Startseite Lebenswissenschaften Pigments from fungi, an opportunity of production for diverse applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pigments from fungi, an opportunity of production for diverse applications

  • Claudia Muro Urista EMAIL logo , Jorge Gracida Rodríguez , Arturo Abreu Corona , Ainhoa Arana Cuenca und Alejandro Téllez Jurado
Veröffentlicht/Copyright: 23. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 10

Abstract

Fungi provide a readily available alternative source of naturally derived pigmented molecules that may be utilized in different areas as foods, textile, medicine and cosmetics. These have been considered as potent biocompounds under two perspectives: for coloring to products, or as powerful chemical structures with biological functions. Both properties are also often found in their study and application in these areas. The present review presents an overview of diverse aspects that have been studied on the obtaining of fungal pigments, including pigment class, and metabolic pathway of biosynthesis, producer’s species of pigment, physicochemical condition of biosynthesis, extracting, isolation, purifying and storage. Commercial production and application of fungal pigments status is also described in this research as main findings.

References

Adrio j. & Demian A. 2003. Fungal biotechnology. Int. Microbiol.6 191–199.10.1007/s10123-003-0133-0Suche in Google Scholar

Ahn J., Jung H., Hyung W., Haam S. & Shin C. 2006. Enhancement of monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol. Prog. 22 338–340.10.1021/bp050275oSuche in Google Scholar

Akihisa T., Tokuda H., Yasukawa K., Ukiya M., Kiyota A., Sakamoto N., Suzuki T., Tanabe N. & Nishino H. 2005. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J. Agric. Food Chem. 53: 562–565.10.1021/jf040199pSuche in Google Scholar

Akilandeswari P. & Pradeep B.V. 2016. Exploration of industrially important pigments from soil fungi. Appl. Microbiol. Biotechnol.100: 1631–1643.10.1007/s00253-015-7231-8Suche in Google Scholar

Atalla M., Mabrouk E.A.M., Youssef Y.A. & Mohamed A. 2011.Production of textile reddish brown dyes by fungi. Malaysian J. Microbiol. 7 33–40.10.21161/mjm.24010Suche in Google Scholar

Avalos J. & Limón M.C. 2015. Biological roles of fungal carotenoids. Curr. Genet.61: 309–324.10.1007/s00294-014-0454-xSuche in Google Scholar

Babitha S., Soccol C.R. & Pandey A. 2007a. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J. Basic Microbiol. 47: 118–126.10.1002/jobm.200610261Suche in Google Scholar

Babitha S., Soccol C.R. & Pandey A. 2007b. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour. Technol. 98: 1554–1560.10.1016/j.biortech.2006.06.005Suche in Google Scholar

Bell A.A. & Wheeler M.H. 1986. Biosynthesis and function of fungal melanins. Annu. Rev. Phytopathol. 24: 411–151.10.1146/annurev.py.24.090186.002211Suche in Google Scholar

Bobzin S., Yang S. & Kasten T. 2000. Application of liquid chromatography resonance spectroscopy to identification of natural products. J. Chromatogr. 748: 259–267.10.1016/S0378-4347(00)00289-9Suche in Google Scholar

Boonyapranai K., Tungpradit R., Lhieochaiphant S. & Phutrakul S. 2008. Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J. Sci. 35: 457–466.Suche in Google Scholar

Butler M.J., Day A.W., Henson, J.M. & Money N.P. 2001. Pathogenic properties of fungal melanins. Mycol. Soc. America 93: 1–8.10.1080/00275514.2001.12061273Suche in Google Scholar

Campoy S., Rumbero A., Martín J.F., Liras P. 2006. Characterization of a hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl. Microbiol. Biotechnol. 70: 488–496.10.1007/s00253-005-0090-ySuche in Google Scholar

Cerda-Olmedo E. 2001. Phycomyces and the biology light color. Microbiol. Rev. 25: 503–512.10.1016/S0168-6445(01)00064-XSuche in Google Scholar

Chatterjee S., Maity S., Chattopadhyay P., Sarkar A., Laskar S. & Sen S.K. 2009. Characterization of red pigment from Monascus purpureus in submerged culture. J. Appl. Sci. Res. 5: 2102–2108.Suche in Google Scholar

