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Abstract: The interaction between exercise and mitochon-
drial biogenesis in skeletal muscle is fundamental to human
physiology, with important implications for health and ath-
letic performance. While exercise is known to stimulate
mitochondrial biogenesis, the effectiveness of varying-inten-
sity exercise remains unclear. This systematic review and
meta-analysis aimed to evaluate the impact of physical
activity on mitochondrial biogenesis pathways in skeletal
muscle and identify key biomolecular markers in healthy
individuals. Among these, PGC-1α emerged as the most con-
sistently reported marker. The meta-analysis showed a sig-
nificant increase in PGC-1α expression following endurance
exercise, with a pooled effect size of Hedge’s g = 1.17 (95%
confidence interval: 0.14–2.19, I2 = 84.5%), indicating a large
effect with substantial heterogeneity. Subgroup analyses
revealed that both interval and continuous endurance
training produced large effects (Hedge’s g = 1.29 and 1.01,
respectively), with no significant difference between modal-
ities (p > 0.05). These findings confirm that exercise induces
significant molecular and structural mitochondrial adapta-
tions, with responses influenced by exercise type, intensity,

and duration. This underscores exercise as a potent stimulus
for mitochondrial biogenesis, supporting its role in pro-
moting metabolic health and physical performance.

Keywords:mitochondrial biogenesis, skeletal muscle, PGC1
alpha, endurance, strength training

Abbreviations

AMPK AMP-activated protein kinase
ATP Adenosine triphosphate
CaMK Calcium/calmodulin-dependent protein

kinase
CREB cAMP response element-binding protein
MDPs Mitochondrial-derived peptides
MOTS-c Mitochondrial open reading frame of the 12S

rRNA-c
mtDNA Mitochondrial DNA
NRF-1 Nuclear respiratory factor 1
NRF-2 Nuclear respiratory factor 2
p38MAPK p38 mitogen-activated protein kinase
p53 Tumor protein p53
PGC-1α Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha
PKA Protein kinase A
SIRT1 Silent mating type information regulation 2

homolog 1
TFAM Mitochondrial transcription factor A
VO₂peak Peak oxygen uptake

Introduction

Skeletal muscle is one of the human body’s most dynamic
and plastic tissues [1]. Motor neurons’ movement is under
voluntary control, integrating central nervous system stimulus
and focus, to produce force and enable locomotion [1,2].

Diana Marisol Abrego-Guandique: Department of Health Sciences,
University of Magna Graecia Catanzaro, 88100, Catanzaro, Italy
Nalia Mercedes Aguilera Rojas: Department of Pharmacy, Health and
Nutrition Sciences, University of Calabria, 87036, Cosenza, Italy
Aldo Chiari: Università Telematica San Raffaele, Rome, Italy
Filippo Luciani: ASP Cosenza, Cosenza, Italy



* Corresponding author: Erika Cione, Department of Pharmacy, Health
and Nutrition Sciences, University of Calabria, 87036, Cosenza, Italy;
Galascreen Laboratories – University of Calabria, 87036, Rende (CS), Italy,
e-mail: erika.cione@unical.it

Roberto Cannataro: Research Division, Dynamical Business & Science
Society – DBSS International SAS, Bogotá, 110311, Colombia



# These authors contributed equally to this work.

Biomolecular Concepts 2025; 16: 20250055

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/bmc-2025-0055
mailto:erika.cione@unical.it


