the fuzzy zone can be varied according to the
distribution of classes over a descriptor. If there is a large overlap,
the fuzzy zone should be larger than in the case of separated classes.

In this work, the best width of the fuzzy zone was determined by
choosing the best result from a set of different fuzzy zones (Figure 2).
For each fuzzy zone a 10x10 cross validation was realized and the
mean error rate for each fuzzy zone was computed. The best error
rate was achieved for a fuzzy zone with a width of 20%.

To make a decision on the class belonging of a given record, the
decision tree needs an inference instruction. In contrast to a decision
tree with sharp split values, where a record will get the class mem-
bership of the leaf node to which it is assigned, here, a test record
can be assigned to more than one leaf node by a FDT. The inference
instruction for a given record X, considers the fuzzy membership to
a leaf node z(t, X, ) and its class membership c(t). The fuzzy mem-
bership of a leaf node results from the product of fuzzy memberships
of the passed nodes. The total class membership of a record X, _ is
defined as

Ctotal :( XTest ):Zic( ti ) 'Z( ti ’XTest ) (15)

The classification of a record results in partial affiliation to the
CFAE classes. From these partial affiliations, the resulting CFAE class
is derived by a majority decision. The classified record will get the
CFAE class label of the class with the highest percentage. The per-
centage can also be shown as a measure of certainty.

0.26 T T T T

e
)
&

Error rate
o
n
[

=
o

0 20 40 60 80 100
Width of fuzzyzone (%)

Figure 2: Evaluation of different fuzzy zone widths to find the
“best” fuzzy zone width. Displayed is the error rate as result of a
10x10 cross validation for each width.
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Chandra and Varghese used different sharp stop criteria to limit
the growth of the tree while training [7]. This technique has some lim-
itations. Therefore, the stop criteria of this decision tree were given
very weak definitions. This led to an oversized tree at first. In an addi-
tional step this oversized tree was optimized to the best size [3]. The
aim of pruning was to optimize the tree in regard to the complexity
and the predictive accuracy. A sequence of trees is produced by the
use of cost-complexity-pruning [3]. Out of this sequence the best tree
is chosen by evaluating the error rate in consideration with the size
of the FDT. The final tree for the classification in a clinical context will
be generated on the whole set of available classification data. The
best tree is chosen again after cross validation and optimization by
evaluating the size and error rate.

Validation and statistical analysis

The standard way to evaluate a classificator is to perform a 10x10
cross validation [3]. This means the data set has to be separated into
10 equal subsets. The tree is trained with nine subsets and tested with
the remaining “unknown” subset. The correct rates and error rates are
computed and rated. This “training, testing and evaluation” step has
to be repeated until each of the 10 subsets was used to test the tree.
This whole procedure is repeated 10 times with different randomly
created subsets, which leads to a total of 100 trees that are evaluated.

To optimize this tree, the evaluation has not only been done on
the CFAE database but also on datasets from the UCI Machine Learn-
ing Database [22]. The UCI database is a regular database to test and
evaluate machine learning algorithms. From this database five data
sets [Iris, Wine, Wisconsin Breast Cancer (WBC), Haberman’s Sur-
vival (HS), and Glas Identification (GI)] have been chosen to evalu-
ate the FDT. Data sets with continuous feature values and multi-class
assignments have been chosen to be most similar to the CFAE data.
Finally the results have been compared to different decision tree
algorithms (CART [3], SLIQ [23], C4.5 [35], FDTx [7]).

Evaluation of clinical data

To evaluate the distribution of the CFAE classes in clinical cases,
bipolar electrograms were recorded for 5 s with a 300 Hz filter setting.
Anatomical and electrical information were exported from the sys-
tem and the 3D anatomical shells as well as the corresponding elec-
trograms were reconstructed. At first, the algorithm was set to detect
and display the mean cycle length (CL) of AF (mean dV/dt), with a
deflection width of 10 ms and a refractory period of 37 ms. Electro-
grams with a mean CL>120 ms were color coded in violet, 120-70 ms
in rainbow colors and <70 ms in white. The resulting map was com-
pared to the CFAE classification map using the FDT.

Results

Descriptors

All descriptors have been calculated using the database
described previously. In the training phase, the FDT chooses
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the best descriptors to separate the classes depending on
the cost function (e.g., GDI). The results of the 18 most fre-
quently used descriptors are shown in Table 2.

