Startseite Lebenswissenschaften Analysis of δ13C and δ15N isotopic signatures to shed light on the hydrological cycle’s influence on the trophic behavior of fish in a Mediterranean reservoir
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of δ13C and δ15N isotopic signatures to shed light on the hydrological cycle’s influence on the trophic behavior of fish in a Mediterranean reservoir

  • Amedeo Fadda EMAIL logo , Francesco Palmas , Federica Camin , Luca Ziller , Bachisio Mario Padedda , Antonella Luglié , Marina Manca und Andrea Sabatini
Veröffentlicht/Copyright: 11. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 12

Abstract

Stable isotope analysis (SIA) of carbon and nitrogen sheds light on the origin of the food resources exploited by the fish and provides basic information on the trophic relationships among taxa. In this study, SIA of C and N was used to investigate the trophic behavior of fish species in a small Mediterranean reservoir, Lake Sos Canales (SC) in Sardinia, Italy, during an annual hydrological cycle. Fish were caught approximately every two months, and baseline isotopic C and N levels in the pelagic and littoral area were analyzed to establish the origin of fish food sources, considering suspended particulate matter, planktonic crustaceans and littoral macroinvertebrates. To assess the relative contribution of the two different sources using SIA, a Dynamic Baseline Mixing Model (DBMM) was applied and the results were compared with the fish gut contents. Our aim was to chart the seasonal trophic behavior of the fish species inhabiting an anthropogenic aquatic environment under considerable stress due to water level fluctuations. Isotopic results showed a seasonal trend with 13C levels depleted more in autumn-winter and less in spring-summer, while an inverse trend was recorded for 15N, both in the isotopic baseline values and in the fish. Isotopic results and gut content analysis highlighted a year-round strict dependence on littoral food sources only for the brown trout, whereas the mosquitofish changed their trophic behavior seasonally, shifting from littoral (high water level period) to pelagic (low water level period) food sources, mirroring the hydrological conditions of Lake SC.

Acknowledgements

I would like to thank G. Coles and F. Piredda for their contribution for the text’s revision and S. Cadelano for its precious help during the sampling activity.

References

Agostinho A.A., Pelicice F.M. & Gomes L.C. 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz. J. Biolog. 68 (4 Suppl.): 1119–1132. PMID:1919748210.1590/S1519-69842008000500019Suche in Google Scholar

Baxter C.V., Faush K.D., Murakami M. & Chapman P.L. 2004. Fish invasion restructures stream and forest by interrupting reciprocal prey subsidies. Ecology 85 (10): 2656–2663. 10.1890/04-138Suche in Google Scholar

Bond N.R., Lake P.S. & Arthington H. 2008. The impacts of frought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600 (1): 3–6.10.1007/s10750-008-9326-zSuche in Google Scholar

Borroni I., Trasforini S., Bardazzi M. & Gentili G. 2003. Caratterizzazione fenotipica e genetica della popolazione di trota de Rio Baracca (Bacino dell’Orba), pp. 396–436. http://cartogis.provincia.genova.it/itt/cartaittica/PROGE_CartaIttica_1999_2003_Studi_RioBaracca.pdf (accessed 15.06. 2016)Suche in Google Scholar

Cabral J.A. & Marques J.C. 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields the lower Mondego River Valley western Portugal. Acta Oecol. 20 (6): 607–620. 10.1016/S1146-609X(99)00102-2Suche in Google Scholar

Camin F., Perini M., Colombari G., Bontempo L. & Versini G. 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope rations of milk. Rapid Commun. Mass Spectrom. 22 (11): 1690–1696. 10.1002/rcm.3506Suche in Google Scholar

Camin F., Wietzerbin K., Blanch Cortes A. Haberhauer G., Less M. & Versini G.J. 2004. Application of multi element stable isotope ratio analysis to the characterization of French, Italian, and Spanish cheeses. J. Agric. Food Chem. 52 (21): 6592–6606. 10.1021/jf040062zSuche in Google Scholar