Chattopadhyay P., Chatterjee S. & Sen S. K. 2008. Biotechnological potential of nature food grade biocolorants. Afr. J. Biotechnol. 7: 2972–2985.Suche in Google Scholar

Chen G., Shi K., Song D., Quan L. & Wu Z. 2015. The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnol. 15: 72.10.1186/s12896-015-0183-3Suche in Google Scholar

Cho Y.J., Hwang H.J., Kim S.N., Song C.H. & Yun J. W. 2002a. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J. Biotechnol. 95: 13–23.10.1016/S0168-1656(01)00445-XSuche in Google Scholar

Cho Y.J., Park J.P., Hwang H.J., Kim S.W., Choi J.W. & Yun J. W. 2002b. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195–202.10.1046/j.1472-765X.2002.01168.xSuche in Google Scholar PubMed

Dadachova E. & Casadevall A. 2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 11: 525–531.10.1016/j.mib.2008.09.013Suche in Google Scholar PubMed PubMed Central

Davoli P., Mucci A. & Schenetti L. 2005. Laeteporic acid a family of non-carotenoid polygene pigments. Phytochemistry 66: 817–823.10.1016/j.phytochem.2005.01.023Suche in Google Scholar PubMed

De Faria R.O., Moure V.R., BalmantW., Lopes de Almeida M.A., Krieger N. & Mitchell D.A. 2007. The tyrosine produced by Lentinula boryana (Berk. & Mont.) Pegler suffers substrate inhibition by L-DOPA. Food Technol. Biotechnol. 45: 334–340.Suche in Google Scholar

De Santis D., Moresi M., Gallo A.M. & Petruccioli M. 2005. Assessment of the dyeing properties of pigments from Monascus purpureus. J. Chem. Technol. Biotechnol. 80: 1072–1079.10.1002/jctb.1285Suche in Google Scholar

Diansyah M.N. & Triyono S.E.A. 2013. Effect of red yeast rice (Monascus purpureus) extract to the trombopoietin level in dengue infected patients. Folia Med. Indonesiana 49: 220– 225.Suche in Google Scholar

Dong J., Zhou Y., Li R., Zhou W., Li L., Zhu Y., Huang R. & Zhang K. 2006. New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol. Lett. 264: 65–69.10.1111/j.1574-6968.2006.00430.xSuche in Google Scholar PubMed

Donner C.D., Cuzzupe A.N., Falzon CH.L. & Gill M. 2012. Investigations towards the synthesis of xylindein, a blue-green pigment from the fungus Chlorociboria aeruginosa. Tetrahedron 68: 2799–2805.10.1016/j.tet.2012.02.009Suche in Google Scholar

Dufossé L. 2016. Current and potential natural pigments from microorganisms (bacteria, yeasts, fungi, microalgae), pp. 337354. In: Carle R. & Schweiggert R. (eds), Handbook on Natural Pigments in Food and Beverages, Elsevier, Duxford, UK.10.1016/B978-0-08-100371-8.00016-6Suche in Google Scholar

Duran N., Tixeira M. & de Conti R. 2002. Ecological-friendly pigments from Fungi. Crit. Rev. Foods Sci. Nutr. 42: 52–63.10.1080/10408690290825457Suche in Google Scholar

Eisenman H.C. & Casadevall A. 2012. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93: 931–940.10.1007/s00253-011-3777-2Suche in Google Scholar

Feng Y., Shao Y. & Chen F. 2012. Monascus pigments. Appl. Microbiol. Biotechnol. 96: 1421–1440.10.1007/s00253-012-4504-3Suche in Google Scholar

Fogarty R.V. & Tobin J.M. 1996. Fungal melanins and their interactions with metals. Enzyme Microb. Technol. 19: 311–317.10.1016/0141-0229(96)00002-6Suche in Google Scholar

Georgiou C., Zervoudakis G. & Taris N. 2001. Carotene production and its role sclerotial differentiation of fungal genetics and biology. J. Food Microbiol. 34: 11–20.10.1006/fgbi.2001.1285Suche in Google Scholar PubMed

