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Abstract: The negative slope of human ovulatory fidelity
begins with a high follicular fund balance with gradual
withdrawals over time. This depletion of reserve is a sen-
tinel event foreshadowing severe reproductive loss and,
eventually, systemic aging. Conversely, the youthful ovarian
phenotype requires coordination among endothelial, gran-
ulosa, immune, perivascular, stromal, and perhaps germline
stem cells. This diverse tissue matrix theoretically can be
modified by platelet (PLT)-derived moieties, but this awaits
experimental confirmation in adult ovaries. Indeed, while
the cellular entropy states of menopause and low reserve
could follow a final common pathway, cell kinetics are not
always irreversible within this set. We propose an experi-
mental design to track nuclear factor kB (NF-kB) oscillations,
tumor necrosis factor-alpha (TNF-a), selected gene expres-
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sion, apoptosis, and key immune/inflammatory actions as
entropy drivers antagonizing reproductive fitness. Since
NF-xB and TNF-a are discharged in activated PLT releasate
(or react to its cargo proteins), our investigation audits
response markers pre- vs post-injection of processed pla-
telet-rich plasma (PRP), connecting discrete signals to tran-
scriptional output, cell function, and ovarian cytoarchitecture.
This may reveal intraovarian PRP operating as a local
entropy rectifier, with organ field function shifting to sup-
port oocyte competence incidentally, where “menopause
reversal” is merely a beneficial secondary effect.
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Introduction

Initially developed by Clausius and refined later by Boltzmann
[1], the concept of entropy expresses system order as measured
by uncertainty or unpredictability. Young cells in “healthy
order” are expected to display low entropy, while tissue aging
reflects deterioration of physical structures such as misfolded/
deformed RNA, DNA, or proteins, with harmful downstream
effects in tissues and organs [2]. Entropy can be reversed
during early development, growth, and under metabolic con-
ditions where energy is expended to attenuate disorder [3-5].
Common to other mammalian organ systems [6], the adult
human ovary demonstrates nonlinear dynamics characterized
by multi-stability, hysteresis, and transitions across different
metabolic states (ie., ovulatory vs non-ovulatory functions).
The fertility vs infertility divide may thus be classified within
the ovarian field as a stochastic process where reproductive
potential is optimized at an entropy minimum, while subferti-
lity expands with a declining capacity to maintain orderliness
over time. Manipulating this biostat would be tantamount to
resetting the female biological clock.
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Current models of cellular aging portray DNA damage
accreting with lost regenerative capacity, more genomic
infidelity, and eventually, cell loss without replacement
(death). For the ovary, early diminishments of reserve ines-
capably presage a final functional collapse at menopause. Of
note, this process is only partially heritable (<50%) and under-
scores the importance of non-genetic factors in ovarian aging
[7]. For example, twins sharing the same household may
acquire dissimilar age-related epigenetic changes, revealing
an energy system possibly subject to modification [8,9]. If this
paradigm is correct, it invites speculation on possible external
inputs like intraovarian platelet-rich plasma (PRP) able to
alter the functional dynamic and influence clinical outcomes
(i.e,, recover reserve by reducing entropy).

Experimental program

Following IRB approval, written informed consent would
be obtained from patients (age, 20-55) already scheduled
for standard GYN laparoscopy for benign indications [10].
This study is powered by <1 g of tissue obtained from each
ovary by standard punch biopsy (Figure 1). No hormone
use within 6 months would be confirmed before enroll-
ment [11]. Deidentified ovarian samples are maintained
fresh as the experimental substrate and cultured at 37°C/
5% CO,, based on a previously published complex tissue pro-
tocol [12]. While a signal multiplier array incorporated a pro-
tein—protein interaction model for platelet-derived bFGF and
VEGF [13], it failed to include guidance on methods or study
design to report on cellular response. Here, the reagent used
as the external stimulus is matched-autologous PRP processed
with calcium gluconate activation [14].

