Startseite Lebenswissenschaften Role of FIT2 in porcine intramuscular preadipocyte differentiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of FIT2 in porcine intramuscular preadipocyte differentiation

  • Xiaoling Chen , Yanliu Luo , Gang Jia , Hua Zhao , Guangmang Liu und Zhiqing Huang EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 12

Abstract

Fat-inducing transcript 2 (FIT2) plays an important role in the formation of intramuscular lipid droplets in skeletal muscle. However, its role in porcine intramuscular preadipocyte differentiation remains unclear. In the present study, a 789-bp fragment covering the complete coding region of porcine FIT2 (pFIT2) was obtained. Real-time quantitative PCR analysis indicated that pFIT2 mRNA was highly expressed in fat tissue. Overexpression of pFIT2 in porcine intramuscular preadipocytes led to an increase in lipid accumulation, which was detected by triglyceride content analysis. Overexpression of pFIT2 also significantly increased the protein expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein-α (C/EBPα), but decreased the protein expression of β-catenin. We also found that the Wnt/β-catenin signaling specific activator LiCl attenuated the pFIT2-induced upregulation of PPARγ and downregulation of β-catenin. These findings implied that FIT2 promotes porcine intramuscular preadipocyte differentiation by repressing Wnt/β-catenin signaling.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31472108) and the Specific Research Supporting Program for Discipline Construction in Sichuan Agricultural University.

Abbreviations

DMEM

Dulbecco’s modified Eagle medium

DLY

Duroc × Landrace × Yorkshire

ER

endoplasmic reticulum

FBS

fetal bovine serum

FIT2

fat-inducing transcript 2

FITM2

fat storage-inducing transmembrane protein 2

IMF

intramuscular fat

LD

lipid droplet

LL

longissimus lumborum

pFIT2

porcine FIT2

PM

psoas muscle

PPARγ

peroxisome proliferator-activated receptor γ

TG

triglyceride

References

Chen X.L., Zhou B., Huang Z.Q., Jia G., Liu G.M. & Zhao H. 2016. Tissue distribution of porcine FTO and its effect on porcine intramuscular preadipocytes proliferation and differentiation. PLoS One 11:e0151056.10.1371/journal.pone.0151056Suche in Google Scholar PubMed PubMed Central

Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2016. GenBank. Nucleic Acids Res. 44: D67–D72.10.1093/nar/gkv1276Suche in Google Scholar PubMed PubMed Central

Gao S.Z. & Zhao S.M. 2009. Physiology, affecting factors and strategies for control of pig meat intramuscular fat. Recent Pat. Food. Nutr. Agric. 1:59–74.10.2174/2212798410901010059Suche in Google Scholar

Gardan D., Gondret F. & Louveau I. 2006. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am. J. Physiol. Endocrinol. Metab. 291: E372–E380.10.1152/ajpendo.00482.2005Suche in Google Scholar PubMed

Gross D.A., Snapp E.L. & Silver D.L. 2010. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (fit) protein 2. PLoS One 5: e10796.10.1371/journal.pone.0010796Suche in Google Scholar PubMed PubMed Central

Gross D.A., Zhan C. & Silver D.L. 2011. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl. Acad. Sci. USA 108: 19581–19586.10.1073/pnas.1110817108Suche in Google Scholar PubMed PubMed Central

Kadereit B., Kumar P., Wang W.J., Miranda D., Snapp E.L., Severina N., Torregroza I., Evans T. & Silver D.L. 2008. Evolutionarily conserved gene family important for fat storage. Proc. Natl. Acad. Sci. USA 105: 94–99.10.1073/pnas.0708579105Suche in Google Scholar PubMed PubMed Central

Kennell J.A. & MacDougald O.A. 2005. Wnt signaling inhibits adipogenesis through β-catenin-dependent and -independent mechanisms. J. Biol. Chem. 280: 24004–24010.10.1074/jbc.M501080200Suche in Google Scholar PubMed

Kim M.B., Song Y., Kim C. & Hwang J.K. 2014. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 445: 433–438.10.1016/j.bbrc.2014.02.017Suche in Google Scholar PubMed

Li C. & Zhou L. 2015. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol. In Vitro 30: 394–401.10.1016/j.tiv.2015.09.023Suche in Google Scholar PubMed

Martin S. & Parton R.G. 2006. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7: 373e378.10.1038/nrm1912Suche in Google Scholar

Miranda D.A., Kim J.H., Nguyen L.N., Cheng W., Tan B.C., Goh V.J., Tan J.S.Y., Yaligar J., KN B.P., Velan S.S., Wang H. & Silver D.L. 2014. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J. Biol. Chem. 289: 9560–9572.10.1074/jbc.M114.547687Suche in Google Scholar

Miranda D.A., Koves T.R., Gross D.A., Chadt A., Al-Hasani H., Cline G.W., Schwartz G.J., Muoio D.M. & Silver D.L. 2011. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2. J. Biol. Chem. 286: 42188–42199.10.1074/jbc.M111.297127Suche in Google Scholar

Nguyen L.N., Hamari Z., Kadereit B., Trofa D., Agovino M., Martinez L.R., Gacser A., Silver D.L. & Nosanchuk J.D. 2011. Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes Infect. 13: 663–672.10.1016/j.micinf.2011.02.009Suche in Google Scholar

Pang W.J., Bai L. & Yang G.S. 2006. Relationship among HFABP gene polymorphism, intramuscular fat content, and adipocyte lipid droplet content in main pig breeds with different genotypes in western China. Yi Chuan Xu Bao – Acta Genetica Sinica 33: 515–524.10.1016/S0379-4172(06)60080-2Suche in Google Scholar

Prestwich T.C. & MacDougald O.A. 2007. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr. Opin. Cell Biol. 19: 612–617.10.1016/j.ceb.2007.09.014Suche in Google Scholar

Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M. & Mortensen R.M. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4: 611–617.10.1016/S1097-2765(00)80211-7Suche in Google Scholar

Ross S.E., Hemati N., Longo K.A., Bennett C.N., Lucas P.C., Erickson R.L. & MacDougald O.A. 2013. Inhibition of adipogenesis by Wnt signaling. Science 289: 950–953.10.1126/science.289.5481.950Suche in Google Scholar PubMed

Wahli W. & Michalik L. 2012. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23: 351–363.10.1016/j.tem.2012.05.001Suche in Google Scholar PubMed

Walther T.C., Farese R.V. & Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81: 687–714.10.1146/annurev-biochem-061009-102430Suche in Google Scholar PubMed PubMed Central

Willson T.M., Brown P.J., Sternbach D.D. & Henke B.R. 2000. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43: 527–550.10.1021/jm990554gSuche in Google Scholar PubMed

Received: 2016-8-5
Accepted: 2016-12-27
Published Online: 2017-1-11
Published in Print: 2016-12-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0169/pdf
Button zum nach oben scrollen