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Abstract: In upper limb amputees, prosthetic control 
training is recommended before and after fitting. Dur-
ing rehabilitation, the focus is on selective proportional 
control signals. For functional monitoring, many different 
tests are available. None can be used in the early phase 
of training. However, an early assessment is needed to 
judge if a patient has the potential to control a certain 
prosthetic set-up. This early analysis will determine if 
further training is needed or if other strategies would be 
more appropriate. Presented here is a tool that is capable 
of predicting achievable function in voluntary EMG con-
trol. This tool is applicable to individual muscle groups to 
support preparation of training and fitting. In four of five 
patients, the sEMG test tool accurately predicted the suit-
ability for further myoelectric training based on SHAP out-
come measures. (P1: “Poor” function in the sEMG test tool 
corresponded to 54/100 in the SHAP test; P2: Good: 85; P3: 
Good: 81; P4: Average: 78). One patient scored well during 
sEMG testing, but was unmotivated during SHAP testing. 
(Good: 50) Therefore, the surface EMG test tool may pre-
dict achievable control skills to a high extent, validated 
with the SHAP, but requires further clinical testing to vali-
date this technique.
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Introduction
Myoelectric prostheses are used to restore function and 
appearance in upper limb amputees. To improve the ability 
of controlling a prosthesis, training is recommended prior 
to and after prosthetic fitting. As myoelectric prostheses 
rely on electromyography (EMG) signals as control inputs, 
the main focus of investigation is on the ability to gener-
ate such signals, beginning prior to prosthetic fitting. This 
includes a selective activation of muscle groups as well 
as reliable voluntary control of specific EMG amplitudes, 
where the former are needed to perform intended move-
ments (e.g., hand opening, hand closing), and the latter 
allows adjustment of speed of the prosthesis’ movement.

In proportional control, the speed of movement is 
directly related to the strength of the muscular contrac-
tion [22]. In patients fitted with a pattern recognition 
prosthesis, where proportional control is also used, this is 
principally done in the same way as for conventional two-
signal control. In conventional prosthetic control, selec-
tive activation of single muscles or single muscle groups, 
usually the flexors and extensors of the forearm, need to 
be learned. Prosthetic movement is sequentially selected 
with subsequent proportional control of single move-
ments. Amputees control pattern recognition prostheses 
by generating combination patterns in varying groups 
of muscles, with the ability to access various prosthetic 
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movements without switching. Tests have shown that on 
the basis of a specific training setup, highly reliable vol-
untary pattern activation can be achieved [7]. Reproduc-
ible activation of muscle group patterns, and also the 
gradual control of single muscle contractions, is subject 
to preparatory training for prosthetic fitting.

To assess the ability to control fitted prostheses in 
experienced users, many different tests are available, such 
as the Southampton Hand Assessment Procedure (SHAP) 
[2, 15], Action Research Arm Test (ARAT) [16, 18, 21], 
Assessment of Capacity for Myoelectric Control (ACMC) 
[13, 14, 17], and box and blocks test [4–6, 16]. The SHAP, 
the ARAT, and the box and blocks test rely on measuring 
the time needed to handle various objects in a standard-
ized setting, the ACMC on a score-based assessment of 30 
different grasping maneuvers in four different areas rated 
by trained observers. All these tests are suitable for vali-
dating achieved function in an advanced training state, 
but not for early or predictive assessment or monitoring of 
training. To the authors’ knowledge, there are no complete 
tests available for the early phases of training that can be 
easily administered to monitor rehabilitation progress.

This is particularly important when deciding whether 
to fit an EMG-controlled prosthesis is the appropriate clin-
ical choice. It includes determining whether there is any 
foreseeable functional benefit for the patient or if alter-
natives, like body-powered prosthesis, are a more prom-
ising option. A possible way of testing EMG signals is to 
use virtual reality (VR) systems; however, these are cur-
rently limited to laboratory settings [12, 24]. Some of these 
VR systems provide the clinician with a score for motor 
control, but can only be used with patients who already 
have good EMG control. They are neither suitable for the 
initial phase of rehabilitation, nor providing specific infor-
mation for functions to be trained. There are also several 
other training systems available that rely on simpler feed-
back technology than VR, such as the "MyoBoy" from Otto 
Bock, based on visual feedback. However, none of these 
systems can support planning of skill training by specific 
single function-related data.