Most cellular functions that regulate movement depend sig-
nificantly on mitochondrial activity [3]. These organelles are
critical for regulating overall metabolic status [4] and play a
crucial role in maintaining cellular homeostasis [5]. As the
primary site for cellular respiration, these organelles employ
oxidative phosphorylation to convert the reducing equivalent
coming from nutrient metabolism into adenosine tripho-
sphate (ATP), the coin of cellular energy [6]. During exercise,
the demand for ATP surges in skeletal muscles, intensifying
during contractions [7], and an inflammation grade is reported
[8]. This prompts the mitochondria to an adaptive response,
leading to an upregulation of mitochondrial mediator linked to
their biogenesis. Mitochondrial biogenesis is the process of
generating new mitochondria within cells [9], which involves
joining and separating the mitochondrial network through
fusion and fission, respectively. It plays an important role in
cellular adaptation to exercise [10]. The main regulators of
mitochondrial biogenesis, are transcription factors nuclear
respiratory factors 1 and 2 (NRF-1 and NRF-2), the mitochon-
drial transcription factor A (TFAM), the p53, and the transcrip-
tional coactivator peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC-1α) [11–13]. This latter is present in tissues
with a high capacity of mitochondrial systems [14]. The expres-
sion of the PGC-1α gene is rapidly induced by exposure to cold
[15], acute exercise, and fasting [16]. In all these physiological
situations, the demand for energy in the form of heat or ATP is
increased [17]. It has been shown that skeletal muscle contains
certain levels of PGC-1α in the cytoplasm. Through the stimulus
of exercise, these levels are activated and mobilized into the
nucleus, where they act as coactivators of the transcription
factors NRF-1/2, facilitating the synthesis of mitochondrial pro-
teins. This is the first phase of mitochondrial biogenesis [18].
Some studies have reported that an increase in aerobic capa-
city due to training is in part due to improvements in mito-
chondrial biogenesis and function [19–22]; furthermore, in a
recent meta-analysis, the majority of the results suggested that
exercise improves mitochondrial morphology and biogenesis
in cardiovascular diseases patients [23]. This systematic review
and meta-analysis aimed to investigate the key biomolecular
markers of mitochondrial biogenesis in healthy individuals.

Materials and methods

The systematic review was conducted according to the pre-
ferred reporting items for systematic reviews andmeta-ana-
lyses (PRISMA) guidelines [24] and registered at the PROSP-
ERO International Prospective Registry (CRD42024522994).
The methodological approach is based on three steps: (i)
paper location and selection, (ii) paper analysis, and (iii)
results presentation. We adopted a semi-automated approach

using the mySLR platform [25], a robust and affordable plat-
form successfully used previously by our group [26–28].

Paper location and selection

Two investigators (N.M.A.R. and D.M.A.-G.) independently
searched the PubMed and Web of Science databases to
identify publications in peer-reviewed journals published
before March 30, 2025. The search was conducted using the
Boolean operators “AND” and “OR” to combine the fol-
lowing terms: (“NRF” OR “Nuclear Respiratory Factor” OR
“TFAM” OR “Mitochfondrial transcription factor A” OR “PGC-
1α” OR “PGC-1 ALPHA” OR “p-53” OR “Transcription Factor
p53” OR “SIRT1” OR “silent mating type information regula-
tion homolog 1”) AND (“mitochondria” OR “mitochondrial
biogenesis” OR “mitochondrion biogenesis” OR “mitochon-
dria autophagy” OR “mitochondrial fission/fusion” OR “mito-
chondrial content” OR “Mitochondrial transcription” OR
“mitochondria signaling”) AND (“skeletal muscle” OR “mus-
cular tissue” OR “skeleton”) AND (“physical activity” OR
“physical exercise” OR “training” OR “aerobic training” OR
“anaerobic training” OR “endurance” OR “exercise”).

Study selection and data extraction

Studies included assessed mitochondrial biogenesis in ske-
letal muscle during different types of exercise, all of which
were published before March 2025. The inclusion criteria
for this systematic review were as follows:

Population: studies in humans conducted with partici-
pants ≥18 years of age.

Exposure: studies that reported skeletal muscle mito-
chondrial biogenesis during exercise.

Outcomes: studies that provided sufficient information
aboutmitochondrial biogenesis signaling in muscle biopsies.

