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Abstract: Breast cancer (BC) is a major global health con-
cern, ranking among the most common neoplasms and
representing one of the leading causes of cancer-related
deaths worldwide. Early recognition and classification of
BC subtypes are crucial for improving patient outcomes.
Therefore, identifying novel biomarkers with diagnostic
and prognostic significance is of great importance. The
Wnt signaling pathway plays a significant role in BC by
influencing various cell cycle regulation processes and
stem cell renewal. This study aims to identify novel Wnt-
associated biomarker panels for BC patients, composed of
multiple molecular factors. A series of bioinformatical ana-
lyses have been employed, including weighted gene co-
expression network analysis, differential expression ana-
lysis, Kaplan—Meier survival analysis, logistic regression
model evaluation, and receiver operating characteristic
construction. Thus, this study revealed potential diagnostic
and prognostic signatures based on comprehensive analyses
of BC patient data sourced from The Cancer Genome Atlas
database. Consequently, four gene signatures were con-
structed: two differentiate ER+ from ER-BC: TTC8, SLC5A7,
and PLCHI for overall survival (0S); ZNF695, SLC7A5, and
PLCHI for disease free survival (DFS), while the other two
effectively distinguish tumor from normal samples: SPC25,
ANLN, KPNA2, SLC7A5 for 0S; SPC25, KIF20A, SKA3, DTL,
CDCA3, ANLN, TTK, RAD54L, MYBL2, ZNF695, and SLC7A5
for DFS.
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1 Introduction

Breast cancer (BC) is one of the most prevalent neoplasms
across the world, being one of the leading causes of cancer-
related deaths worldwide. In 2020, approximately 2.3 mil-
lion cases were diagnosed, whereas 685,000 cases were
fatal. BC is estimated to affect 4.4 million individuals by the
year 2070 [1-3]. Molecular characteristics of BC include four
intrinsic subtypes based on the status of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2/neu), namely luminal A,
luminal B, HER2-enriched, and TNBC/basal-like (triple negative
BO). Each subtype entails a different treatment approach,
which is additionally modified by the unique molecular pro-
file of each patient [4,5].

Currently, the major types of BC management include
surgery, radiation therapy, chemotherapy, endocrine
therapy, and targeted therapy. Each intervention serves a
distinct purpose, and its selection depends on several fac-
tors, such as the type and stage of the malignancy, the indi-
vidual’s general condition, and their preferences [6]. Apart
from the selection of treatment, early recognition and char-
acterization of BC type are key to the patient’s survival; thus,
itis crucial to define novel biomarkers that could be of great
diagnostic and prognostic importance [7-9]. Given the sub-
stantial molecular heterogeneity in the background of BC
among individual patients, it is of great importance to estab-
lish personalized therapeutic interventions tailored to
improve the chances of survival for each patient. An empha-
sized focus on advancing biomarker development holds the
potential to develop innovative therapeutic strategies [10].

A signaling pathway that is often implicated in carci-
nogenesis, including BC, is the Wnt pathway. It influences
embryonic development, being associated with various cell
cycle regulation processes and stem cell renewal [11,12]. Its
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dysregulation in BC influences proliferation, metastasis,
immune microenvironment regulation, and therapeutic
resistance [13,14]. This study aimed to identify Wnt-asso-
ciated molecular signatures as potential therapeutic tar-
gets, evaluated through bioinformatic analyses and litera-
ture review.

2 Materials and methods

2.1 Data acquisition and input gene
selection

The data for this study were obtained from The Cancer Genome
Atlas (TCGA) repository for BC patients (Breast Invasive
Carcinoma (TCGA, PanCancer Atlas) obtained via the cBioPortal
database (https://www.chioportal.org/datasets), which included
1,082 BC patients and 114 matched normal samples. The genes
that underwent further analysis were selected using the gene
transcription regulation database (https:/gtrd.biouml.org/) that
consisted of 2,573 Wnt downstream effectors.