The authors aimed to develop a tool for pre-evalua-
tion of trainable voluntary muscle-activation skills for 
decision support prior to prosthetic fitting. In addition, 
the tool supports planning of rehabilitation procedures 
as well as their further monitoring. Essential considera-
tions for system development and the main features of 
the developed prototype are presented here. Additionally, 
a first application study on persons with an amputated 
hand, either using conventional EMG-controlled prosthe-
ses or pattern recognition prostheses, is described. The 
study outcome is compared by reference to an established 

clinical standard for assessment of prosthetic upper 
extremity function, the SHAP.

Materials and methods
Study population

Five individuals with transradial amputation gave informed consent 
to take part in this study at the Medical University of Vienna. Ethical 
approval was granted by the local Ethical Institutional Review Board 
[No. 1164/2013].

Measurement setup and procedure

For surface electromyography (sEMG) recording, eight commercially 
available double differential electrodes (13E200 = 50AC, Otto Bock 
Healthcare Products GmbH, Vienna, Austria) were used. They were 
placed circularly around the forearm of the subjects, approximately 
6.5–7 cm distal to the olecranon of the elbow as shown in Figure 1. 
As an anatomical reference, the ulna was palpated, and electrodes 1 
and 8 were placed bilaterally next to the bone. This allowed acquisi-
tion of sEMG signals from all superficial muscles of the forearm. The 
pre-amplified and band pass-filtered (30–450 Hz, -3 dB) and notch-
filtered (50 Hz) EMG signals were sampled at 1 kHz by the AXON Mas-
ter® (Otto Bock HealthCare Products GmbH, Vienna, Austria, 10bit 
A/D converter) and transferred via Bluetooth to a personal computer 
(Intel(R) Core i7-2600K, 3.4 GHz, 16 GB RAM, Microsoft Windows® 
7–64 bit). Further signal processing was done using MATLAB R2009a 
(MathWorks Inc., US) and custom software, which is explained in 
detail elsewhere [11]. The custom software was written in C # , used for 
calculating the normalized root mean square error (NRSME) between 
the given profile line and the contraction feedback red line of the con-
traction summations from the EMG signals, for calculating the IRT 
score distribution, and for calculating the total IRT score classifica-
tion as described later. This was used to monitor a continuous signal 
trace expressing the actual contraction intensity.

At the beginning of each recording session, the subject per-
formed a maximum long-term voluntary contraction (MLVC) cali-
bration for a specific movement task with maximum contractions 

Figure 1: Alignment of the eight electrodes around the forearm 
using a scissor-fence electrode carrier.
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of involved muscles at a level the subject was able to maintain for 
a minimum of 5 s. Calibration was necessary as the amplitude of 
EMG signals varied between different recordings, due to unavoidable 
variations in electrode position, contact resistance, and even the 
patient’s current mood [10].

For data assessment, the subject is sitting upright, arm freely 
moveable, with a direct view of a computer monitor (resolution 
1280 × 1024 pixels) providing a target trace (Figure 2: blue line, rec-
tangular) and visual feedback trace (Figure 2: red line). The red feed-
back trace displays a simple (non-weighted) summation of all eight 
recorded EMG signals in real time. Each training or testing session 
consists of 16 runs including eight trials with 5 s/trial. The pause 
between sessions was, on average, 10 min; the pause between runs 
was 2 min. The training is always performed with visual feedback. 
The assessment can be done offline for each session. For quantifi-
cation of the subject’s ability to control EMG, the root mean square 
error (RMSE) between target trace and feedback trace was calculated 
and normalized to the MLVC, as NRMSE. This was done for each 
trial. A small NRMSE value corresponded to high-level EMG control 
skills. Higher values indicated erroneous and unstable EMG control. 
The calculated values are further processed using the item response 
theory (IRT), a standardized psychometric quantification technique 
for expressing a person’s ability to perform tasks in comparison to a 
reference population.