This review includes randomized trials (RT) or rando-
mized crossover trials published in English over the last 10
years (data: January 2014–March 2025). Articles were excluded
from the review for the following reasons: studies not pub-
lished in English or prior to March 2014; reviews, meta-ana-
lyses, letters, conference papers, comments, or book chapters;
and studies on animal models or in vitro experiments. Data
from all included articles were extracted by one author
(N.M.A.R.) and checked by two authors (D.M.A.-G. and E.C.).
The following information was recorded: authors’ names,
publication year, study country, study design, participant
characteristics (sample size, gender), physical activity, out-
comes of interest, and results.
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Quality assessment

The possibility of bias in the design and analysis of each
study was assessed by two different evaluators (N.M.A.R.
and D.M.A.-G.) using the NIH Study Quality Assessment Tool
(https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-
tools, accessed March 12, 2025), and three additional reviewers
were consulted when necessary (R.C., E.C., and A.C.). Specifically,
the Quality Assessment of Controlled Intervention Studies was
used; both forms have 14 questions designed to help focus on the
key concepts for evaluating the internal validity of a study, such
as the risk of potential selection, method, information, measure-
ment, and confounding bias.

Statistical analysis

Data for PGC-1α mRNA expression were extracted. Values
were digitized from figures using PlotDigitizer PRO v3.3.9
(2025) when not reported. Effect sizes (Cohen’s d) were
calculated to compare pre- and post-exercise in interval
and continuous endurance conditions. Cohen’s d values

were converted to Hedge’s g to correct for small sample
bias. Standard errors and 95% confidence intervals were
computed for each effect size. Individual Hedge’s g values
were then pooled to estimate the overall effect of exercise
on PGC-1α expression. All statistical tests in this study were
carried out using fixed and random effect designs imple-
mented in the R studio, version 3.2.4.

Results

In Figure 1, a total of 1,104 records were identified through
the database search. After removing 441 duplicates, 663
records remained for screening. A total of 92 full-text articles
were assessed for eligibility, of which 79 were excluded for
the following reasons: animal studies (n = 15), not aligned
with the topic (n = 29), published before 2014 (n = 15), or not
RT (n = 20). Thus, a total of 13 studies were included in the
final systematic review. Although the primary aim of this
review was to assess the impact of exercise on mitochon-
drial biogenesis in healthy individuals, studies involving
participants with obesity were included when no additional
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Figure 1: PRISMA flow diagram showing the algorithm for selecting eligible studies. RT, randomized trial.
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metabolic disorders were present [29], as obesity alone does
not inherently constitute a diseased state.

Characteristics of the studies included

Table 1 presents the characteristics of the included studies.
Twelve randomized controlled trials were eligible for this
systematic review. Of these, eight were parallel-group
randomized controlled trials [29–37] and four were rando-
mized crossover trials [38–41]. These studies were pub-
lished between 2014 and 2021 and conducted in eight
countries: three in Sweden [30,35,40], three in Australia
[31,33,36], two in Denmark [32,38], and one in Canada, the
United States, the United Kingdom, Brazil, and South Africa
[29,34,37,39,41].

Three studies included both sexes [30,37,42], while
the remaining seven focused solely on male participants
[31–33,36,38–41]. Only one study was conducted exclu-
sively in women [29].

The systematic review included studies reporting out-
comes related to different types of exercise or training in
terms of biochemical signals of mitochondrial biogenesis.
Based on existing literature, Figure 2 illustrates the poten-
tial pathways that may be modulated by physical activity.
All 13 studies assessed markers of mitochondrial biogen-
esis. The most frequently measured signal was PGC-1α.
Other key markers included TFAM [33,34,36–39], NRF-1/
NRF-2 [33,37,38], SIRT1 [33], and p53 [31,33,36]. Von Walden
et al. reported that mitochondrial-derived peptides (MDPs),
including human and MOTS-c, serve as systemic markers
of mitochondrial signaling [30]. Some studies also include
other signals, such as SOD2, complex I–IV, and citrate
synthase.