2.2 Weighted gene co-expression network
analysis (WGCNA) and functional
annotation

Pearson’s correlation between input genes was computed
and progressed employing adjacency matrix transforma-
tion with the B-power =5 and the scale-free topology fitting
index (Ry) > 0.9, following the standard guidelines for
WGCNA [15]. Based on the connection between gene pairs,
a topological overlap matrix was constructed to prepare
hierarchical clustering using the hclust() function with the
“average” method of agglomeration. The identification of
modules was performed using the cutreeDynamic() func-
tion (minimum size of the module = 40, deep split level = 2).
The obtained modules were further correlated with spe-
cific clinical traits of the BC patients. Furthermore, a loga-
rithmically transformed p-value from linear regression
facilitated the computation of the correlation’s significance
between gene expression and specific clinical attributes.
Finally, the collective importance of modules was calcu-
lated by averaging the significance of individual genes
within a cluster of genes that are interconnected within
the designated module. Disparities in expression patterns
among distinct modules were graphically represented
by employing the gplots package through the generation
of heatmaps (via the heatmap.2() function), utilizing
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Pearson’s distance metric for arranging rows, and adopting
the “complete” method of agglomeration. The PANTHER
database (https://www.pantherdb.org/) was used to func-
tionally annotate the selected modules of genes. The blue
module, encompassing 183 genes, underwent subsequent
analysis specifically in the context of BC patients.

2.3 Metascape protein-protein interaction
enrichment analysis

Using Metascape (https://metascape.org), analysis and
interpretation of blue module gene OMIC data were per-
formed. The core outcomes focus on enrichment analysis,
where genes found in the blue module of WGCNA were
compared against multiple gene sets associated with var-
ious hiological processes, protein functions, pathways, and
other features. The input gene list (183) was extracted as
the blue module from WGCNA (Table S1).

2.4 Differential expression analysis (DEA)

The differentially expressed genes (DEGs) were identified
using Bioconductor’s package edgeR in two separate compar-
isons: ER-positive versus ER-negative patients, as well as
normal versus tumor samples. Intergroup comparisons
were established using the makeContrasts() function, which
was preceded by using glmFit() and glmLRT() functions. The
topTags() function identified and tabulated the most pro-
nounced DEGs between the groups. A more restrictive cutoff
of log2FC >3.5 was applied to identify the most robust and
biologically significant differentially expressed genes; the
parameters of log2FC 235 and a significance threshold of
p < 0.01 were employed for DEG identification. The visual
representation of these genes was achieved through volcano
plots, employing the ggrepel package and its geom_text_repel
() function. Two volcano plots showed gene expression dis-
tributions based on the ER status (‘ER+” vs “ER-") and sample
type (“tumor” vs “normal” specimens).

2.5 Survival analysis

Genes with the most significant downregulation or over-
expression were analyzed for disease-free survival (DFS)
and overall survival (OS) using R libraries (survminer,
survival, tidyverse) for both comparisons: “normal” vs
“tumor” and “ER+” vs “ER-” Next, genes exhibiting
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statistically ~significant individual survival analyses
(p-value <0.05) were combined into distinct multi-gene sig-
natures. These signatures underwent further analysis
using R libraries (survminer, survival, tidyverse). Median
gene expression was selected as a cutoff value for survival
analyses to provide more balanced group comparisons and
avoid small subgroups. The generation of survival plots
was accomplished through the application of the ggplot2
package.

2.6 Logistic regression model of selected
genes and receiver operating
characteristic (ROC) evaluation with
prediction assessment and validation of
the model

To assess the overall diagnostic performance of the
selected gene signatures, a linear regression model was
built, and its potential was evaluated with ROC curves.
To construct a logistic regression model, the cohort of BC
patients was partitioned into two distinct training and
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testing subgroups, comprising 70 and 30% of the patients,
respectively. The former subgroup was utilized for model
development, whereas the latter group served for control
purposes. The potential predictive capability of the novel
marker signatures was examined using the ROC curve gen-
erated using the pROC R package. This analysis was carried
out considering the presence of ER within cancer samples,
as well as the distinction between tumor and normal
tissue. The model was established using the glm function
inR.