Item response theory

IRT, also referred to as the latent trait theory [2], is a psychometric 
instrument for the design, the analysis, and the scoring of tests to 
measure abilities, attitudes, and other latent traits. IRT is based on 
the key assumption that the probability of a person giving a correct 
response to the presented item is a function of person parameters 
and item parameters [1, 3]. A response, herein, is the tracking error 
between the tracking line and the target profile, i.e., the NRMSE 
between subject’s controlled sEMG-derived trace and a given target 
trace profile.

The basic form of IRT is the one-parameter logistic (1 PL) model. 
The persons’ parameter is called “latent trait” or “ability θp of the 

person”, e.g., the intelligence or the ability to follow a given inten-
sity profile with the muscle contraction of a certain movement. In 
this function, the item parameter is the item difficulty βi, i.e., the 
item’s grading on the ability latent trait. The probabilities Pr of cor-
rect responses from a person with ability performing a certain task 
(i.e., an item) with difficulty βi on the latent trait can be modeled by 
a logistic function. The logistic function’s inflection point is located 
at the difficulty βi. The function assesses a person’s ability location θp 
on the latent trait as the difference to the difficulty of the item. Hence, 
using IRT, it is possible to compare a user’s ability relative to the item 
difficulty that has been defined by a reference population as shown 
in Figure 3. Thereby, the IRT score is formed. In other words, a distri-
bution of score differences on the latent trait gets transformed by the 
logistic regression function into a distribution of IRT score values. 
The histogram with five bins of this distribution forms the final IRT 
score of the method.

Classification in score classes

To establish a clinically useful classification scheme for primary 
assessment, decision support for prosthetic fitting and monitoring of 
skill training, the IRT score was split into five classes. For each class, 
a worded definition of clinical skill condition was stipulated, as 
shown in Table 1. The classification can be assessed for single muscle 
functions and movement patterns with multiple muscles involved. 
The principle ability of a subject to control EMG intensity of single 
muscles and muscle groups repeatedly, as reflected by this classifica-
tion, can be one of the decisive criteria for investment and choice of 
a prosthetic solution.

Applying IRT to form a score for sEMG accuracy

Those considerations are applied in the sEMG test tool by forming 
sigmoid curves with the mean value of NRSME for each item from 
a reference population as the 50% mark, as shown in Figure 3. As 
described before, this is the item difficulty βi. Therefore, this number 
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Figure 2: Screenshot of the sEMG test tool during wrist-supination with 80% of MLVC-showing the targeted profile (blue) and  
the amputee’s actual tracking line (red).
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Figure 3: Calculating the participant’s probability of failure Pr for one item can be visualized by drawing the subject’s NRSME on the specific 
sigmoid curve for the item and reading the Pr value on the y-axis. This is shown here for three different items. The difficulty of the item βi 
always defines the 50% value of the curves. For item 3 (green curve), also the connection between Pr and the final IRT score with five classes 
(here class II) is denoted.

Table 1: The ability score.

Class Descriptor Value Explanation

I Excellent 1.0–1.5 No further training required

II Good 1.5–2.5 Some re�nements may be done, but are not yet
mandatory

III Average 2.5–3.5 Not able to control the prosthesis yet, but will
most likely learn with some training

IV Poor 3.5–4.5 A lot of training is required to achieve useful
prosthetic function

V Incapable 4.5–5.0 No muscular function at all

always defines the value where the probability of failure Pr is 0.5. In a 
next step, the NRSME of the tested subjects that reflects their ability 
θp of performing the task is applied to this curve, and the subjects’ 
probability of failure is calculated by using

p- i

r p- iP
1
e
e

θ β

θ β=
+

This probability of failure Pr refers to a certain ability class as 
demonstrated in Figure 3.