Gessler N.N., Egorova A.S. & Belozerskaya T.A. 2014. Melanin pigments of fungi under extreme environmental conditions (Review). Appl. Biochem. Microbiol. 50: 105–113.10.1134/S0003683814020094Suche in Google Scholar

Goncalves R.C.R., Lisboa H.C.F. & Pombeiro-Sponchiado S.R. 2012. Characterization of melanin pigment produced by Aspergillus nidulans. World J. Microbiol. Biotechnol. 8: 1467–1474.10.1007/s11274-011-0948-3Suche in Google Scholar PubMed

Gunasekaran S. & Poorniammal R. 2008. Optimization and fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr. J. Biotechnol. 7: 1894–1898.10.5897/AJB2008.000-5037Suche in Google Scholar

Hajjaj H., Blanc P.J., Groussac E., Goma G., Uribelarrea J.L. & Loubiere P. 1999. Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnol. Bioeng. 64: 497–501.10.1002/(SICI)1097-0290(19990820)64:4<497::AID-BIT12>3.0.CO;2-QSuche in Google Scholar

Hajjaj H., Klaébé A., Goma G., Blanc P.J., Barbier F. & Francois J. 2000. Medium-chain fatty acids affects citrinin production in the filamentous fungus Monascus ruber. Appl. Environ. Microbiol. 66: 1120–1125.10.1128/AEM.66.3.1120-1125.2000Suche in Google Scholar

Han J.R., Xu J. & Zhou X.M. 2002. Influence of inoculums type, inorganic salt and nitrogen to carbon ratio on sclerotome formation and carotenoid production in surface culture of Penicillium sp. PT95. J. Basic Microbiol. 42: 254–259.10.1002/1521-4028(200208)42:4<254::AID-JOBM254>3.0.CO;2-YSuche in Google Scholar

Hausmann A. & Sandmann G.A. 2000. Single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet. Biol 30: 147–153.10.1006/fgbi.2000.1212Suche in Google Scholar

Herz S., Weber S., Anke H., Mucci A. & Davoli P. 2007. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry 68: 2503–2511.10.1016/j.phytochem.2007.05.019Suche in Google Scholar

Hinsch E. M., Chen H-L., Weber G. & Robinson S.C. 2015. Colorfastness of extracted wood-staining fungal pigments on fabrics: a new potential of textile dyes. J. Textile Apparel Technol. Manag. 9: 1–11.Suche in Google Scholar

Ho B-Y. & Pan T-M. 2009. The Monascus metabolite monacolin K reduces tumor progression and metastasis of Lewis lung carcinoma cells. J. Agric. Food Chem. 57: 8258–8265.10.1021/jf901619wSuche in Google Scholar

Hobson D., Edwards L. & Wales S. 1997. Cyanodontin: a secondary metabolite and dyestuff intermediate. J. Chem. Technol. 70: 343–348.10.1002/(SICI)1097-4660(199712)70:4<343::AID-JCTB795>3.0.CO;2-ZSuche in Google Scholar

Hong K.H. & Sun G. 2009. Photoactive antimicrobial agents/ polyurethane finished leather. J. Appl. Polymer Sci. 115: 1138–1144.10.1002/app.31221Suche in Google Scholar

Hu Z., Zhang X., Wu Z., Qi H. & Wang Z. 2012. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 94: 81–89.10.1007/s00253-011-3851-9Suche in Google Scholar

Huang C-H., Pan J-H., Chen B., Yu M., Huang H-B., Zhu X., Lu Y-J., She Z-G. & Lin Y-C. 2011. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp ZJ9-6B from the South China Sea Mar. Drugs 9: 832–843.10.3390/md9050832Suche in Google Scholar

Huang H-Y., Chieh S-Y., Tso T-K., Chien T-Y., Lin HT. & Tsai Y-C. 2011. Orally administered mycelia culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. J. Ethnopharmacol. 133: 460–466.10.1016/j.jep.2010.10.015Suche in Google Scholar PubMed

Jacobson E.S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13: 708–717.10.1128/CMR.13.4.708Suche in Google Scholar PubMed PubMed Central

