Startseite Lebenswissenschaften Dynamics of soil Collembola communities (Hexapoda: Collembola) along the mesoclimatic gradient in a deep karst valley
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamics of soil Collembola communities (Hexapoda: Collembola) along the mesoclimatic gradient in a deep karst valley

  • Natália Raschmanová EMAIL logo , Dana Miklisová und Ľubomír Kováč
Veröffentlicht/Copyright: 25. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 2

Abstract

The two-year dynamics of soil collembolan communities were studied at five sites along the mesoclimatic gradient in a deep karst valley, from the karst plateau to the bottom of the deep karst gorge in the Zádiel Valley, Slovak Karst, Slovakia. Within the local gradient the annual soil temperature means ranged from +8.88 ± 6.72°C on the plateau (pasture) to +5.16 ± 6.24°C at the bottom of the gorge (maple-hornbeam wood). Repeated ANOVA confirmed a significant effect of site, year, month and combined factors (year × month, year × month × site) on Collembola abundance (P < 0.0001). The marked spring minimum in abundance dynamics and species richness of communities recorded in the gorge were not observed at the thermophilous sites. The collembolan abundance means at both sites in the gorge were extremely low and significantly different (P < 0.001) from those of the rest of the study period, delayed into the early summer as a direct effect of mesoclimatic inversion within the karst valley. During the drier year a more marked gradient was observed in the deep karst valley, leading to greater changes in the dynamics of dominant species Isotomiella minor and Parisotoma notabilis.

Acknowledgements

The study was funded by the grants from the Slovak Scientific Grant Agency VEGA Nos. 1/0441/03 and 1/3267/06. Our thanks go to the Administration Office of the Slovak Karst National Park (Brzotín, Slovakia) for assistance during this study. We are very grateful to botanist P. Mráz (Charles University, Prague, Czech Republic) for his help with analysis of vegetation at the study sites and D. L. McLean for linguistic corrections of the manuscript.

References

A’Bear A.D., Boddy L. & Jones T.H. 2013. Bottom-up determination of soil collembola diversity and population dynamics in response to interactive climatic factors. Oecologia 173 (3): 1083–1087. DOI: 10.1007/s00442-013-2662-310.1007/s00442-013-2662-3Suche in Google Scholar

Albers D., Migge S., Schaefer M. & Scheu S. 2004. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol. Biochem. 36 (1): 155–164. DOI: 10.1016/j.soilbio.2003.09.00210.1016/j.soilbio.2003.09.002Suche in Google Scholar

Bailey R.G. 2009. Ecosystem Geography. From Ecoregions to Sites. Springer, 251 pp. ISBN: 978-1-4419-0391-4Suche in Google Scholar

Berger T.W. & Berger P. 2014. Does mixing of beech (Fagus sylvatica)and spruce (Picea abies) litter hasten decomposition? Plant Soil 377: 217–234. DOI: 10.1007/s11104-013-2001-910.1007/s11104-013-2001-9Suche in Google Scholar

Bretfeld G. 1999. Symphypleona. In: Dunger W. (ed.), Synopses on Palaearctic Collembola. Vol. 2. Abh. Ber. Naturkundemus Görlitz, 71: 1–318.Suche in Google Scholar

Bruckner A. 1998. Temperature variability and fluctuation in the humus layer of a temperate deciduous forest in spring: implications on the resident fauna. Bodenkultur 49 (4): 229–237.Suche in Google Scholar

Chahartaghi M., Scheu S. & Ruess L. 2006. Sex ratio and mode of reproduction in Collembola of an oak-beech forest. Pedobiologia 50 (4): 331–340. DOI: 10.1016/j.pedobi.2006.06.00110.1016/j.pedobi.2006.06.001Suche in Google Scholar

Choi W.I., Moorhead D.L., Neher D.A. & Ryoo M.I. 2006. A modeling study of soil temperature and moisture effects on population dynamics of Paronychiurus kimi (Collembola: Onychiuridae). Biol. Fertil. Soils 43: 69–75. DOI: 10.1007/s00374005-0062-510.1007/s00374005-0062-5Suche in Google Scholar

Crossley D.A. & Blair J.M. 1991. A high efficiency, “lowtechnology” Tullgren-type extractor for soil microarthropods.Agric.Ecosyst. Environ. 34 (1): 187–192. DOI: 10.1016/0167-8809(91)90104-610.1016/0167-8809(91)90104-6Suche in Google Scholar

Curry J.P. 1971. Seasonal and vertical distribution of the arthropod fauna of an old grassland soil. Sci. Proc. R. Dublin Soc. Ser. B 3: 49–71.Suche in Google Scholar