For each CFAE class the median (/) and the inter-
quartile range (igr) per descriptor is shown. The & and
the igr give an overview of the distribution of the descrip-
tor values and the power to separate CFAE classes of each
descriptor. Generally, there is no descriptor that can sep-
arate between all four CFAE classes alone. However, the
descriptors can separate between different CFAE class
groups. For example the descriptors PSSR 3 (D5) and AR
(D10) can separate CO from C3. The mean NoAS (D14) can
be used to separate CO and C3 from C1 and C2. The boxplots
of these descriptors are depicted in Figure 3. To evaluate
the results of the phase space descriptors, the numbers
of samples per region are divided by the total number
of samples per signal. The boxplot of the PSSR 3 (D5) is
depicted in Figure 3. As can be seen, the median values
are significantly different on a 5% level (boxplot notches)
for all four CFAE classes. Also there is no overlapping of
the igr. The same applies to the AR. The range for the AR
varies between 0 (no activity) and 1 (continuous activity).
It increases from 0.18 (CO) to 0.32 (C1) and from 0.56 (C2) to
0.82 (C3). An increasing value is correlated therefore with
an increase in entropy of the electrogram. The entropy of
the number of hits in the different regions of the phase
space (EPS 4) is an often used descriptor, too. EPS 4 can
be used to distinguish between CO and C2 and C3. The
median values for NoAS (D14) are 18 (C0), 26 (C1), 24 (C2),
and 15 (C3), respectively. The values are increasing from
CFAE class CO to class C1. The frequency and fractionation
is also increasing from CO to C1. For C1 and C2, the NoAS
are nearly the same as these two states are similar with
regard to the number of CFAE. For C3 the activity is getting
more continuous and therefore the NoAS (D14) is decreas-
ing again. In the case of continuous activity it will be one.
Finally, the NoAS can separate CO and C3 from C1 and C2.
There is an overlap in the igr of C1 and C2, but, although
the value range is very similar the & are significantly dif-
ferent. For this four delineated descriptors the &t are sig-
nificantly different on a 5% level for all CFAE classes.

On the one hand, with increasing atrial activity the
signals have more deflections and zero crossings and the
iso-electric line is vanishing. Hence, the amplitude histo-
gram is broad and the HistKurt (D2) has small or negative
values. Sinus rhythm electrograms, on the other hand,
mainly present an iso-electric line with some deflection
other than zero. Therefore, the amplitude histogram has a
pronounced peak. In this case the kurtosis values will be
larger than for the ones for the continuous activity. This
behavior is reflected by descriptors D1 and D2. When the
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Figure 3: Boxplots of four descriptors used by the decision tree depicted in Figure 4.

Red crosses mark outliers.

heart rhythm evolves from sinus rhythm to AF the similar-
ity of activation patterns gets lost [37]. As a consequence
the active segments are getting dissimilar (D9).

Class CO and C1 electrograms contain mostly regions
without alteration (iso-electric line is prominent). This
type of signals will be represented primarily in the phase
space in region 1 and 2, whereas CFAE class C2 and C3 will
be more prominent in region 3 and 4. Also the alterations
of C2 and C3 signals make them lie more in the outer limits
of the phase space. Descriptors D3-D8 mirror this. Going
from the origin to the boundary of the phase space the
number of CO samples is decreasing while the number of
C3 samples are increasing. PSSR 3 (region 3) contains 1%
of CO, 4% of C1, 8% of C2, and 11% of C3 signals. EPS 4
and MCPS 4 give an information of the presence of a CFAE
class in phase space region 4. These descriptors reflect
the same outcome as the descriptor PSSR. The descriptors
D13, D15, D16, D17, and D18, which reflect the fractionation

Table 3: Comparison of different decision tree algorithms.

of the signal, are increasing from CO to C3, too. This corre-
sponds to the increasing atrial activity and the increasing
number of active fractionated segments (Figure 3).

Validation of the tree implementation

The FDT presented in this work was compared to the results
of decision trees with sharp split values and the FDT by
Chandra and Varghese (FDT) [7]. Table 3 gives an overview
of the results. Presented is the error rate and standard devi-
ation for each classifier after a 10x10 cross validation. The
results for FDT_and SLIQ were obtained from [7] and the
results for CART and C4.5 were obtained from [31]. The deci-
sion trees CART, SLIQ, and C4.5 have sharp split values; the
FDT by Chandra and Varghese uses a sigmoidal function
as decision border. FDT is the tree presented in this work.
In addition to the error rate, the fuzzy zone width for each

CART SLIQ C4.5 FDT FDT Fuzzy zone width
Iris 93.510.8 98.0+3.2 95.1+0.6 98.0+3.2 96.1+4.8 0.10
Wine 89.3+0.8 88.318.1 92.7+1.1 88.9%4.5 89.1+7.2 0.01
WBC - 93.3+4.8 - 96.4+4.9 92.413.6 0.20
HS - 65.8+£10.8 - 72.617.8 74.4%7.2 0.05
Gl 67.7+1.6 65.0+16.0 68.6+2.0 68.61+8.7 69.418.7 0.10

Shown are the error rate (%)+the standard deviation (%) after 10x10 cross validation. CART and C4.5 data are obtained from Olaru and
Wehenkel [31], SLIQ and FDTx are obtained from Chandra and Varghese [7]. Wisconsin Breast Cancer (WBC), Haberman’s Survival (HS), Glas

Identification (GI).
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Table 4: Wrong assignments per CFAE class in %.