Jongrungruangchok S., Kittakoop P., Yongsmith B., Bavovada R., Tanasupawat S., Lartpornmatulee N. & Thebtaranonth Y. 2004. Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65: 2569–2575.10.1016/j.phytochem.2004.08.032Suche in Google Scholar PubMed

Jung H., Kim C., Kim J. & Shin C.S. 2003. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 51: 1302–1306.10.1021/jf0209387Suche in Google Scholar PubMed

Kang B., Zhang X., Wu Z., Qi H. & Wang Z. 2013a. Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem. 48: 759–767.10.1016/j.procbio.2013.03.020Suche in Google Scholar

Kang B., Zhang X., Wu Z., Qi H. &Wang Z. 2013b. Solubilization capacity of nonionic surfactant micelles strong influence on export of intracellular pigments in Monascus fermentation. Microbiol. Biotechnol. 6: 540–550.10.1111/1751-7915.12039Suche in Google Scholar PubMed PubMed Central

Kang B., Zhang X., Wu Z., Wang Z. & Park S. 2014. Production of citrinin free Monascus pigments by submerged culture at low pH. Enzyme Microb. Technol. 55: 50–57.10.1016/j.enzmictec.2013.12.007Suche in Google Scholar PubMed

Keller N.P., Turner G. & Bennett J.W. 2005. Fungal secondary metabolism – from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937–947.10.1038/nrmicro1286Suche in Google Scholar PubMed

Kongruang S. 2010. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J. Ind. Microbiol. 38: 93–99.10.1007/s10295-010-0834-2Suche in Google Scholar PubMed

Lale G.J. & Gadre R.V. 2016. Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6: 1–11.10.1186/s13568-016-0205-0Suche in Google Scholar PubMed PubMed Central

Lampila L.E., Wallen S.E. & Bullerman L.B. 1985. A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90: 65–80.10.1007/BF00436853Suche in Google Scholar

Langfelder K., Streibel M., Jahn B., Haase G. & Brakhage A.A. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Gen. Biol. 38: 143–158.10.1016/S1087-1845(02)00526-1Suche in Google Scholar

Li X.L., Cui X.H. & Han J.R. 2006. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid. J. Appl. Microbiol. 101: 725–731.10.1111/j.1365-2672.2006.02982.xSuche in Google Scholar PubMed

Limón M.C., Rodríguez-Ortiz R. & Avalos J. 2010. Bikaverin production and applications. Appl. Microbiol. Biotechnol. 87 21–29.10.1007/s00253-010-2551-1Suche in Google Scholar PubMed

Lin W.Y., Chang J.Y., Hish C.H. & Pan T.M. 2008a. Profiling the Monascus pilosusk proteome during nitrogen limitation. J. Agric. Food Chem. 56: 433–441.10.1021/jf072420eSuche in Google Scholar PubMed

Lin W.Y., Ting Y.C. & Pan T.M. 2007. Proteomic response to intracellular proteins of Monacus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production. J. Agric. Food Chem. 55: 467– 474.10.1021/jf0622937Suche in Google Scholar PubMed

Lin Y.L., Wang T.H., Lee M.H. & Su N.W. 2008b. Biologically activate components and nutraceuticals in the Monascusfermented rice: a review. Appl. Microbiol. Biotechnol. 77: 965–973.10.1007/s00253-007-1256-6Suche in Google Scholar PubMed

Liu B.H., Wu T.S., Su M.C., Chung C.P. & Yu F.Y. 2005. Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J. Agric. Food Chem. 53: 170–175.10.1021/jf048878nSuche in Google Scholar PubMed

Liu N. & Sun G. 2011. Graft polymerization and antibacterial activity on textiles introduced by photosensitive anthraquinones. AATCC Reviews 11: 56–61.Suche in Google Scholar

Lodato P., Alcaino J. & Cifuentes V. 2004. Study expression of carotenoid biosynthesis genes. Biol. Res. 37: 83–93.10.4067/S0716-97602004000100009Suche in Google Scholar