Considering the type of exercise used and the specifi-
city of training, resistance, and endurance, or a combination
of both training types, were evaluated in our review. Exercise
modalities varied considerably across the included studies. A
total of 12 studies incorporated endurance-based protocols,
either as stand-alone interventions or in combination with
other training types [30–39]. Only one study exclusively
implemented sprint exercise without an endurance compo-
nent [40]. Resistance training was explicitly included in two
studies [34,37], while three studies applied combined endur-
ance and resistance training protocols [32,33,37]. While the
majority of interventions were acute, focusing on responses
to single bouts of exercise, four studies employed longer-term
(chronic) training protocols ranging from 4 to 12 weeks
[29,33,36,37], providing insight into sustained adaptations in
mitochondrial biogenesis.

All the studies selected in our review use muscle
biopsy as a parameter to evaluate biogenesis after exercise,
and protocols include biopsies collected pre- and post-
training. Biopsies provide an important tool for studying
and diagnosing different mitochondrial biogenesis signaling
pathways in skeletal muscle, as they are not easily measured
or detected in other tissues. Considering that evaluating
several parameters, such as mitochondrial DNA deletion
or mitochondrial content/volume, is more readily detectable
in muscle tissue than in other tissues or serum, including
blood.

Meta-analysis of the effects of
endurance exercise on PGC-1α mRNA
expression

Seven studies were included in the meta-analysis to eval-
uate the effect of endurance exercise on PGC-1α mRNA
expression. When analyzed by exercise modality, interval
training showed a pooled effect size of Hedge’s g = 1.29
(95% confidence interval [CI]: −0.18 to 2.76), indicating a
large but statistically non-significant increase in PGC-1α
expression, with moderate heterogeneity (I2 = 72%, p =

0.0065). Continuous endurance exercise yielded a similar
pooled effect size of Hedge’s g = 1.01 (95% CI: −1.17 to 3.19),
though with very high heterogeneity (I2 = 90.8%, p <

0.0001), reflecting substantial variability across studies.
The overall pooled effect across all studies was Hedge’s
g = 1.17 (95% CI: 0.14–2.19), suggesting a statistically signifi-
cant and large increase in PGC-1α mRNA expression fol-
lowing endurance exercise. However, the wide prediction
interval (−1.62 to 3.95) indicates considerable variation in
potential future study outcomes. No significant differences
were found between exercise modalities (p > 0.05), sug-
gesting that both interval and continuous endurance exer-
cise similarly enhance PGC-1α expression (Figure 3).

Discussion

The present systematic review and meta-analysis aimed to
assess the potential impact of exercise on mitochondrial
biogenesis in subjects with apparent healthy status focusing
on PGC1α as a biomarker. This enables us to organize the
outcomes systematically and comprehensively. Exercise is
widely recognized as a potent stimulus for activating key
signaling pathways that promote mitochondrial adaptations
in skeletal muscle [43]. These adaptations are crucial for
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enhancing muscular endurance and metabolic efficiency.
Exercise protocols must be carefully designed to effectively
induce such physiological changes, particularly in intensity
and duration. A central player in the adaptive process is
PGC-1α, a transcriptional coactivator that regulates mito-
chondrial biogenesis and muscle remodeling [18,44]. Its
activation through exercise highlights the importance of
structured training programs designed to optimize muscular
andmetabolic health. Several studies have demonstrated that
PGC-1α is highly sensitive to physical activity’s intensity, fre-
quency, and metabolic demands. Gidlund and co-workers
observed a rapid increase in PGC-1α protein levels in 2 h
post-exercise, indicating a swift molecular response to endur-
ance-type activity [35]. Similarly, Granata and co-workers
reported increased levels of both PGC-1α and the tumor
suppressor protein p53 following high-intensity interval
training (HIIT), underlining the importance of exercise
intensity in activating mitochondrial signaling pathways [36].