We propose information on ovarian nuclear factor
k-light-chain-enhancer of activated B cells (NF-kB) dynamics
to be supplied from DNA binding at kB enhancer motif
sequences found in NF-kB target genes, as described by
others [15]. DNA-protein binding may be measured either
by the electromobility shift assay technique or by quanti-
tative ELISA [16,17]. Alternatively, a fluidic chip system
could be used whereby DNA, histone/protamine, and tran-
scription factor NF-kB are observed to record how PRP
cytokine inputs alter DNA-protein configurations [18]. Tran-
scriptional activation data also can be quantified using an
NF-xB consensus promoter sequence linked to a “reporter
gene” and luciferase assay [19,20]. Differences in TNF-a levels
pre- vs post-PRP exposure would be marked by quantitative
immunoassay (Promega; Madison, WI). Recording changes in
TNF-a will improve knowledge of how this pleiotropic cyto-
kine may impact differentiation, proliferation, and survival

DE GRUYTER
C_ &
n
“' ‘: <1g
(@) b
v
\ DME at 37°C
+2mmol/l-glutamine
2mmol/l-butyrate
E 2mmol/l-alanine
(b) X2 2mmol/l-lactate [12]
toii L,
/\
PRP CpG
Ca2* gluconate NF-xB
TNF-a

Figure 1: Laboratory schematic for planned study of 5" - C - phosphate -
G - 3/ (CpQG) islands, nuclear factor k-light-chain-enhancer of activated B
cells (NF-kB), and tumor necrosis factor-a (TNF-a). Fresh ovarian tissue (a)
would be obtained via laparoscopic biopsy (bilateral) from qualified
volunteers (age, 20-55) and incubated [12]. Baseline assessments of
study parameters at t, are followed by dosing with matched, autologous
PRP (b) after Ca* gluconate activation [14]. As PRP incubations run as
duplicates, concentrations would be reduced by % in each corre-
sponding arm.

after PRP. Although unlikely, short-term PRP effects on 5" — C
— phosphate — G — 3 (CpG) islands may quantify expression
noise attenuation post-stimulus [21]. Since the duration of any
PRP impact on NF-kB, TNF-q, or CpG islands is unknown, the
endpoint for experimental culture termination is recursive
and must be delimited by data not currently available.

In addition to functional immunohistochemical find-
ings, ovarian cells can be imaged by stereological analysis
[22] to note potential differences in cytoarchitectural ele-
ments by the Delesse principle [23]. As each patient would
contribute two biopsies, the plan is to run these in dupli-
cate to validate observed findings (Figure 2).

The older ovary: Special features

Unlike most other adult endocrine organs, the human
ovary begins to show functional decline relatively early
(approx. 30-35 years). It is generally agreed that this nega-
tive slope describes a follicular pool which recedes soon
after menarche [24,25]. Losses in ovarian reserve can bring
adversity to those wishing to conceive as well as for patients
disinterested in fertility (i.e., symptomatic menopause) [26].
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Entropy & field effects after ovarian PRP

Methylation status defines the epigenome

Determines gene promotion vs. silencing
Influences cellular regeneration/replacement

Transcription factors for cell-survival genes
Links outside inputs to biological responses
Induces resistance to apoptosis
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Figure 2: Truncated descriptions of CpG, NF-kB, and TNF-a as rationales for experimental measurements in adult human ovarian tissue cultured with
matched, autologous activated PRP. Shared interactions among sampled parameters (center) require clarification in an ovarian context, which may be

provided during the proposed study.

Against this background, if epigenetic changes act as a peri-
menopause trigger [27], one theory supports the concept of
ovarian compromise as among the first detectable signs of
aging [28]. As such, the adult human ovary would be merely
the most fragile unit evincing senescence traits, manifesting
more broadly later [29].