Cucherousset J., Bouletreau S., Martino A., Roussel J.M. & Santoul F. 2012. Using stable isotope analysis to determine the ecological effects on non-native fishes. Fish. Manage. Ecol.19 (2): 111–119. 10.1111/j.1365-2400.2011.00824.xSuche in Google Scholar

Cucherousset J. & Olden J.D. 2011. The ecological impacts of non native freshwater fishes. Fisheries 36 (5): 215–230. 10.1080/03632415.2011.574578Suche in Google Scholar

De Niro M.J. & Epstein S.1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta. 42 (5): 495–506. 10.1016/0016-7037(78)90199-0Suche in Google Scholar

Fadda A., Marková S., Kotlík P., Luglié A., Padedda B. & Manca M. 2011. First record of planktonic crustaceans in Sardinian reservoirs. Biologia 66 (5): 856–865. 10.2478/s11756-011-0092-4Suche in Google Scholar

Fadda A., Rawcliffe R., Padedda B. M., Luglie A., Sechi N., Camin F., Ziller L. & Manca M. 2014. Spatiotemporal dynamics of C and N isotopic signature of zooplankton: a seasonal study on a man-made lake in the Mediterranean region. Ann. Limnol.–Int. J. Limnol.50 (4): 279–287. 10.1051/limn/2014022Suche in Google Scholar

Fry B. 2006. Stable Isotope Ecology. Springer, New York, USA, 308 pp. 10.1007/0-387-33745-8. ISBN: 978-0-387-305134Suche in Google Scholar

Gozlan R.E. 2008. Introduction of non-native freshwaterfish: is it all bad? Fish Fish. 9:106–115. 10.1111/j.1467-2979.2007.00267.xSuche in Google Scholar

Grey J. 2000. Trophic fractionation and the effects of diet switch on the carbon stable isotopic “signatures” of pelagic consumers. Verh. Internat. Verein. Limnol.27: 3187–3191.10.1080/03680770.1998.11898266Suche in Google Scholar

Gu B., Schell D.M. & Alexander V.1994. Stable carbon and nitrogen isotope analysis of plankton food web in subartic lake. Can. J. Fish. Aquat. Sci. 51 (6): 1338–1344. 10.1139/f94-133.Suche in Google Scholar

Hari R.E., Livingstone D.M., Siber R., Burkhardt-Holm R. & Guettinger H. 2006. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob. Change Biol. 12 (1): 10–26. 10.1111/j.1365-2486.2005.001051.xSuche in Google Scholar

Hesslein R.H., Capel M.J., Fox D.E. & Hallard K.A. 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Can. J. Fish. Aquat. Sci. 48 (11): 2258–2265. 10.1139/f91-265Suche in Google Scholar

Hesslein R.H., Hallard K.A. & Ramlal P.1993. Replacement of sulfur, carbon and nitrogen in tissue of growing broad white-fish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C and δ15N. Can. J. Fish. Aquat. Sci. 50 (10): 2071–2076. 10.1139/f93-230Suche in Google Scholar

Leira M. & Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613 (1): 171–184. 10.1007/s10750-008-9465-2Suche in Google Scholar

Lookwood J.L., Hoopes M.F. & Marchetti M.P. 2007. Invasion Ecology. Blackwell Publishing, Oxford, 312 pp. ISBN: 9781444333657Suche in Google Scholar

Massidda P.1995. Salmo (trutta) macrostigma in Sardegna. Biolog. Ambient. 5: 40–43.Suche in Google Scholar

Mehrdad Y., Mehdi R. & Mahsa A. 2011.A radiographical study on skeletal deformities in cultured rainbow trout (Oncorhynchus mykiss) in Iran. Glob. Vet. 7 (6): 601–604.Suche in Google Scholar

Naselli-Flores L. 2003. Man-made lakes in Mediterranean semiarid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506 (1-3): 13–21. 10.1023/B:HYDR.0000008550.34409.06Suche in Google Scholar

Orrú F., Deiana A.M. & Cau A. 2010. Introduction and distribution of alien freshwater fishes on the island of Sardinia (Italy): assessment on the basis of existing data sources. J. Appl. Ichthyol.26 (2): 46–52. 10.1111/j.1439-0426.2010.01501.xSuche in Google Scholar