3 Results

3.1 Weighted gene correlation network
analysis revealed genes most closely
correlated with the ER status of BC
patients

A statistically significant correlation of R = 0.46 was noted
between the genes included in the blue module and the
status of ER (Figure 1). This particular module comprised
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Figure 1: The weighted gene correlation network analysis heatmap showing correlation between genes grouped into modules of similar expression
patterns and particular clinical traits of BC patients. Negative correlation is represented by green color, while positive correlation is marked with red.
The greatest correlation was found for genes included in the blue module and ER status (0.46; p < 0.05).
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183 genes, which subsequently underwent further analysis
to evaluate their prognostic potential and identify gene
functionality, alongside their potential implications for
the survival of patients diagnosed with BC. Detailed infor-
mation on genes included in the blue module is provided in
Table S1.

3.2 Enrichment analysis with Metascape
revealed functional associations of blue
module genes

In the subsequent phase of analysis, gene sets that were
significantly enriched were analyzed to derive potential
biological insights relevant to the study (Figure 2).

Metascape enrichment analysis revealed that genes
within the blue module are significantly linked to cell cycle
processes, particularly the mitotic cycle (16%; p < 0.05).
Additionally, these genes showed a strong association
with DNA metabolic processes (14.21%; p < 0.05). Also, 11
genes (6.01%; p < 0.05) were identified as connected to the
retinoblastoma pathway in cancer. Processes that are less
frequently linked to this gene module, but still hold signif-
icance, include DNA replication, RNA metabolism, chro-
matin remodeling, and protein-DNA complex assembly.
Detailed information on these specific processes can be
found in Table S2. In addition, several groups of genes
were organized into clusters based on the protein—protein
interactions identified (Figure 3).
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Four major interaction networks were identified during
this step: AEBP2, BARD1, CDK2, CDC25A, CORO1C, EMGI,
EXOSC2, GINS4, KPNA2, LBR, LSM2, MPHOSPHI0, PHCI,
PHF19, POP1, PSMD12, RCC2, SSRP1, TIMELESS, USP39, and
ZC3H18 as the red network; CCT3, KIF20A, LMNBI1, LMNB?2,
NOP2, PHB2, RANBP1, TUBAIC, and XPO1 as the blue net-
work; ANLN, BRIX1, CAD, DDX47, IARS1, ILF2, TUBB, and
UGP2 as the green network; and COMMD2, DTL, and NAE1
as the purple network. Each network was found to be linked
with distinct biological processes, which included DNA repli-
cation, cell cycle progression, and RNA metabolism (red
nodes); protein localization to the nucleus, apoptosis, and
cell cycle M phase (blue nodes); the assembly of non-mem-
brane-bound organelles (green nodes); and the neddylation
process (purple nodes). A detailed description of processes
and p-value scores is provided in Table S3.

3.3 DEGs were identified by comparing ER-
positive and negative BC patients, as
well as tumor and normal breast tissue

DEA was undertaken across two distinct comparative fra-
meworks. First, a comparison between patients with posi-
tive and negative ER status was executed, using the latter
group as the control cohort. Additionally, a comparison
contrasting normal tissue samples against tumor tissue
samples was conducted, with the normal samples serving
as the reference group. In the initial comparison, TTCS,

R-HSA-69278: Cell Cycle, Mitotic

G0:0000278: mitotic cell cycle

GO0:0010564: regulation of cell cycle process

G0:0006259: DNA metabolic process

WP2446: Retinoblastoma gene in cancer

G0:0006260: DNA replication

R-HSA-453279: Mitotic G1 phase and G1/S transition
GO0:0051052: regulation of DNA metabolic process
R-HSA-8953854: Metabolism of RNA

G0:0006338: chromatin remodeling

G0:0034504: protein localization to nucleus

G0:1901989: positive regulation of cell cycle phase transition
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GO0:0006310: DNA recombination
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WP2363: Gastric cancer network 2

10.0 12.5

-og10(P)

0.0 2.5 5.0 7.5

Figure 2: Bar graph showing the enriched processes across the input gene lists, with darker colors indicating higher statistical significance of the
displayed terms. Pathway and process enrichment analysis was performed for each gene list using the following ontology sources: KEGG pathway, GO
biological processes (GO), Reactome gene sets (R-HSA), canonical pathways, CORUM, Wiki pathways (WP), and PANTHER pathway. The entire genome

served as the enrichment background.
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Figure 3: The four major networks for the provided set of ER-associated Wnt genes.