Fundamentally this is a degenerative and entropic
sequence typified by poor tissue homeostasis [30]. Primor-
dial ovarian follicles emerge during the fetal period and
their programmed decline with age — imperceptible in the
beginning — has been well documented [31]. Indeed, early
animal experiments with transplanted young ovaries into
aged recipients fixed the central role of competent ovarian
tissue [26] with good order and minimal entropy. Follicular
density loss is perhaps the most conspicuous structural
feature of the aging ovary, as collagen gradually displaces
hormonally active elements with fibrillin-1 and EMILIN-1
vanishing over time. Such changes offer a substructural
insight into tissue disorder, as the ovary becomes less pliable
and more fibrotic with approaching menopause. Unsurpris-
ingly, significantly more elastin is observed in menopausal
ovary biopsies where HRT is used vs no HRT [32]. Rigidity
of the granulosa compartment thus resists follicle growth
commensurate with progressive entropy, becoming more
inclined to quiescence [32].

The variety of platelet cargo proteins [33] meeting
ovarian entropy opens the possibility to impact several
loci, where PRP might manipulate imbricated signal net-
works driving perfusion, HOX regulation, N-glycan post-
translational modification, adjustment of voltage-gated ion
channels, telomere stabilization, optimization of SIRT3, or
ribosome and mitochondria recovery [34]. Another example
is transcription factor FIGLA, which directs expression of

Gdf9, Lhx8, Nobox, Sohlh1&2, and Taf4b as controllers of
oocyte growth and differentiation [35]. In a murine model,
FIGLA knockdown severely squelches meiosis to cause oocyte
apoptosis. Non-operation of any regulatory member yields
follicles overtaken by fibrosis, with downregulation of genes
preferentially expressed in oocytes [36].

Since TNF-a is known to upregulate NF-kB [37] and the
NF-«B signaling system coordinates Gdf9 actions [38], this
draws notice to cytokines of PLT source, either mimicking
FIGLA or boosting its function. For the follicular unit and
its local support matrix, where remodeling, regeneration,
and/or proliferation effects are presumably induced by
PRP [39,40], clarification of CpG, TNF-a, and NF-kB roles
can provide important information for reproductive biol-
ogists. Most cell processes are not indifferent to such inter-
stitial effects: Membrane tension and cytoskeletal focal
adhesions [41] set the stage for ovarian function, although
these have yet to be evaluated in human ovarian tissue
post-PRP dosing.

In this regard, computer-assisted 2D fluorescence ima-
ging (Analytical Technologies; Singapore) of the ovarian
cytoskeleton and juxta-follicular components can assist in
documenting and classifying changes associated with local
PRP injection, similar to techniques described recently [41].
Others have detailed PRP-integrated alginate gelatin com-
posites where PLT cytokines “seed” cell behavior, form vascular
endothelial cells, and order macrophage polarization in a para-
crine manner [42]. While activated PRP may impact structures
extraneous to the granulosa compartment, more research is
needed to build on recently reported responses [34,41]. If par-
allel connective tissue effects are verified after ovarian PRP use
as outlined here, this would help explain the restorative results
observed in its early clinical use [14,33,43,44].
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Ovarian signaling response
after PRP