Čuchta P., Kováč Ľ. & Miklisová D. 2010. Abundance of ten common Collembola species in spruce forests in the High Tatra Mts (Slovakia) three years after windthrow. Acta Soc. Zool. Bohem. 74 (1-2): 21–29.Suche in Google Scholar

Gunn J. (ed.) 2004. Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, Taylor and Francis Group, New York, 902 pp. ISBN: 1-57958-399-710.4324/9780203483855Suche in Google Scholar

Hågvar S. 1982. Collembola in Norwegian coniferous forest soils. I. Relations to plant communities and soil fertility. Pedobiologia 24: 255–296.Suche in Google Scholar

Heiniger CH., Barot S., Ponge J.F., Salmon S., Meriguet J., Carmignac D., Suillerot M. & Dubs F. 2015. Collembolan preferences for soil and microclimate in forest and pasture communities. Soil Biol. Biochem. 86: 181–192. DOI: 10.1016/j.soilbio.2015.04.00310.1016/j.soilbio.2015.04.003Suche in Google Scholar

Huhta V. & Hänninen S.-M. 2001. Effects of temperature and moisture fluctuations on an experimental soil microarthropod community. Pedobiologia 45 (3): 279–286. DOI: 10.1078/0031-4056-0008510.1078/0031-4056-00085Suche in Google Scholar

Irmler U. 2006. Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur. J. Soil Biol.42(1): 51–62. DOI: 10.1016/j.ejsobi.2005.09.01610.1016/j.ejsobi.2005.09.016Suche in Google Scholar

Jacob M., Viedenz K., Polle A. & Thomas F.M. 2010. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164 (4): 1083–1094. DOI: 10.1007/s00442-010-1699-910.1007/s00442-010-1699-9Suche in Google Scholar

Juceviča E. & Melecis V. 2002. Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia 46 (3–4): 365–372. DOI: 10.1078/0031-4056-0014410.1078/0031-4056-00144Suche in Google Scholar

Juceviča E. & Melecis V. 2006. Global warming affect Collembola community: A long-term study. Pedobiologia 50: 177–184. DOI: 10.1016/j.pedobi.2005.10.00610.1016/j.pedobi.2005.10.006Suche in Google Scholar

Kampichler C. 1990. Community structure and vertical distribution of Collembola and Cryptostigmata in a dry-turf cushion plant. Biol. Fertil. Soils 9(2): 130–134. DOI: 10.1007/BF0033579510.1007/BF00335795Suche in Google Scholar

Kopeszki H. & Jandl R. 1994. Die Mesofauna, insbesondere Collembolenfauna, im Buchen-Wienerwald in Abhängigkeit von Streu-Akkumulation und -Depletion. Zool. Anz. 233: 123–134.Suche in Google Scholar

Kováč Ľ., Kostúrová N. & Miklisová D. 2005. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak woods and Pinus nigra plantations in the Slovak Karst (Slovakia). Pedobiologia 49 (1): 29–40. DOI: 10.1016/j.pedobi.2004.07.00910.1016/j.pedobi.2004.07.009Suche in Google Scholar

Kuznetsova N.A. 2006. Long-term dynamics of Collembola in two contrasting ecosystems. Pedobiologia 50 (2): 157–164. DOI: 10.1016/j.pedobi.2005.12.00410.1016/j.pedobi.2005.12.004Suche in Google Scholar

Kuznetsova N.A. 2007. Long-term dynamics of collembolan populations in forest and meadow ecosystems. Entomol. Rev. 87 (1): 11–24. DOI: 10.1134/S001387380701002210.1134/S0013873807010022Suche in Google Scholar

Kuznetsova N.A. & Krestyaninova A.I. 1998. Dynamics of springtail communities (Collembola) in hydrological series of pine forests in southern taiga. [Translated from Zool. Zh. 77: 1009–1020]. Entomol. Rev. 78 (8): 969–981.Suche in Google Scholar

Ľuptáčik P. 1999. Symphyla, Pauropoda, Protura and Diplura dynamics along a climate inversion in the Zádiel Gorge (Slovak Karst), pp. 197–201. In: Tajovský K. & Pižl V. (eds), Soil Zoology in Central Europe, Proceeding of the 5thCentral European Workshop on Soil Zoology, Institue of Soil Biology AS CR, České Budˇejovice, 377 pp. ISBN: 80-902020-6-3Suche in Google Scholar