Reference population

The reference data pool is taken from measurements performed else-
where [11] on 39 well-trained able-bodied subjects using 63 items 
(nine contraction profiles for seven movements). The assumption 
is that the response probability Pr (of a person performing a certain 
task, i.e., an item) follows a normal distribution on the latent trait 

θ where the item’s difficulty β is the mean value. The location of an 
item’s difficulty βi needs to be configured by the samples from the 
defined population. The x-axis is the NRMSE value, ranging from 0 
to 0.4, which is equivalent to an error range from 0 to 40%. NRMSE 
values  > 0.4 are, in fact, too large for controlling a prosthesis and are, 
therefore, not of interest to this study. Well-trained able-bodied sub-
jects, who can perform exemplary predefined movement patterns, 
serve as reference population for item difficulties. The reference for 
the difficulty of an item is the mean value of NRMSE assessed from 
the well-trained healthy subjects. Data from reference subjects were 
only included, if their probability of failure was below 0.2. Placement 
of recording electrodes was according to the procedure for subjects 
with amputation as described above.

Test sessions in the frame of the study

In order to validate if our sEMG test tool is able to measure changes 
in proportional control, two of the five subjects with trans-radial 
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amputation were tested once a day for a week. The training dura-
tion was about 2 h, with two trainings sessions consisting of 16 runs, 
each including 18 trails with 5 s/trial as described above. The data 
recorded in the first session of trainings 1 and 3 were used to generate 
the IRT scores. In the fifth session, data was recorded in the second 
session to get a post-training score.

Additionally, the IRT scores of all five subjects with trans-radial 
amputation after the battery of five training sessions described above 
were compared to the results from an established standard assess-
ment test for prosthetic function, the SHAP [2, 15]. The SHAP was per-
formed after the five sessions of training. The SHAP protocol relies on 
eight light and eight heavy specific handling objects and 14 activi-
ties of daily living (ADL). The subjects were asked to do the specific 
tasks as fast as possible using their prosthesis with a custom socket. 
Each task was timed by the participant and recorded on an assess-
ment sheet by the assessor. The SHAP was scored on the basis of the 
time needed to fulfill each task. One hundred points or more were 
regarded as normal hand function.

Results
The outcome measures in the study were the pre-rehabil-
itation assessment score determined using the IRT and 
the post-rehabilitation score recorded using both the IRT 
and the SHAP scores. These scores were used to deter-
mine whether a relationship exists between measure-
ment of EMG activity and final prosthetic function. Owing 
to restrictions on patient availability, we were only able 
to record IRT scores over time for the first two patients; 
the results are reported in Table 2. A gradual improve-
ment was observed in both patients. Notably, both these 
patients’ early IRT scores reflected their final SHAP scores 
as shown in Table 3, where a low IRT score resulted in a 
low SHAP score, and the converse was also true.

Table 2: Changes of IRT scores during training.

Patient   1st training   3rd training   5th training

P1   3.81   –   3.55
P2   2.38   2.44   2.21

Table 3: IRT score compared with the index of function measured 
with the SHAP.

Patient   IRT score  IRT class   SHAP index 
of function

P1   3.55  IV (poor)   54
P2   2.21  II (good)   85
P3   3.10  III (average)  78
P4   1.98  II (good)   81
P5   2.25  II (good)   50

In the five patients who we were able to record post-
rehabilitation measures there, was a consistent relation-
ship between IRT and SHAP scores, except for patient 5. 
Patient 5 reported that he did not use his prosthesis for 
ADL. Table 3 shows the SHAP scores and the previously 
measured IRT scores for overall ability of five transradial 
patients.