With attention to ovarian cellular entropy, experimental
evidence exists [45] that NF-kB oscillations are involved in
governing immune responses, cellular growth, develop-
ment, and apoptosis. These NF-kB actions are driven by
inhibitory proteins xB and IkB, where an inverse relation
has been reported between pulse frequency and quantity of
IkB [45,46]. NF-xB actually embraces an entire transcription
factor family, responsible for vital immune and inflamma-
tory actions [47]. This includes NF-kB1, NF-kB2, RelA, RelB,
and c-Rel, as transcription mediators of key target genes
[48]. In general, NF-kB proteins are sequestered in the cyto-
plasm by inhibitory proteins typified by ankyrin repeats
[49,50]. NF-xB enhances expression of pro-inflammatory
genes, including those for cytokines and chemokines, and
participates in inflammasome regulation. NF-xB also orches-
trates survival, activation, and differentiation of inflamma-
tory T cells [49]. In eukaryotes, the IkB-NF-KB module ideally
operates like a signal transduction unit, where inputs are
external stimuli conducted by membrane receptors, and its
outputs are signals channeled to the nucleus to regulate
gene expression [46]. NF-kB may convey specificity of con-
textual information via quantitative features of its signaling
dynamics [51], where greater metabolic noise correlates
with unwanted entropy as seen with aging and disease. It
may be possible to establish that intraovarian PRP elicits a
local squelching of such signals using this research design.
The use of fluorescent-tagged proteins would enable
tracking of dynamic NF-kB traffic, where its nuclear loca-
lization has been confirmed along with an oscillation
period near 90min-an observation in reasonably close
alignment with results predicted by mathematical models
of NF-«B signaling [52,53]. Subsequently, NF-kB has become
perhaps the best-known exemplar of pulsing or oscillating
genetic circuits mapped by active imaging [54-56]. Pulsed
TNF-a stimulation also affects gene expression in a target-spe-
cific way, providing another connection for signal dynamics
and target gene expression [57]. As expected, these ordered
oscillatory patterns are largely absent in high entropy states,
although platelet cytokines can promote nuclear translocation
of NF-xB and upregulate mRNA expression of NF-kB-depen-
dent mediators outside the ovary [58]. Direct measurement of
similar induction in human ovarian tissue awaits confirma-
tion, and the present approach would help meet this need.
Several Kyoto Encyclopedia of Gene and Genome pro-
cesses are known to be preferentially boosted in young
mammalian follicles compared to aged ovaries, repre-
senting attractive areas open to therapeutic enhancement.
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For example, leucocyte-rich platelet-rich fibrin mediates
NF-kB signaling, toll-like receptor signaling, and MAPK sig-
naling via T-cell receptor signaling pathway, and other
platelet derivatives are closely involved in the JAK-STAT
signaling network to upregulate STAT1 [59]. How platelet
cargo proteins interact with follicular surface markers
after PRP dosing intersects with entropy studies, here, as
membrane order and structure directly impact homeos-
tasis via ion transport and governance of signaling path-
ways [34,60].

Cytokine effects on cellular
entropy

The biochemical work of the adult human ovary exhibits
transitional fluctuations where a closed compartment
should uniformly reach a stable state. This is not a violation
of the 2nd Law of Thermodynamics because dampened
oscillations by intermediate species can form en route to
equilibrium, even as overall Gibbs free energy (G° decreases
[61,62]. Here, G° unifies enthalpy and entropy with change in
free energy, AG, being the combination of enthalpy with the
product of temperature and entropy:

AG® = AH® - TAS?,

where H is the enthalpy, T is the temperature, and S is
the entropy; heat is not involved/added in life models,
and thus AH® = 0. Protein synthesis lowers cellular entropy
by amino acid polymerization (e.g., cell growth also reduces
entropy), making G° for protein synthesis net positive [63].
Although perhaps not applicable to every ovarian process,
hydrophobic effects also contribute to lowered entropy of
aqueous solutions [64]. As our hypothesis for intraovarian
PRP posits that activated PLT-derived signals operate as entropy
modulators, any growth stimulated by this treatment would
involve protein synthesis with augmented amino acid synthesis,
where required components are actively assembled from the
dispersed field (cytosol). Reestablishing ordered signaling, if
confirmed here, would agree with earlier work connecting
entropy (“serial irregularity” by mathematical network ana-
lysis) and reproductive fitness [65].

Cell division in eukaryotes is also orchestrated in part
by M-phase Promoting Factor (MPF), a heterodimeric pro-
tein kinase with Cdk1 (kinase subunit) and cyclin B (regu-
latory-targeting subunit) constituents [66]. Interestingly,
MPF activity was first discovered in a reproductive context
where (amphibian) oocytes and embryos were studied
[62,67,68]. While MPF and NF-kB share a common signaling
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coordinator in “weel” [69], understanding the interplay
among these mediators could be improved using the pro-
posed study design.

There are innumerable nodes in regulatory networks
where outside signaling could be relevant, especially NF-
kB, which normally regulates biological processes as a
function of dynamic oscillation [46,70]. If re-ordering of
NF-kB (i.e., nuclear sequestration) were documented in
our experimental program after activated PRP, then feed-
back on regulatory genes and NF-xB activation may be
contingent on nuclear localization as facilitated by PLT
cytokines. These signals, acting either individually or in
concert, would tend to realign the prevailing energetics
of protein synthesis soon after interfacing with ovarian
tissue.

Intraovarian PRP: Epigenetic
impacts

Molecular processes essential to normal ovarian function
are indices of epigenomic competency as communicated
via stochastic feedback signals [71]. As menopause nears,
noise and entropy gradually overtake these well-ordered
oscillations. Low ovarian reserve is a clinical problem
where no uniform initiating factor is likely causative, but
oligoovulation and non-responsiveness to gonadotropins
comprise a familiar presentation. How (or if) cytokines of
PLT origin may shift methylation status by CpG audits
represents another technique to gauge intraovarian PRP
actions.

DNA methylation plays a major role in gene expression,
and how this changes with aging and disease is becoming
better characterized. Most age-related DNA methylation
drift is attributed to adult stem cell replication, yet there is
controversy with respect to methylation changes being
strictly from proliferation errors or due to other factors
relevant to non-proliferating cells [9,72]. Any net gain/loss
here (“methylation drift”) results in genomic instability. For
example, CpG sites can experience methylation loss over
time to activate retrotransposons. Conversely, hypermethy-
lation with age can occur within or near unmethylated CpG
islands [9]. Age-related DNA methylation drift is highly con-
served and inversely proportional to lifespan [73]. Age-related
DNA methylation entropy as measured by Jensen-Shannon
distribution [74] affects up to 25% of detectable CpG sites.
This has been checked as a function of age in blood, heart,
kidney, liver, lung, muscle (skeletal), and spleen [9], and our
experimental program seeks to expand this to include the
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ovary post-PRP dosing. Epigenetic clocks are often based on
just one sample site, so accuracy is limited to the source on
which it was trained [29]. Epigenetic clocks developed from
machine learning tools have reported informative CpGs by
regressing a transformed version of chronological age on a
set of CpGs [75,76]. While this number may be large to provide
high accuracy, even a limited number of CpGs can offer ade-
quate robustness to depict methylome properties [29]. DNA
methylation drift and increased entropy with age are caused
by — and are markers for — stem cell replication in adult
tissues [9]. The experimental program described here should
generate new data, at least indirectly, on how PRP may influ-
ence markers of ovarian cellular entropy.

PLT factors as activators &
transport modulators

For the adult human ovary, its component cells appear to
function before a backdrop of phenoptosis — eventual cell
death pre-programmed by the genome. Normal ovarian
metabolism generates many toxic by-products and errors,
to amplify this, causing cellular damage as seen in other
tissue systems. While damage accumulation is a spontaneous
entropy-driven process, the kinetics are not necessarily irre-
versible and are subject to genetic and environmental mod-
ification [77]. In a murine model, an epigenome/metabolome/
epigenome paradigm has proven useful to explain the func-
tional crosstalk needed for cellular differentiation [49]. Being
the first term in the set, epigenome status is rightly cast as a
key player in cell-fate decisions for both embryonic and adult
tissues [31,78]. While adjusting the epigenome via extracel-
lular inputs is possible, the extent to which different stimuli
can push this is unresolved. NF-xB is activated by various
stimuli and can reprogram the epigenome by promoting
latent enhancers, but this depends on whether NF-«B is oscil-
latory or not. Tonic (non-oscillatory) NF-kB signaling opens
chromatin [79] by sustained disruption of histone-DNA
interactions, triggering latent enhancers to express immune
response genes. Previously unknown temporal aspects may
fix a transcription factor’s capacity and range for epigenetic
reprogramming [80]. Environmental cues influencing the
epigenome include nutritional inputs, as a high-fat/high-
carbohydrate diet was recently found to prompt nuclear
translocation of NF-kB p65 factor transcription in surface
epithelium cells of rabbit ovary, an intervention with
harmful ovarian reserve results [81].