Lopes F.C., Tichota D.M., Pereira J.Q., Segalin J., Rios A.O. & Brandelli A. 2013. Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl. Biochem. Biotechnol. 171: 616–625.10.1007/s12010-013-0392-ySuche in Google Scholar PubMed

Loret M.O. & Morel S. 2010. Isolation and structural characterization of two metabolites from Monascus. J. Agric. Food Chem. 158: 1800–1803.10.1021/jf903231pSuche in Google Scholar PubMed

Mapari A.S., Meyer A.S. & Thrane U. 2006a. Colorimetric characterization for comparative analysis of fungal pigments and natural foods colorants. J. Agric. Food Chem. 54: 7027–7035.10.1021/jf062094nSuche in Google Scholar PubMed

Mapari A.S., Meyes A.S. & Thrane U. 2009. Photostability of natural orange-red and yellow fungal pigments in liquid foods model systems. J. Agric. Food Chem. 57: 6253–6261.10.1021/jf900113qSuche in Google Scholar PubMed

Mapari A.S., Nielsen K.F., Larsen T.O., Frisvad J.C., Meyer A.S. & Thrane U. 2006b. Exploring fungal biodiversity for the production of water soluble pigments as potential natural foods colorants. Curr. Opin. Biotechnol. 16: 231–238.10.1016/j.copbio.2005.03.004Suche in Google Scholar PubMed

Mapari S.A., Thrane Y. & Meyer A.S. 2010. Fungal polyketide azaphilone pigments as future natural foods colorants? Trends Biotechnol. 28: 300-307.10.1016/j.tibtech.2010.03.004Suche in Google Scholar PubMed

Mendez-Zavala A., Contreras-Esquivel J.C., Lara-Victoriano F., Rodríguez-Herrera R. & Aguilar C.N. 2007. Fungal production of the red pigment using a xerophilic strain Penicillium purpurogenum GH-2. Rev. Mex. Ing. Quim. 6: 267–273.Suche in Google Scholar

Mukherjee G. & Singh S.K. 2011. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 46: 188–192.10.1016/j.procbio.2010.08.006Suche in Google Scholar

Omamor I.B., Eziashi E.I. & Adekunle A.A. 2008. Carbon nutrition in relation to growth of three Monascus species isolated from decaying date fruits. Afr. J. Microbiol. Res. 2: 152–155.Suche in Google Scholar

Osmanova N., Schultze W & Ayoub N. 2010. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315–342.10.1007/s11101-010-9171-3Suche in Google Scholar

Patakova P. 2013. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol. 40: 169–181.10.1007/s10295-012-1216-8Suche in Google Scholar PubMed

Patel S. & Goyal A. 2012. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2 1–15.10.1007/s13205-011-0036-2Suche in Google Scholar PubMed PubMed Central

Pattanagul P., Pinthong R., Phianmongkhol A. & Tharatha S. 2008. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int. J. Food Microbiol. 126: 20–23.10.1016/j.ijfoodmicro.2008.04.019Suche in Google Scholar PubMed

Pintea AM. 2007. Quinone biosynthesis, pp. 102–104. In: Socaciu C. (ed.), Food Colorants, Chemical and Functional Properties. CRC Press, Boca Raton, London, New York.Suche in Google Scholar

Pisareva E., Savov V. & Kujumdzieva A. 2005. Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z. Naturforsch. C 60: 116–120.10.1515/znc-2005-1-221Suche in Google Scholar

Pradeep F.S. & Pradeep B.V. 2013. Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int. J. Pharmacy Pharm. Sci. 5 526–535.Suche in Google Scholar

Robinson S.C., Weber G., Hinsch E., Vega-Gutierrez S.M., Pittis L. & Eitas S. 2014. Utilizing extracted fungal pigments for wood spalting: a comparison of induced fungal pigmentation to fungal dyeing. J. Coatings 2014: 759073.10.1155/2014/759073Suche in Google Scholar

Rodríguez M., Paz B., López M. & Barredo J. 2004. Genes for carotenoid biosynthesis. Microbiology 55: 5589–5594.Suche in Google Scholar