SPRYD3, SUOX, FAMA47E, TMC4, CALCOCO1, and TPCN1
genes were found to be downregulated; whereas
B3GNT5, UBASH3B, CDCA2, CDC20, ZNF695, RGMA, LRPS,
SLC7A5, MEX3A, PIF1, and PLCHI displayed a significant
upregulation (Figure 4a). As for the normal versus tumor
comparison, a collection of genes including MRAS, UGP2,
CDKN2C, FGD4, FOXN2, TK2, CALCOCO1, JRKL, RGMA,
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TCF7L1, and B3GNT5 exhibited downregulation, while a
pattern of upregulation was observed for the following
genes: SPC25, KIF2C, UHRF1, CEP55, KIF20A, DTL, SKA3,
CKAP2L, ANLN, CDCA3, SPAG5, LMNBI1, TTK, RAD54L,
MYBLZ2, CDCA2, KPNA2, TUBAIC, DIAPH3, CDT1, ZNF695,
HELLS, TIMELESS, ATADZ2, FANCA, GINS4, SLC7A5, PIF1,
ZNF367, LRP8, and CCDC150 (Figure 4b).
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Figure 4: DEA comparison between ER-positive and ER-negative BC patients (a), as well as tumor and normal tissue (b).
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3.4 Genes statistically significant for
patients’ survival were selected using
Kaplan-Meier curves

Genes that displayed substantial and statistically signifi-
cant impact on the survival of these patients were identi-
fied and selected for further signature construction.
Particularly prominent among these genes in ER+ vs ER-
comparison were TTC8, SLC7A5, PLCH1 (0S), and ZNF695,
SLC7A5, PLCH1 (DFS). For normal vs tumor comparison,
the most significant genes included UGP2, JRKL, SPC25,
ANLN, KPNA2, SLC7A5 (0S), as well as SPC25, KIF20A,
SKA3, DTL, CDCA3, ANLN, TTK, RAD54L, MYBL2, ZNF695,
SLC7A5 (DFS) (Figures 5 and 6). The DTL gene was also
included in the list for further evaluation of the gene’s
potential impact, as it closely approached statistical signif-
icance (p = 0.058).
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3.5 Multi-gene signature construction
assessed the cumulative impact on BC
patients’ survival

Gene signatures were constructed on the basis of the prog-
nostic significance of each gene separately. Four novel sig-
natures were analyzed, which included: TTCS8, SLC7A5,
PLCH1 (OS, Figure 7a), and ZNF695, SLC7A5, PLCH1 (DFS,
Figure 7b) from the ER+ vs ER- comparison, as well as
UGP2, JRKL, SPC25, ANLN, KPNA2, SLC7A5 (0S), alongside
SPC25, KIF20A, SKA3, DTL, CDCA3, ANLN, TTK, RAD54L,
MYBL2, ZNF695, and SLC7A5 (DFS, Figure 7d) from the
comparison of tumor vs normal samples. Since the UGP2,
JRKL, SPC25, ANLN, KPNA2, and SLC7A5 signatures with
p = 0.18 were not statistically significant for the patients’
0S, the genes were rearranged into the most efficient pat-
tern, resulting in the SPC25, ANLN, KPNA2, and SLC7A5
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Figure 5: Kaplan-Meier curves for DEGs extracted from ER status comparison ((a) SLC7A5 [OS], (b) PLCH1 [OS], (c) TTC8 [OS], (d) SLC7A5 [DFS], (e) PLCH1

[DFS], and (f) ZNF695 [DFS]) that were found statistically significant.
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8 —— Klaudia Waszczykowska et al.

signatures with p = 0.028 (Figure 7c). Four sets of genes
were further taken into account for binary regression eva-
luation of the results with ROC curves. The contents of each
gene’s signature are summarized in Table S4.

3.6 Selected signatures demonstrated
predictive capabilities as indicated by
ROC curves

Predictive properties of multi-gene signatures were evalu-
ated using the binomial logistic regression model, utilizing
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the collective expression of the chosen sets of genes in
conjunction with the ER status (comparison of ER+ and
ER- specimens) and the incidence of tumors (comparison
between tumor and normal specimens). The resulting AUC
values were as follows: 0.905 for OS (Figure 8a) and 0.886
for DFS (Figure 8b), within the ER+ vs ER- signatures (TTC8,
SLC7AS5, PLCH1 and ZNF695, SLC7A5, PLCHI). Similarly, for
the normal vs tumor signatures, the corresponding AUC
values were 0.992 for OS (Figure 8c) and 0.984 for DFS
(Figure 8d) (SPC25, ANLN, KPNA2, SLC7A5 and SPC25,
KIF20A, SKA3, DTL, CDCA3, ANLN, TTK, RAD54L, MYBL2,
ZNF695, SLC7A5). Moreover, the predictive accuracy of the
ER-associated signatures reached 88.241% for the OS-based
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Figure 7: Survival analysis of multi-gene signatures from ER comparisons ((a) OS - TTC8, SLC5A7, PLCHT and (b) disease-free survival - ZNF695, SLC7A5, PLCHT),
and tumor versus normal tissue comparisons ((c) OS - SPC25, ANLN, KPNA2, SLC7A5 and (d) disease-free survival - SPC25, KIF20A, SKA3, DTL, CDCA3, ANLN, TTK,
RAD54L, MYBL2, ZNF695, SLC7A5). TTC8 expression was reversed, as its higher expression was found to be favorable in contrast to other genes.
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signature and 85.519% for the DFS-based signature. In the
case of ‘tumor vs normal’ signatures, the accuracy of pre-
diction achieved notable levels: 97.906% for the OS-based
signature and 96.147% for the DFS-based signature.

4 Discussion

BC, one of the most common cancers among women, has
an annual global incidence of 2.3 million cases. Molecular
subtypes, such as luminal A, luminal B, HER2/neu, and
triple-negative, guide treatment strategies, with 70% of
the cases being hormone-driven, primarily involving ER-
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expressing luminal subtypes. Estrogens are key drivers in
these tumors [2,4,16]. The Wnt signaling pathway, crucial
in cell cycle regulation and stem cell renewal, plays a sig-
nificant role in carcinogenesis and hormone regulation
[17,18]. Its dysregulation is linked to developmental defects
and cancers. This study explores the Wnt pathway’s regu-
latory mechanisms to identify potential diagnostic and
therapeutic targets for BC [19,20].

The study revealed Wnt gene-regulated processes asso-
ciated with the ER status in BC patients, primarily invol-
ving the cell cycle, DNA replication, and chromatin remo-
deling, which are also linked with B-catenin/TCF-driven
cell cycle activation and estrogen-mediated proliferation

[21-23]. A relation to the retinoblastoma pathway
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Figure 8: ROC curves for each signature-based binary regression model for ER status comparisons ((a) OS - TTC8, SLC5A7, PLCHT and (b) DFS - ZNF695,
SLC7A5, PLCHT), and tumor versus normal tissue comparisons ((c) OS - SPC25, ANLN, KPNA2, SLC7A5 and (d) DFS - SPC25, KIF20A, SKA3, DTL, CDCA3, ANLN,

TTK, RAD54L, MYBL2, ZNF695, SLC7AS).
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highlighted RB?’s role in tumor suppression, including BC
[24]. Additionally, several groups of genes were organized
into clusters based on the identified protein—protein inter-
actions. The largest interaction network was identified for
proteins encoded by genes such as AEBP2, BARD1, CDK2,
CDC25A, CORO1C, EMG1, EXOSC2, GINS4, KPNA2, LBR,
LSM2, MPHOSPH10, PHCI1, PHF19, POP1, PSMD12, RCC2,
SSRP1, TIMELESS, USP39, and ZC3H18. These proteins are
associated with Wnt signaling, which predominantly influ-
ences DNA replication, cell cycle progression, and RNA
metabolism, as indicated in red in Figure 3. For example,
CDC25A is a direct target of B-catenin/TCF, as it activates
the cell-cycle phosphatase CDK2, thus promoting G1/S tran-
sition and facilitating B-catenin transactivation via PKM2,
which leads to enhanced proliferation [25,26]. Additionally,
in BC, CDK2 and related cyclin—-CDK complexes are essen-
tial for estrogen-driven cell division, underscoring ER-
mediated proliferation [27]. A second network, depicted
in blue, is associated with protein localization to the
nucleus, apoptosis, and cell cycle, especially its M phase.
Comprising genes include CCT3, KIF20A, LMNB1, LMNB?2,
NOP2, PHB2, RANBP1, TUBAI1C, and XPO1. This network
comprises genes that facilitate processes frequently orche-
strated also by Wnt signaling and ER activity in many
tumors [28-30]. Further significant associations were
observed for the genes ANLN, BRIX1, CAD, DDX47, IARSI,
ILF2, TUBB, and UGP2, which are highlighted in green.
These genes are implicated in the assembly of non-mem-
brane-bound organelles. Among these genes, ANLN over-
expression was previously found to be correlated with
poor survival of BC patients by enhancing cell proliferation
and migration, at the same time interacting with Wnt/p-ca-
tenin signaling [31,32]. Finally, the smallest purple network
comprises three nodes: COMMD2, DTL, and NAE1. These
genes encode proteins involved in the neddylation process,
a type of post-translational modification that adds the ubi-
quitin-like protein NEDD8 to substrate proteins. Neddyla-
tion can influence various biological processes, including
carcinogenesis, as it has been found to be upregulated in
numerous human cancers [33]. Neddylation inhibitors
represent a promising direction for cancer therapy, as
they may also promote cancer-related immunosuppression
[34]. Notably, in BC, the inhibition of neddylation has been
shown to significantly suppress the growth of HER2-posi-
tive tumors when combined with trastuzumab [34]. More-
over, the neddylation modification pathway has been acti-
vated in breast carcinoma and is associated with ER-a
expression [34,35].

In addition, we have successfully extracted a range of
gene signatures linked to the Wnt pathway that hold poten-
tial as prognostic indicators for individuals afflicted with
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BC. Existing Wnt-associated biomarkers can be broadly
classified based on their function within the pathway,
including regulators (e.g., AXIN2, SFRP1) [14,36], receptors
(e.g., FZD, LRP receptor families) [37,38], transcription fac-
tors (e.g., LEF1, TCF4) [39], or the central mediator of cano-
nical Wnt signaling B-catenin (CTNNBI) [40]. Although such
classical Wnt targets are already proposed, their expres-
sion alone often lacks sufficient specificity or prognostic
utility due to the pathway’s various crosstalks and con-
text-dependent activation. In addition, both the Wnt
pathway and ER signaling are important drivers of hor-
mone-dependent tumor growth and progression [41,42].

Thus, instead of focusing on single-gene expression pat-
terns among BC patients, multi-gene signatures were devel-
oped in this study. Among these, two signatures are intri-
cately tied to the ER status (TTC8, SLC7A5, PLCHI - OS;
ZNF695, SLC7A5, PLCHI — DFS), while another pair is closely
associated with the tumor tissue itself (SPC25, ANLN, KPNA2,
SLC7A5 - OS; SPC25, KIF20A, SKA3, DTL, CDCA3, ANLN, TTK,
RAD541, MYBL2, ZNF695, SLC7A5 — DFS). Among others, is
the ER-associated gene TTC8, known to play a role in cilia
formation [43]. This gene’s capacity to distinguish between
luminal (ER+) and non-luminal (ER-) BC cases has been vali-
dated by another study conducted by Habashy and colleagues
[44]. