Home Life Sciences Temporal dynamics in the genetic structure of a natural population of Picea abies
Article
Licensed
Unlicensed Requires Authentication

Temporal dynamics in the genetic structure of a natural population of Picea abies

  • Aleksandra Wojnicka-Półtorak EMAIL logo , Konrad Celiński and Ewa Chudzińska
Published/Copyright: September 14, 2016
Become an author with De Gruyter Brill

Abstract

The temporal dynamics of the genetic diversity of the Norway spruce population provide valuable information on the conservation and management of its genetic resources. The relationships between genetic and demographic parameters are of fundamental importance for understanding the adaptability of forest tree populations. The study was aimed at determining the genetic differentiation of five age classes of a naturally regenerating Picea abies population from the Białowieża Primeval Forest (BPF) in Poland. Using mitochondrial DNA markers (nad1 intron b/c; mt15-D02) and nuclear DNA microsatellites (EAC2C08; EATC2B02; EATC2G05; SpAGD1) we determined the genetic structure between and within the age classes of the P. abies population. The significant subdivision of genetic variation (Fst) detected across the age classes is comparable to those found between different populations of this species. Two microsatellite loci behaved as “outlier loci,” exhibiting directional selection as revealed in the LOSITAN analysis. The significant deficit of heterozygosity may be a consequence of a temporal Wahlund effect and selective processes favoring homozygotes in the specific environment of the BPF. Population genetic structure can vary among life stages as a result of multiple factors, such as pollen and seed dispersal patterns, density of trees, past reproductive episodes, site conditions, and selective processes.

Acknowledgements

This study was funded by the National Science Centre in Poland (Grant Number NN304169740). The authors are grateful to Prof. Adolf Korczyk and Dr. Ewa Pawlaczyk for their support in plant material collection from the Białowieża Primeval Forest.

References

Antao T., Lopes A., Lopes R.J., Beja-Pereira A. & Luikart G. 2008. LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9: 323.10.1186/1471-2105-9-323Search in Google Scholar PubMed PubMed Central

Beaumont M.A. & Nichols R.A. 1996. Evaluating loci for use in the genetic analysis of population structure. Proc. of the Royal Soc. B 263: 1619–1626.10.1098/rspb.1996.0237Search in Google Scholar

Bilela S., Dounavi A., Fussi B., Konnert M., Holst J., Mayer H., Rennenberg H. & Simon J. 2012. Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. Forest Ecol. Manag. 275: 60–67.10.1016/j.foreco.2012.03.009Search in Google Scholar

Boscherini G., Vendramin G.G. & Giannini R. 1993. Mating system analysis of two Italian populations of Norway spruce. J. Genet. Breed. 47: 45–48.Search in Google Scholar

Celiński K., Zbrankova W., Wojnicka-Półtorak A., Główczewska K., Hornik B. & Prus-Głowacki W. 2013. Application of ISSR and SSR combined data to assess genetic diversity in dwarf mountain pine (Pinus mugo Turra). Scientia Juvenis 1: 85–92.Search in Google Scholar

Chung M.Y., Nason J.D., Epperson B.K. & Chung M.G. 2003. Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity 90: 98–106.10.1038/sj.hdy.6800187Search in Google Scholar PubMed

Chybicki I.J. & Burczyk J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Heredity 100: 106–113.10.1093/jhered/esn088Search in Google Scholar PubMed

Demesure B., Sodzi N. & Petit R.J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 4: 129–131.10.1111/j.1365-294X.1995.tb00201.xSearch in Google Scholar PubMed

Dering M. & Lewandowski A. 2009. Finding the meeting zone: where have the northern and southern ranges of Norway spruce overlapped. Forest Ecol. Manag. 259: 229–235.10.1016/j.foreco.2009.10.018Search in Google Scholar

Dering M., Misiorny A., Lewandowski A. & Korczyk A. 2012. Genetic and historical studies on the origin of Norway spruce in Białowieża Primeval Forest in Poland. Eur. J. Forest Res. 131: 381–387.10.1007/s10342-011-0510-8Search in Google Scholar

Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.10.2307/2419362Search in Google Scholar

Earl D.A. & von Holdt B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conser. Gen. Resour. 2: 359–361.10.1007/s12686-011-9548-7Search in Google Scholar

Evanno G., Regnaut S. & Goudet J. 2005. Detecting the number of clusters of individual using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611–2620.10.1111/j.1365-294X.2005.02553.xSearch in Google Scholar

Eriksson G., Namkoong G. & Roberds J.H. 1993. Dynamic gene conservation for uncertain futures. Forest Ecol. Manag. 62: 15–37.10.1016/0378-1127(93)90039-PSearch in Google Scholar

Excoffier L., Smouse P.E. & Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet. 131: 479–491.10.1093/genetics/131.2.479Search in Google Scholar PubMed PubMed Central

Fageria M.S. & Rajora O.P. 2013. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol. Apply. 6: 778–794.10.1111/eva.12064Search in Google Scholar PubMed PubMed Central

Jaramillo-Correa J.P., Bousquet J., Beaulieu J., Isabel N., Perron M. & Bouille M. 2003. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theor. Appl. Genet. 106: 1353–1367.10.1007/s00122-002-1174-zSearch in Google Scholar PubMed

Kittelson P.M., Pinahs K., Dwyer J., Ingersoli A., Mans E., Rieke J., Rutman B. & Volenec M. 2009. Age structure and genetic diversity of four Quercus macrocarpa (Michx.) populations in fragmented oak savanna along the Central Minnesota River Valley. Am. Midl. Nat. 161: 301–312.10.1674/0003-0031-161.2.301Search in Google Scholar

Korczyk A. 1995. Protection and conservation of gene resources of forest trees in the Białowieża Forest, pp. 95–102. In: Paschalis P., Rykowski K. & Zajączkowski S. (eds), Protection of forest ecosystems biodiversity of Białowieża Primeval Forest, Warsaw.Search in Google Scholar

Korczyk A. 2008. The stock-taking of old trees and threatened trees species in the Białowieża Primeval Forest. Forest Res. Papers 69: 117–126.Search in Google Scholar

Korshikov I.I., Mudrik E. A., Krasnoshtan O.V., Velikorid’ko T.I., Kalafat L.A. & Podgorni D.Yu. 2011. Age dynamics of the population gene pool of the Crimean pine (Pinus pallasiana D. Don) in Crimea. Cytol. Genet. 45: 33–37.10.3103/S0095452711010075Search in Google Scholar

Linhart V.B., Mitton J.B., Sturgeon K.B. & Davis M.L. 1981. Genetic variation in space and time in a population of Ponderosa pine. Heredity 46: 407–426.10.1038/hdy.1981.49Search in Google Scholar

Litkowiec M., Dering M. & Lewandowski A. 2009. Utility of two mitochondrial markers for identification of Picea abies refugia origin. Dendrobiol. 61: 65–71.Search in Google Scholar

Łonkiewicz B. 1995. A study on delimitation and management of the Białowieża Forest as a biosphere reserve – a synthesis of study results, pp. 193–234. In: Paschalis P., Rykowski K. & Zajączkowski S. (eds), Protection of forest ecosystems biodiversity of Białowieża Primeval Forest, Warsaw.Search in Google Scholar

Maghuly F., Pinsker W., Praznik W. & Fluch S. 2006. Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.]. Forest Ecol. and Manag. 222: 266–271.10.1016/j.foreco.2005.10.025Search in Google Scholar

Mondini L., Noorani A. & Pagnotta M. 2009. Assessing plant genetic diversity by molecular tools. Diversity 1: 19–35.10.3390/d1010019Search in Google Scholar

Nei M. 1972. Genetic distances between populations. Am. Nat. 106: 283–292.10.1086/282771Search in Google Scholar

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet. 89: 583–590.10.1093/genetics/89.3.583Search in Google Scholar PubMed PubMed Central

Nei M. & Roychoudhury A.K. 1974. Sampling variances of heterozygosity and genetic distance. Genet. 76: 379–390.10.1093/genetics/76.2.379Search in Google Scholar PubMed PubMed Central