Rosa L.H., Almeida M.L., Lara S. & Rosa C.A. 2010. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. Microbiol. Ecol. 73: 178–189.10.1111/j.1574-6941.2010.00872.xSuche in Google Scholar

Sabater-Vilar M., Maas R. & Fink-Gremmels J. 1999. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutation Res. 444: 7–16.10.1016/S1383-5718(99)00095-9Suche in Google Scholar

Santos M.A., Mateos L., Stahmann K.P. & Revuelta J.L. 2005. Insertional mutagenesis in the vitamin B2 producer fungus Ashbya gossypii, pp. 283–300. In: Barredo J.L. (ed.) Methods in Biotechnology: Microbial Processes and Products. Humana Press, Totowa, New Jersey, USA.10.1385/1-59259-847-1:283Suche in Google Scholar

Sardaryan E., Zihlova H., Strnad R. & Cermakova Z. 2004. Arpink red – meet a new natural red food colorant of microbial origin, pp. 207–208. In: Dufossé L. (ed.), Pigments in Food, More than Colours. Université de Bretagne Occidentale Publ., Quimper, France.Suche in Google Scholar

Sayyed I. & Majumder D.R. 2015. Pigment production from fungi. Int. J. Curr. Microbiol. Appl. Sci. 2 103–109.Suche in Google Scholar

Seyedin A., Yazdian F., Hatamian Z.A., Rasekh B. & Mir D.M. 2015. Natural pigment production by Monascus purpureus: improving the yield in a bioreactor based on statistical analysis. Appl. Food Biotechnol. 2: 23–30.Suche in Google Scholar

Sharma D., Gupta C., Aggarwal S. & Nagpal N. 2012. Pigments extraction from fungus for textile dyeing. Indian J. Fiber Textile Res. 37: 68–73.10.2115/fiber.68.P_73Suche in Google Scholar

Smith H., Doyle S. & Murphy R. 2015. Filamentous fungi as a source of natural antioxidants. Food Chem. 185 389–397.10.1016/j.foodchem.2015.03.134Suche in Google Scholar PubMed

Socaciu C. 2014. Food Colorants Chemical and Functional Properties. CRS Press. Taylor and Francis Group, London New York, 617 pp.Suche in Google Scholar

Son S.W., Kim H.Y., Choi G.J., Lim H.K., Jang K.S., Lee S.O., Lee S., Sung N.D. & Kim J.C. 2008. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J. Appl. Microbiol. 104: 692–698.10.1111/j.1365-2672.2007.03581.xSuche in Google Scholar PubMed

Studt L., Wiemann P., Kleigrewe K., Humpf H-U. & Tudzynski B. 2012. Biosynthesis of Fusarubins accounts for pigmentation of Fusarium fujikuroi Perithecia. Appl. Environ. Microbiol. 78: 4468–4480.10.1128/AEM.00823-12Suche in Google Scholar PubMed PubMed Central

Sun S., Zhang X., Sun S. & Zhu H. 2016. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem. 190: 801–817.10.1016/j.foodchem.2015.06.042Suche in Google Scholar PubMed

Thrane U., Sameer M., Nielsen K. & Larsen T. 2005. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural foods colorants. Food Biotech. 16: 231–238.10.1016/j.copbio.2005.03.004Suche in Google Scholar

Tseng Y.Y., Chem M.T. & Lin C.F. 2000. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J. Appl. Microbiol. 88: 31–37.10.1046/j.1365-2672.2000.00821.xSuche in Google Scholar

Tsukahara M., Shinzato N., Tamaki Y., Namihira T. & Matsui T. 2009. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl. Biochem. Biotechnol. 158: 476–482.10.1007/s12010-009-8553-8Suche in Google Scholar

Velíšek J. & Cejpek K. 2011. Pigments of higher fungi: a review. Czech J. Food Sci. 29: 87–102.10.17221/524/2010-CJFSSuche in Google Scholar

Velmurugan P., Lee Y.H., Venil C.K., Lakshmanaperumalsamy P., Chae J.C. & Oh B.T. 2010. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J. Biosci. Bioeng.109: 346–350.10.1016/j.jbiosc.2009.10.003Suche in Google Scholar

Vendruscolo F., Müler B.L., Moritz D.E., De Oliveira D., Smidell G. & Ninon J.L. 2013. Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocat. Agric. Biotechnol. 2: 278–284.10.1016/j.bcab.2013.03.008Suche in Google Scholar

Wang B., Zhang X., Wu Z. & Wang Z. 2016. Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 100: 7083–7089.10.1007/s00253-016-7434-7Suche in Google Scholar

Wang L., Zhou H., Frisvad J. & Samson R. 2004. Penicullium persicinum a new grise ofulvin chrysogine and roquefortine producing species. Mycopathologia 158: 175–181.Suche in Google Scholar

Wang T.H. & Lin T.F. 2007. Monascus rice products. Adv. Food Nutr. Res. 53: 123–159.10.1016/S1043-4526(07)53004-4Suche in Google Scholar

Weber G., Chen H-L., Hinsch E., Freitasa S. & Robinson S. 2014. Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Color Technol. 130: 445–452.10.1111/cote.12110Suche in Google Scholar

Wu M-D., Cheng M-J., Yech Y-J., Chen Y-L., Chen K-P., Chen I-S., Yang P-H. & Yuan G-F. 2011. Monasnicotinates A–D, four new pyridine alkaloids from the fungal strain Monascus pilosus BCRC 38093. Molecules 16: 4719–4727.10.3390/molecules16064719Suche in Google Scholar PubMed PubMed Central

Xiong X., Zhang X., Wu Z. & Wang W. 2015. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 99: 1173–1180.10.1007/s00253-014-6227-0Suche in Google Scholar PubMed

Xu M.K., Yang Z.L., Liang Z.Z. & Zhou S.N. 2009. Constructions of a Monascus purpureus mutant showing lower citrinin and higher pigment production by replacement of ctnA with pks1 without using vector and resistance gene. J. Agric. Food Chem. 57: 9764–9768.10.1021/jf9023504Suche in Google Scholar PubMed

Yamaoka Y., Carmona M.L. & Oota S. 2004. Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under super bright red and blue light-emitting diodes. Biosci. Biotechnol. Biochem. 68 1594–1597.10.1271/bbb.68.1594Suche in Google Scholar PubMed

Youngchim S., Morris-Jones R., Hay R.J. & Hamilton A.J. 2004. Production of melanin by Aspergillus fumigatus. J. Med. Microbiol. 53: 175–181.10.1099/jmm.0.05421-0Suche in Google Scholar PubMed

Zheng C-J., Shao CH-L., Guo Z-Y., Chen J-F., Deng D-S., Yang K-L., Chen Y-Y., Fu X-M., She Z-G., Lin Y-CH & Wang CH-Y. 2012. Bioactive hydroanthraquinone and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J. Nat. Prod. 75 189–197.10.1021/np200766dSuche in Google Scholar PubMed

Zheng Y., Zhang Y., Chen D., Chen H., Lin L., Zheng Ch. & Guo Y. 2016. Monascus pigment rubropunctatin: a potential dual agent for cancer chemotherapy and phototherapy. J. Agric. Food Chem. 64: 2541-2548.10.1021/acs.jafc.5b05343Suche in Google Scholar PubMed

Received: 2016-8-29
Accepted: 2016-10-27
Published Online: 2016-11-23
Published in Print: 2016-10-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Section Cellular and Molecular Biology
  2. Pigments from fungi, an opportunity of production for diverse applications
  3. Section Zoology
  4. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
  5. Section Cellular and Molecular Biology
  6. p53-Fibrinolytic system and acute lung injury
  7. Section Cellular and Molecular Biology
  8. The multipotent action of electromagnetic field
  9. Section Cellular and Molecular Biology
  10. Prescreening, identification and harvesting of microalgae with antibacterial activity
  11. Section Botany
  12. Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
  13. Section Botany
  14. Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
  15. Section Botany
  16. Extent and persistence of water repellency in two Iranian soils
  17. Section Botany
  18. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
  19. Section Zoology
  20. Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
  21. Section Zoology
  22. Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
  23. Section Zoology
  24. Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
  25. Section Zoology
  26. Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0144/pdf
Button zum nach oben scrollen