Supporting this, Fiorenza and co-workers demonstrated that
low-volume, high-intensity exercise induces significant tran-
scription of PGC-1α, highlighting the transcriptional sensitivity
of this gene to both intensity and metabolic stress [38]. In
addition, Bishop et al. describe that HIIT has also been shown
to induce more remarkable mitochondrial protein synthesis,
and this latter may best reflect exercise-induced mitochon-
drial biogenesis [45]. Two groups by Tachtsis and Andrade-
Souza emphasized that PGC-1α expression is also influenced
by factors such as training frequency and nutrient avail-
ability, particularly in “train-low” strategies protocols
[31,39]. Similar results were obtained by Conceição and co-
workers supporting that low-intensity exercise has lower
effectiveness in stimulating mitochondrial biogenesis [46].
However, the response to exercise is not uniform across
all populations or training contexts. Notably, Mendham
et al. reported no significant change in PGC-1α protein con-
tent after 8 weeks of either cycling or small-sided games

Figure 2: Molecular pathways are potentially modulated by physical activity and associated with mitochondrial biogenesis. This conceptual model
illustrates the central signaling cascades and transcriptional regulators activated by various forms of physical activity, such as endurance and
resistance training. Key pathways include AMPK, p38MAPK, CaMK, and SIRT1, which converge on the activation of PGC-1α, leading to the expression of
nuclear-encoded mitochondrial genes (e.g., TFAM, NRF-1/2) and promoting mitochondrial biogenesis [43]. Created with BioRender. PGC-1α, per-
oxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT, sirtuin; NRF-1, nuclear respiratory factor 1; NRF-2, nuclear factor erythroid 2
like 2; p53, tumor protein p53; TFAM, mitochondrial transcription factor A; mtDNA, mitochondrial DNA; P, phosphate; NAD/NADH, nicotinamide
adenine dinucleotide/nicotinamide adenine dinucleotide hydrogenated; CREB, cAMP response element-binding protein; PKA, protein kinase A;
p38MAPK, p38 mitogen-activated protein kinase; CaMK, calcium/calmodulin-dependent protein kinase; AMPK, AMP-activated protein kinase;
AMP/ATP, adenosine monophosphate/adenosine triphosphate.
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training in previously inactive men, suggesting that baseline
metabolic health or training status may modulate the exer-
cise response [33]. These findings align with the current
meta-analysis, which revealed a large and statistically sig-
nificant overall increase in PGC-1α expression following
endurance exercise (Hedge’s g = 1.17, 95% CI: 0.14–2.19),
although with substantial heterogeneity (I2 = 84.5%). While
both interval and continuous endurance training elicited
large effect sizes (1.29 and 1.01, respectively), the differences
between modalities were not statistically significant (p >

0.05), reinforcing the view that various forms of endurance
exercise can effectively promote mitochondrial gene expres-
sion, depending on contextual and individual factors.

TFAM plays a crucial role in the transcription and repli-
cation ofmitochondrial DNA, and its expression appears to be
influenced by both the type and context of exercise. However,
research has shown that the response of TFAM to physical
activity can vary depending on several factors. For example,
Andrade-Souza et al. and Fiorenza et al. observed increased
TFAM mRNA expression following high-intensity exercise,

indicating that acute bouts of intense physical stress can sti-
mulate the transcriptional activity of mitochondrial genes
[38,39]. This aligns with the broader understanding of inten-
sity as a key driver of mitochondrial adaptation. Extending
these findings, Irving et al. reported significant elevations in
TFAM and other mitochondrial regulators, such as NRF-1 and
SIRT3, after an 8-week combined endurance and resistance
training program [34]. Importantly, these adaptations were
evident in both young and older adults, suggesting that age
does not necessarily blunt the mitochondrial response when
an appropriate training stimulus is applied. Conversely,
Mendham et al. found no change in TFAM protein content
following a similar training duration, consistent with their
earlier observations regarding PGC-1α [33]. These findings
imply that population-specific factors, such as initial fitness
level, metabolic health, or training modality, may influence
the extent of mitochondrial gene activation in response to
exercise.