Discussion
Not every patient with an upper limb amputation quali-
fies for the same fitting [8, 20]. While for some, a cosmetic 
prosthesis might be sufficient, others might benefit from 
mechanical prostheses, and for others, a myoelectric pros-
thesis is the best solution. The choice of the most appro-
priate prosthesis should be agreed by the medical team 
together with the patient. This decision is based on their 
goals, lifestyle, level of amputation, and general physi-
cal condition as well as on their physical and cognitive 
abilities to control a prosthesis [8, 9, 20]. Therefore, the 
patient’s ability of generating EMG signals for prosthetic 
control should be assessed at an early stage, to decide if 
a myoelectric fitting is, indeed, the most effective choice. 
This can be done by the sEMG tool described in this paper. 
Furthermore, the tool also supports decision-making on 
the amount of training required to achieve adequate pro-
portional control and shows the therapist which signals 
or muscles need to be trained. For instance, if a functional 
muscle group is identified with an IRT score of 3, while for 
another, an IRT score close to 1 can be achieved, the thera-
pist should focus on training the muscle groups/functions 
with the higher scores. Thus, a higher score indicates a 
higher need for intensive training. If an IRT score of 5 or 
close to 5 is seen for a single muscle group, it should be 
discussed whether it is possible to use another muscle 
group to achieve the specific prosthetic function because 
the medical team cannot be sure if the patient will ever be 
able to use proportional control with this muscle group.

The sEMG tool also seems to be capable of showing 
changes through training as described by Sturma et  al. 
[23] and as indicated by the data measured in this study. 
Here, an improvement in proportional control could 
be detected for P1 and P2 between the first and the fifth 
session of training. P2 was also assessed after the third 
session of training, were a minimal decrease was noticed. 
This could be explained by the day’s form of the amputee.

It is important to keep in mind that the sEMG tool is only 
designed to measure the quality of proportional control for 
all signals, but not their selectivity. Therefore, additional 
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measurements should be used, like the classification rate 
in pattern recognition patients. This parameter describes 
the patient’s ability to perform the intended prosthetic 
movements with accuracy, i.e., using the exact pattern of 
muscular activation that had been used during training 
for control of the prosthesis [7]. Nevertheless, proportional 
control is crucial for achieving good prosthetic function. In 
order to explore a possible correlation between the ability 
for proportional control and actual prosthetic function, the 
scores of the sEMG test tool and the SHAP were compared. 
Owing to the small sample size, the explanatory power of 
this study is limited. Nevertheless, it could be shown that 
the three patients who did well at the SHAP testing also 
had a good to average IRT score. In addition to this, P1 who 
had an IRT score of 3.55 also encountered difficulties when 
performing the SHAP. While a correlation between the IRT 
scores and the SHAP scores seems to exist for P1–P4, P5 
had the lowest SHAP score of all patients tested, but a good 
IRT score. This can be explained by low selectivity of the 
EMG signals, the patient’s poor motivation to perform well 
on the SHAP testing and his little experience with using 
the prosthesis in daily life.

This study suggests that good proportional control 
(as measured with the sEMG tool) is necessary, but not 
the only condition for good prosthetic function (as meas-
ured by the SHAP test). This can be explained by the fact 
that there are many other factors apart from proportional 
control influencing the actual prosthetic function. They 
include the type of myoelectric prosthesis (type of hand or 
hook), the control algorithms [19], the fitting of the shaft, 
and the ability of separating the EMG signals as well as the 
user’s experience with the fitting.

Conclusion
The sEMG tool was developed to measure proportional 
prosthetic control in upper limb amputees before pros-
thetic fitting. It allows forming a five point ranking scale 
for representing the amputee’s EMG performance by 
applying the IRT. The use of this psychometric measure 
compares the amputee’s ability of mastering a certain task 
to the ability of others. Hence, the score not only includes 
the amputee’s actual performance but also the difficulty 
of the task.

In longitudinal testing, improvements during training 
were detected by the sEMG test tool. Also, when compared 
to the outcome of SHAP testing, a correlation between 
the IRT score and the SHAP score was seen. Nevertheless, 
there are many factors that contribute to good prosthetic 
function apart from proportional control.

In conclusion, the sEMG test tool allows measuring 
proportional prosthetic control and can, therefore, assist 
in decision-making in the rehabilitation after upper limb 
amputation.
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