PRP is a known suppressor of inflammatory NF-xB,
where reduced doxorubicin-induced phosphorylation of
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IxB and NF-«B has been described [42]. Models correlating
nuclear NF-kB with mRNA expression give predictions of
high accuracy at single-cell resolution [82]. Specific to its
intraovarian use, autologous PRP does appear to foster
improved tissue response, although further clarification
is required to define local signal modulation effects.

Discussion

Stimuli overlapping with PLT cytokines have been reported
to enable recovery of ovarian tissue post-injury [83]. For
example, when paeoniflorin (a bioactive glucoside) was
used after ischemia-reperfusion injury, protective ovary
tissue effects were accompanied by increased levels of
TNF-q, IL-1-B, IL-6, and NF-xB p65 [83]. A brief TNF flash
would be akin to burst exposure after intraovarian PRP,
which has been shown to “jump start” expression of NF-
KB target pro-survival genes in other contexts [84]. As a
controversial intervention, intraovarian PRP has proven dif-
ficult to manage in multicenter clinical trials given nonuni-
form patient screening, sample preparation, and injection
technique. As activated PRP puts a small cytokine bolus into
an inactive or senescent ovarian tissue field where meta-
bolic or endocrine responses await characterization, the
proposed study aims to address these deficiencies (Figure 2).

If a PRP contribution to reduced ovarian entropy were
to be convincingly proven using this experimental design,
it would join existing feedback and oscillatory research
where similar conclusions were advanced. For example,
bolus estradiol (E,) increases growth hormone (GH) release
substantially, while an abrupt GH spike stimulates fast
internalization of its receptor to evoke second-messenger
nuclear signaling [85]. So, both magnitude and pattern are
central to physiologic signaling as the nonresponsive (older)
ovary is characterized not by highly-ordered, information-
rich pulsation, but rather by high entropy, non-cyclic, disor-
dered monotone field. Just as supplementary E, can improve
receptiveness, at least temporarily, to signaling elsewhere
[86], a yet-to-be-defined PRP component may likewise restore
ovarian reproductive capacity by effects within its local reg-
ulatory milieu after injection.

There are potential limitations with our design which
warrant comment. First, while the collapse of ovarian
function with advanced maternal age may reflect slow
replacement of normal follicular processes with (inactive)
fibrosis, the problem of why this happens remains unsolved.
If it occurs due to subtle dampening of molecular signaling,
then the two markers proposed here (NF-«kB and TNF-a) may
be inferior to different, unchosen mediators. We do not have
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a full picture of which feedback circuits fail first in dimin-
ished ovarian reserve. The notion that ovarian decline is a
critical, irreversible indicator serving to flag an entropy
threshold may also be incomplete. Indeed, this protocol is
shared before launch to gain from early input where others
may use or improve the design. From this, perhaps better
clinical delivery approaches will lead to enhanced efficiency
and reduced costs to patients. As currently configured,
intraovarian PRP is still impractical and too expensive for
mainstream use compared to much lower cost conventional
therapies [87]. As data become available from our centers
and elsewhere [88], further investigation will better define
how to optimize intraovarian PRP (e.g., methodology com-
parisons or dose-finding studies).

In the meantime, as an adjunct to in vitro ovarian cell
imaging, fully utilized mathematical models should start to
settle the problem of how activated PRP affects cellular
entropy or local microarchitecture. The method can esti-
mate concentrations/copy numbers of NF-xB to define how
it binds to inhibitors, as well as clarify its effects on target
gene mRNA levels [55] secondary to PLT releasate. Because
the NF-xB regulatory circuit is complex [71], providing data
on the local ovarian NF-xB system holds great investiga-
tional and clinical promise. Given the clinical responses
reported from independent, multicenter experience with
intraovarian PRP [33,43,44], the proposed study design can
be a first step to elucidate a relevant mechanism.
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