The type of exercise performed plays a crucial role in
determining the extent and nature of mitochondrial

Figure 3: Forest plot of the meta-analysis examining the effects of endurance exercise on PGC-1α mRNA expression. Effect sizes (Hedge’s g) and 95%
CI are presented for each study, grouped by exercise modality (interval vs continuous). Diamonds represent pooled effect sizes using a random-
effects model (HK method). The vertical line indicates the null effect. Square sizes reflect the weight of each study. Heterogeneity is reported as I2 and
τ2. No significant differences were found between exercise modalities (p > 0.5). The red line represents the prediction interval, indicating the expected
range of effects in future studies.
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adaptations. The training modality can significantly
impact mitochondrial biogenesis and function, whether
endurance, resistance, or a combination of both. Irving and
co-workers demonstrated that combined endurance and resis-
tance training elicited greater mitochondrial adaptations com-
pared to either modality alone [34]. Supporting this, Mendham
and co-workers found that combined training significantly
improved mitochondrial respiration in obese women, under-
scoring its potential effectiveness even in metabolically com-
promised populations [29]. Combining exercise upregulates
PGC-1α and enhances mitochondrial enzyme activity, muscle
mass, strength, and VO₂peak. However, exercise order only
affected complex II protein content [37]; other training strate-
gies may elicit more pronounced molecular responses. In par-
ticular, speed endurance training, especially when combined
with traditional endurance exercise, induces a more robust
transcriptional response in pathways related to mitochondrial
function, metabolism, and vascular adaptation than endur-
ance training alone [32]. Concurrent resistance and endurance
training in different sequences may alter mitochondrial bio-
genesis signals, likely due to prior activation of PGC-1α path-
ways, with a mechanism involving mTOR signaling [47].
Beyond skeletal muscle, systemic effects of endurance exer-
cise have also been observed. Von Walden et al. reported
increased circulating levels of MDPs such as MOTS-c and
humanin following acute endurance activity, suggesting
that mitochondrial signaling extends beyond local tissue
responses [30]. At the same time, a growing body of research
is linking molecular adaptations with functional perfor-
mance outcomes. High-intensity training elevatedmitochon-
drial gene expression and resulted in measurable improve-
ments in endurance capacity [32,38]. Similarly, Irving and
co-workers associated increased mitochondrial protein
expression with gains in VO₂peak and positive shifts in
body composition, demonstrating these molecular changes’
clinical and physiological relevance [34]. This systematic
review with meta-analysis highlights the significant role of
exercise in stimulating mitochondrial biogenesis, particu-
larly through the activation of PGC1α. Evidence consistently
supports that exercise intensity, frequency, and modality
are critical factors influencing the extent of mitochondrial
adaptations. While endurance and resistance exercises each
offer benefits, their combination tends to elicit more robust
and comprehensive adaptations, enhancing both muscular
and systemic responses. However, individual variability
such as baseline fitness, age, and training history can mod-
ulate the molecular response to exercise, suggesting the
need for personalized training approaches. Importantly,
improvements in mitochondrial density may benefit for
healthy individuals and offer therapeutic potential in patho-
logical conditions. In particular, disorders like sarcopenia,

characterized by a decline in muscle mass, and conditions
like lipedema [48]. Since biopsy is an invasive procedure,
a promising biomarker candidate can be represented by
microRNAs [47], which are also used in diagnostic proce-
dures [49].

Conclusions

Overall, exercise emerges as a powerful, non-pharmacolo-
gical tool for enhancing mitochondrial function via PCG1α
expression, with significant implications for both meta-
bolic health and disease management. Future research
should continue to refine optimal training strategies
and explore pathological factors influence mitochon-
drial responsiveness to exercise.
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