Neophytou C., Aravanopoulos F.A., Fink S. & Dounavi A. 2010. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petrea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. For. Ecol. Manage. 259: 2026–2035.10.1016/j.foreco.2010.02.013Search in Google Scholar

Nowakowska J.A. 2009. Mitochondrial and nuclear DNA differentiation of Picea abies populations in Poland. Dendrobiol. 61: 119–129.Search in Google Scholar

Nowakowska J.A., Zachara T. & Konecka A. 2014. Genetic variability of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) natural regeneration compared with their maternal stands. Forest Res. Pap. 75: 47–54.10.2478/frp-2014-0005Search in Google Scholar

Okołów C., Karaś M. & Bołbot A. 2009. Białowieża National Park, know it, understand it, protect it. Białowieża: Białowieski Park Narodowy (in Polish).Search in Google Scholar

Oosterhout C., Hutchinson W.F., Wills D.P. & Shipley P. 2004. Micro-checker: software for identification and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535–538.10.1111/j.1471-8286.2004.00684.xSearch in Google Scholar

Orzeł S., Socha J. & Ochał W. 1999. Productivity of mountain spruce stands of mediumage classes as related to their altitude location above sea level. Sylwan 5: 37–45 (in Polish).Search in Google Scholar

Parmesan C. & Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.10.1038/nature01286Search in Google Scholar PubMed

Peakall R. & Smouse P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchun update. Bioinform. 28 (19): 2537–2539.10.1093/bioinformatics/bts460Search in Google Scholar PubMed PubMed Central

Pfeiffer A., Olivieri A.M. & Morgante M. 1997. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40: 411–419.10.1139/g97-055Search in Google Scholar PubMed

Politov D.V., Belokon M.M. & Belokon Yu.S. 2006. Dynamics of allozyme heterozygosity in Siberian dwarf pine Pinus pumila (Pall.) regel populations of the Russian Far East: comparison of embryos and maternal plants. Plant Genetics 42 (10): 1127–1136.10.1134/S102279540610005XSearch in Google Scholar

Porth I. & El-Kassaby Y.A. 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6: 283–295.10.3390/d6020283Search in Google Scholar

Pritchard J., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genet. 155: 945–969.10.1093/genetics/155.2.945Search in Google Scholar

Puumalainen J., Kennedy P. & Folving S. 2003. Monitoring forest biodiversity: a European perspective with reference to temperate and boreal forest zone. J. Environ. Manage. 67: 5–14.10.1016/S0301-4797(02)00183-4Search in Google Scholar

Qiu Y., Liu Y., Kang M., Yi G. & Huang H. 2013. Spatial and temporal population genetic variation and structure of Nothotsuga longibracteata (Pinaceae), a relic conifer species endemic to subtropical China. Gen. Mol. Biol. 36: 598–607.10.1590/S1415-47572013000400019Search in Google Scholar PubMed PubMed Central

Ramirez-Valiente J.A., Lorenzo Z., Soto A., Valladares F., Gil F. & Aranda L. 2010. Natural selection on cork oak: allele frequency reveals divergent selection in cork oak populations along a temperature cline. Evol. Biol. 24: 1031–1044.10.1007/s10682-010-9365-6Search in Google Scholar

Raymond M. & Rousset F. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86: 248–249.10.1093/oxfordjournals.jhered.a111573Search in Google Scholar

Scalfi M., Mosca E., Di Pierro E.A., Troggio M., Vendramin G.G., Sperisen Ch., La Porta N. & Neale D.B. 2014. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce. Plos One 9 (12)10.1371/journal.pone.0115499.Search in Google Scholar PubMed PubMed Central

Schaal B. 1978. Age structure in Liatris acidota (Compositae). Oecologia 32: 93–100.10.1007/BF00344693Search in Google Scholar PubMed

Schueler S.S., Kapeller S., Konrad H., Geburek T., Mengl M., bozzano M., Koskela J., Lefevre F., Hubert J., Kraigher H., Longauer R. & Olrik D.C. 2013. Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodivers. Conserv. 22 (5): 1151–1166.10.1007/s10531-012-0313-3Search in Google Scholar

Scotti I., Paglia G.P., Magni F. & Morgante 2002. Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) trough dot-blot selection. Theor. Appl. Genet. 106: 40–50.10.1007/s00122-002-0986-1Search in Google Scholar PubMed

Scotti I., Gugerli F., Pastorelli R., Sebastiani F. & Vendramin G.G. 2008. Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine standoff Norway spruce (Picea abies [L.] Karst.). For. Ecol. Manage. 255: 3806–3812.10.1016/j.foreco.2008.03.023Search in Google Scholar

Sohorova E., Kuuluvainen T., Kangur A. & Jőgiste K. 2009. Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies. Ann. For. Sci. 66 (201): 1–20.Search in Google Scholar

Sperisen C., Büchler U., Gugerli F., Matyas G. & Geburek T. 2001. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol. Ecol. 10: 257–263.10.1046/j.1365-294X.2001.01180.xSearch in Google Scholar

Thomas B.R., Macdonald S.E., Hicks M., Adams D.L. & Hodgetts R.B. 1999. Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor. Apply. Genet. 94: 793–801.10.1007/s001220051136Search in Google Scholar

Tollefsrud M.M., Sonstebo J.H., Brochmann C., Johnsen O., Sroppa T. & Vendramin G.G. 2009. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102: 549–562.10.1038/hdy.2009.16Search in Google Scholar PubMed

Tonsor S.J., Kalisz J., Fisher J. & Holtsford T.P. 1993. A lifehistory based study of population genetic structure: seed bank to adults in Plantago lanceolata. Evolution 47: 833–843.10.1111/j.1558-5646.1993.tb01237.xSearch in Google Scholar PubMed

Weir B.S. 1996. Genetic Data Analysis: Methods for Discrete Population Genetic Data. 2nd edition. Sinauer Associates, Massachusetts, 445 pp.Search in Google Scholar

Więcko E. 1984. Puszcza Bialowieska. Warszawa: PWN (in Polish).Search in Google Scholar

Wojnicka-Półtorak A., Prus-Głowacki W., Celiński K. & Korczyk A. 2013. Genetic aspects of age dynamics of a natural Picea abies. (L.) Karst. population in the Białowieża Primeval Forest, Poland. New For. 44: 811–825.10.1007/s11056-013-9367-7Search in Google Scholar

Wojnicka-Półtorak A., Wachowiak W., Prus-Głowacki W., Celiński K. & Korczyk A. 2014. Genetic heterogeneity in age classes of naturally regenerated old growth forest of Picea abies (L.) Karst. Silv. Genet. 63 (5): 185–190.10.1515/sg-2014-0024Search in Google Scholar

Yazdani R., Muona O., Rudin D. & Szmidt A.E. 1985. Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For. Sci. 31: 430–436.Search in Google Scholar

Received: 2016-2-24
Accepted: 2016-7-14
Published Online: 2016-9-14
Published in Print: 2016-8-1

©2016 Institute of Botany, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans
  3. Cellular and Molecular Biology
  4. Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review
  5. Botany
  6. Human impact on sandy beach vegetation along the southeastern Adriatic coast
  7. Botany
  8. Temporal dynamics in the genetic structure of a natural population of Picea abies
  9. Botany
  10. Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance
  11. Botany
  12. Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea
  13. Zoology
  14. Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia(Gastropoda: Pulmonata)
  15. Zoology
  16. New and little known ptyctimous mites (Acari: Oribatida) with a key to known species of Oribotritia from the Australasian Region
  17. Zoology
  18. Using radio telemetry to track ground beetles: Movement of Carabus ullrichii
  19. Zoology
  20. Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)
  21. Zoology
  22. Role of the invasive Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in the distribution of fish parasites in Europe: New data and a review
  23. Zoology
  24. Translocations of tropical and subtropical marine fish species into the Mediterranean. A case study based on Siganus virgatus (Teleostei: Siganidae)
  25. Zoology
  26. Distribution, habitats and abundance of the herb field mouse (Apodemus uralensis) in Lithuania
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0109/pdf
Scroll to top button