Perga M.E. & Gerdeaux D. 2006. Seasonal variability in the δ13C and δ15N values of the zooplankton taxa in two alpine lakes. Acta Oecol. 30 (1): 69–77. 10.1016/j.actao.2006.01.007Suche in Google Scholar

Petrusek A., Hobaek A., Nilssen J.P., Skage M., Černý M., Brede N. & Schwenk K. 2008. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool. Scripta 37 (5): 507–519. 10.1111/j.1463-6409.2008.00336.xSuche in Google Scholar

Phillips D.L. & Eldrige P.M. 2006. Estimating the timing of diet shifts using stable isotopes. Oecologia 147 (2): 195–203. 10.1007/s00442-005-0292-0Suche in Google Scholar PubMed

Philips D.L & Gregg J.W. 2001. Uncertainty in source portioning using stable isotopes. Oecologia 127 (2): 171–179. 10.1007/s004420000578Suche in Google Scholar PubMed

Phillips D.L. & Koch P.L. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130 (1): 114–125. 10.1007/s004420100786Suche in Google Scholar PubMed

Pyke G.H. 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annu. Rev. Ecol. Evol. Syst. 39:171–191. 10.1146/annurev.ecolsys.39.110707.173451Suche in Google Scholar

Sabatini A., Cannas R., Follesa M.C., Palmas F., Manunza A., Matta G., Pendugiu A.A., Serra P. & Cau A. 2011. Genetic characterization and artificial re production attempt of endemic Sardinia trout Salmo trutta L.,1758 (Osteichthyes, Salmonidae): Experience in captivity. Ital. J. Zool. 78 (1): 20–26. 10.1080/11250003.2010.497171Suche in Google Scholar

Thielsch A., Brede N., Petrusek A., De Meester L.U.C. & Schwenk K. 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia. Mol. Ecol.18 (8): 1616–1628. 10.1111/j.1365-294X.2009.04130.xSuche in Google Scholar PubMed

Tundisi G. & Matzumura-Tundisi J. 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia 500 (1-3): 231–242. 10.1023/A:1024617102056Suche in Google Scholar

Vander Zanden M.J. & Rasmussen J.B. 1999. Primary consumer 13C and 15N and the trophic position of aquatic consumers. Ecology 80 (4): 1395–1404. 10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2Suche in Google Scholar

Visconti A. & Manca M. 2011. Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web. J. Limnol.70 (2): 263–271. 10.4081/jlimnol.2011.263Suche in Google Scholar

Visconti A., Volta P., Fadda A., Di Guardo A. & Manca M. 2013. Seasonality, littoral vs. pelagic carbon sources and stepwise 15N-enrichment of pelagic food web in a deep subalpine lake: the role of planktivorous fish. Can. J. Fish. Aquat. Sci. 71 (3): 436–446. 10.1139/cjfas-2013-0178Suche in Google Scholar

Visconti A., Volta P., Fadda A. & Manca M. 2013. Roach in Lake Maggiore: A peaceful invasion detected with C, N Stable Isotope Analysis. Glob. J. Sci. Front. Res. Agric. Vet.13 (9-D):1–7.Suche in Google Scholar

Wicklum D. 1999. Variation in horizontal zooplankton abundance in mountain lakes shore avoidance or fish predation? J. Plankton. Res. 21 (10): 1957–1975. 10.1093/plankt/21.10.1957Suche in Google Scholar

Woodland R.J., Rodreguez M.A., Magnan P., Glèmet H. & Cabana G. 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology 93 (1): 131–144. 10.1890/11-0505.1Suche in Google Scholar

Zohary T. & Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Water 1 (1): 47–59. 10.5268/IW-1.1.406Suche in Google Scholar

Received: 2015-12-7
Accepted: 2016-11-20
Published Online: 2017-1-11
Published in Print: 2016-12-1

© 2016 Institute of Zoology, Slovak Academy of Sciences

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0160/pdf
Button zum nach oben scrollen