CFAEO CFAE1 CFAE 2 CFAE3
CFAEO X 72 24
CFAE1 37 X 63 1
CFAE 2 2 49 X 49
CFAE 3 0 0 100 X

data set is given. When comparing with other classifiers
for the data sets Iris, Wine and WBC, the proposed FDT
delivers comparable results. Focusing on the results of the
Haberman’s Survival and the Glas Identification data sets,
the FDT is significantly superior.

Resulting fuzzy decision tree

Applying a 10x10 cross validation on the presented FDT
with a fuzzy zone width of 20% results in a mean correct
rate of 80.65+3.3%. Correct rates for the different CFAE
classes are CO: 83.1+4.4%, C1: 81.0+£8.1%, C2: 75.8+8.4%,
C3: 82.7£17.8%. The distribution of the wrong assign-
ments of signals per class is shown in Table 4. Increas-
ing the training data will lead to an increased accuracy of
the FDT. The depicted tree in Figure 4 is chosen from the
sequence of cross validated trees. This tree has a correct
rate of 86.1% (Figure 4).

DE GRUYTER

Visualization of CFAE classes

Using the CFAE mean algorithm, areas with high atrial fre-
quencies were located in different areas of the left atrium.
A loose correlation between CFAE class 2 and 3 could be
estimated. Interestingly, in the FDT map electrograms with
continuous activity (C3) were surrounded by C2 and C1. C3
were present mainly around the PV ostia, the anterior wall
and the inferior part of the posterior wall (Figure 5).

Discussion

The ablation of persistent AF is still challenging. Up to
date, intracardiac electrograms are the only information
which can be obtained during the procedure. But these
electrograms present a broad variation. Current detection
algorithms for CFAE are mainly based on single character-
istics but do not respect the full complexity of the electro-
grams. Therefore, it seems appropriate to use more than
one descriptor. Based on the modified Wells’ criteria, we
classified CFAE into four subgroups with a continuously
increase in complexity (CO-C3). The FDT can be used to
classify electrograms which present a progressive tran-
sition between the different classes. This overcomes the
results sensitivity/vulnerability against small changes of

/D’l<l 80\

/DIO<ON
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1:005 1:0.00
2:0.00 2:0.10
D14<22.0 3:0.00 D1<0.21 3:0.88
@
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D14<12.0 3:0.00 D4<0.12 D1<0.1
0:0.06 0:0.77 @ 0:0.00 0:0.13 0:0.00
1:094 1:022 1:0.16 1:0.78 1:0.09
2:0.00 2:0.01 2:074 2:0.09 2:0.85
3:0.00 3:0.00 D18<3.70 3:0.10 3000 3:0.06
0:0.00 0:0.00
1:0.00 1:0.00
2:0.77 2:029
3:023 3:0.71

Figure 4: Example of the optimal tree chosen from the cross validation process.
At each node the chosen descriptor and its split value is depicted. For each leaf node the membership result is shown. The correct rate for

this tree is 86.1%.
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CFAE class cs

Co

No data

Figure 5: Example of a clinical evaluation of the CFAE classes using the FDT in comparison to a CFAE mean map.

View of the posterior wall with left upper and lower pulmonary vein (left) and right upper and lower pulmonary vein (PV) (right).

(A) automated CFAE mapping algorithm (Ensite NavX). Bipolar electrograms were recorded for 5 s, filter settings were at 30-500 Hz. The
algorithm was set to detect and display the mean CL of atrial fibrillation (mean dV/dt), with a deflection width of 10 ms and a refractory
period of 37 ms. Electrograms with a mean CL>120 ms were color coded in violet, 120-70 ms in rainbow colors and <70 ms in white.