Makkonen M., Berg M.P., van Hal J., Callaghan T.V., Press M.C. & Aerts R. 2011. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43 (2): 377–384. DOI: 10.1016/j.soilbio.2010.11. 00410.1016/j.soilbio.2010.11. 004Suche in Google Scholar

Materna J. 2002. Horizontal distribution, population dynamics and life cycle of Tetracanthella stachi (Collembola, Isotomidae) in mountain beech and spruce forests. Pedobiologia 46 (3-4): 385–394. DOI: 10.1016/S0031-4056(04)70155-910.1016/S0031-4056(04)70155-9Suche in Google Scholar

Nosek J. 1969. The investigation on the Apterygotan fauna of the Low Tatras. Acta Univ. Carol. Biol. 5/6: 349–528.Suche in Google Scholar

Pomorski R.J. 1998. Onychiurinae of Poland (Collembola: Onychiuridae). Polish Taxonomical Society, Wroclaw, 201 pp. ISBN: 839098041 XSuche in Google Scholar

Ponge J.F. 1993. Biocenoses of Collembola in atlantic temperate grass – woodland ecosystems. Pedobiologia 37 (4): 223–244.Suche in Google Scholar

Ponge J.F., Arpin P. & Vannier G. 1993. Collembolan response to experimental perturbations of litter supply in a temperate forest ecosystem. Eur. J. Soil Biol. 29 (3-4): 141–153.Suche in Google Scholar

Potapov M. 2001. Isotomidae. In: Dunger W. (ed.), Synopses on Palaearctic Collembola, Vol. 3, Abh. Ber. Naturkundemus. Görlitz, Band 73, Heft 2, pp. 1–603.Suche in Google Scholar

Raschmanová N., Kováč Ľ. & Miklisová D. 2008. The effect of mesoclimate on Collembola diversity in the Zádiel Valley, Slovak Karst (Slovakia). Eur. J. Soil Biol. 44 (5-6): 463–472. DOI: 10.1016/j.ejsobi.2008.07.00510.1016/j.ejsobi.2008.07.005Suche in Google Scholar

Raschmanová N., Miklisová D. & Kováč Ľ. 2013. Soil Collembola communities along a steep microclimatic gradient in the collapse doline of the Silická ľadnica Ice Cave, Slovak Karst (Slovakia). Biologia 68 (3): 470–478. DOI: 10.2478/s11756013-0172-810.2478/s11756013-0172-8Suche in Google Scholar

Raschmanová N., Miklisová D., Kováč Ľ. & Šustr V. 2015. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70 (6): 802–811. DOI: 10.1515/biolog-2015-009510.1515/biolog-2015-0095Suche in Google Scholar

Razo-González M., Casta´no-Meneses G., Callejas-Chavero A., Pérez-Velázquez D. & Palacios-Vargas J.G. 2014. Temporal variations of soil arthropods community structure in El Pedregal de San Ángel Ecological Reserve, Mexico City, Mexico. Appl. Soil Ecol. 83: 88–94. DOI: 10.1016/j.apsoil.2014.02.00710.1016/j.apsoil.2014.02.007Suche in Google Scholar

Reeves R.M. 1967. Seasonal distribution of some forest soil Oribatei, pp. 23–30. In: Evans G.O. (ed.), Proc. 2ndInt. Congress of Acarology, Sutton Bonington, England, 652 pp.Suche in Google Scholar

Rozložník M., Szőllős F., Uhrin M. & Karasová E. 1994. Slovenský kras – Slovak Karst Biosphere Reserve, pp. 113–128. In: Jeník J. & Price F. (eds), Biosphere Reserves on the Crossroads of Central Europe, Czech Republic – Slovak Republic. Czech National Committee for UNESCO MAB programme, Empora, Prague, 168 pp. ISBN: 8085779196Suche in Google Scholar

Rusek J. 2001. Microhabitats of Collembola (Insecta: Entognatha) in beech and spruce forests and their influence on biodiversity. Eur. J. Soil Biol. 37: 29–36. DOI: 10.1016/S11645563(01)01090-110.1016/S11645563(01)01090-1Suche in Google Scholar

Sabais A.C.W., Scheu S. & Eisenhauer N. 2011. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37: 195–202. DOI: 10.1016/j.actao.2011.02.00210.1016/j.actao.2011.02.002Suche in Google Scholar

Salmane I. 2000. Investigation of the seasonal dynamics of soil Gamasina mites (Acari: Mesostigmata) in Pinaceum myrtilosum, Latvia. Ekológia (Bratisl.) 19(Suppl. 3): 245–252.Suche in Google Scholar

Sayer E.J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 81 (1): 1–31. DOI: 10.1017/S146479310500684610.1017/S1464793105006846Suche in Google Scholar PubMed

Schlaghamerský J., Devetter M., Háňel L., Tajovský K., Starý J., Tuf I.H. & Pižl V. 2014. Soil fauna across Central European sandstone ravines with temperature inversion: From cool and shady to dry and hot places. Appl. Soil Ecol. 83: 30–38. DOI: 10.1016/j.apsoil.2013.11.01410.1016/j.apsoil.2013.11.014Suche in Google Scholar

Stach J. 1947. The Apterygotan Fauna of Poland in Relation to the World-Fauna of this Group of Insects. Family: Isotomidae. Polska Akademia Umiejetnosci, Kraków, 488 pp.Suche in Google Scholar

StatSoft, Inc. 2013. STATISTICA (data analysis software system), version 12.0. www.statsoft.com.Suche in Google Scholar

Takeda H. 1987. Dynamics and maintenance of collembolan community structure in a forest soil system. Res. Popul. Ecol. 29 (2): 291–346. DOI: 10.1007/BF0253889210.1007/BF02538892Suche in Google Scholar

Thibaud J.-M., Schulz H.-J. & Gama Assalino M.M. 2004. Hypogastruridae. In: Dunger W. (ed.), Synopses on Palaearctic Collembola, Vol. 4, Abh. Ber. Naturkundemus. Görlitz, Band 75, Heft 2, pp. 1–287.Suche in Google Scholar

Vilisics F., Sólymos P., Nagy A., Farkas R., Kemencei Z. & Hornung E. 2011. Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66 (3): 499–505. DOI: 10.2478/s11756-011-0042-110.2478/s11756-011-0042-1Suche in Google Scholar

Wiwatwitaya D. & Takeda H. 2005. Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecol. Res. 20 (1): 59–70. DOI: 10.1007/s11284-004-0013-x10.1007/s11284-004-0013-xSuche in Google Scholar

Wolters W. 1998. Long-term dynamics of collembolan commu-nity.Appl.SoilEcol. 9(1-3): 221–227. DOI: 10.1016/S09291393(98)00079-110.1016/S09291393(98)00079-1Suche in Google Scholar

Zettel J. & Zettel U. 1994. Development, phenology and surface activity of Ceratophysella sigillata (Uzel) (Collembola, Hypogastruridae). Acta Zool. Fenn. 195: 150–153.Suche in Google Scholar

Received: 2015-8-19
Accepted: 2016-1-8
Published Online: 2016-3-25
Published in Print: 2016-2-1

© 2016 Institute of Zoology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Antimicrobial resistance and molecular characterisation of human campylobacters from Slovakia
  3. Cellular and Molecular Biology
  4. Application of violet pigment from Chromobacterium violaceum UTM5 in textile dyeing
  5. Cellular and Molecular Biology
  6. Chemical composition and antioxidant activity of some important betel vine landraces
  7. Cellular and Molecular Biology
  8. Development of conventional and real time PCR assay for detection and quantification of Rhizoctonia solani infecting pulse crops
  9. Botany
  10. Somatic embryogenesis and in vitro shoot propagation of Gentianautriculosa
  11. Botany
  12. Effect of cold treatment on germination of Saxifraga aizoides and S. paniculata: a comparison of central (eastern Alps) and southern populations (northern Apennines)
  13. Botany
  14. Environmental factors and phytohormones enhancing expression of α-momorcharin gene in Momordica charantia
  15. Botany
  16. Unveiling the kinematics of the avoidance response in maize (Zen mays) primary roots
  17. Zoology
  18. Review of the species allocated to the genus Satchellius (Oligochaeta: Lumbricidae) with description of a new species
  19. Cellular and Molecular Biology
  20. Cation metals specific hemocyanin exhibits differential antibacterial property in mud crab, Scylla serrata
  21. Zoology
  22. Dynamics of soil Collembola communities (Hexapoda: Collembola) along the mesoclimatic gradient in a deep karst valley
  23. Zoology
  24. Hidden invertebrate diversity – phytotelmata in Bromeliaceae from palm houses and florist wholesalers (Poland)
  25. Zoology
  26. Species composition of mosquitoes (Diptera: Culicidae) in relation to climate conditions in South-Eastern Slovakia
  27. Zoology
  28. Effect of supplemental feeds on liver and intestine of common carp (Cyprinus carpio) in semi-intensive rearing system: histological implications
  29. Zoology
  30. Trace element enrichment in the eggshells of Grus japonensis and its association witheggshell thinningin ZhalongWetland (Northeastern China)
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0019/pdf
Button zum nach oben scrollen