(B) CFAE classes using the FDT. CO (blue): non-fractionated atrial electrogram of high frequency, C1 (green): fractionated atrial electrogram
with periodic activity, C2 (yellow): mixture of periodic fractionated and periodic non-fractionated atrial electrograms; C3 (red): electrogram
with continuous activity. Electrograms with continuous activity C3 are surrounded by C2 and C1. C3 were present mainly around the PV ostia

and the inferior part of the posterior wall.

the descriptor’s value, which is one of the main shortcom-
ings of decision trees with sharp split points [7]. Instead
of using sharp split points to separate classes, the FDT
assigns test objects within the fuzzy zone to classes with
a specific probability. In this tree, several descriptors are
introduced to describe the different characteristics of
CFAE. The tree classifies a given signal into one of the four
groups and presents a percentage of certainty.

Teager’s NLEO was used to differentiate between
active and passive segments of the electrograms with
simultaneous consideration of frequency and ampli-
tude. The MLAS (D11), sdMLAS (D12) as well as AR (D10)
are increasing from CO-C3 which reflects a faster and
more complex local activation. These algorithms are
therefore able to distinguish between no activity and
continuous activity. The NoAS (D14) can separate CO
and C3 from C1 and C2 and the EPS (D7) between CO and
C3. PSSR 3 (D5) and the AR (D10) are able to distinguish
between C1 and C2.

In the training phase, 18 descriptors in 100 different
trees were analyzed and the correct rate of the CFAE clas-
sification was analyzed.

The performance of the FDT improves the more data is
used to train the tree. In this study 429 signals with coin-
ciding interpretation were analyzed. The smallest group

of CFAE classes was C3 with 53 electrograms. Therefore, a
maximum of 53 electrograms could be used in each CFAE
class for the cross validation. To overcome the problem
that a 10x10 cross validation would lead into a statistical
analysis with only 5 signals, we performed a 10x5 cross
validation. Using this technique, 11 signals remained to
test the tree.

The width of the fuzzy zone for the FDT was set to
20%. Although another model, based on the GDI for dif-
ferent kind of class contribution (normally and unequally
distributed, different overlap regions), revealed small
fuzzy regions. In our experience, an increased fuzzy zone
improves the power of the FDT (Figure 2).

The evaluation by the cross validation process esti-
mates the correct rate of the method. This value is correct
whilst the training data set reflects reality data. To gen-
erate a FDT working with a new data set or in a clinical
setting, the tree will be trained with all available data [41].
The correct rate for this new classifier can be estimated
from the mean correct rate of the cross validation. There-
fore, a mean correct rate of 81+3% can be expected. The
depicted tree in Figure 4 is chosen from the sequence of
cross validated trees. This tree has a correct rate of 86.1%.
This reflects the possibility, that with a wider set of train-
ing data, the outcome of the FDT can still be improved. In
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addition to the classification results, a percentage of cer-
tainty is given for each electrogram.

Compared to other algorithms, the proposed tree pre-
sents similar correct rates for Iris, Wine, and WBC data sets.
For the Haberman’s Survival and Glas Identification data
sets the proposed FDT is significantly superior. The reason
for that might be the more fuzzy features of these data sets.
This implies the strength of the proposed tree on fuzzy data.

In clinical use, the algorithm is able to display four
different CFAE subgroups. This enables a more transpar-
ent and objective way of CFAE interpretation. For CFAE
ablation, the most promising electrograms present contin-
uous activity. These electrograms can be detected in 100%
of the cases and accentuated in the 3D map. However, the
classification of the CFAE allows a more detailed evalua-
tion and may improve the knowledge about the stability
and instability of certain areas during AF. This may restrict
the search for characteristic electrograms sustaining AF.

Conclusion

CFAE express an important element of the AF substrate. We
propose a new algorithm for automatic CFAE classification.
According to the modified classification by Wells et al.,
CFAE were divided into four subgroups [42]. The subgroups
were defined as non-fractionated with high frequency, frac-
tionated with periodic activity, instable electrograms with
a mixture of periodic fractionated and periodic non-frac-
tionated atrial electrograms, and continuous activity. The
algorithm is based on a FDT including 18 descriptors. Given
a set of training data, a FDT classifier can be constructed.
The training algorithm automatically chooses the ideal
combination of descriptors and split points to the classifi-
cation of training data. Obviously, this can lead to a tree,
which only uses a subset of the offered set of descriptors as
shown in the example tree (Figure 4). Using this tree, CFAE
were sorted to one of the subgroups with a correct rate of at
least 81%+3%. Electrograms with continuous activity were
detected correctly 100% of the time. In addition, a percent-
age of certainty is given for each electrogram. The FDT is
therefore able to classify CFAE with respect to their progres-
sive transition. This will objectify CFAE interpretation in a
more reproducible and transparent way.

Limitations

This is a retrospective analysis of electrograms recorded
from patients with AF. Prospective studies are needed to
evaluate the clinical impact of this algorithm.
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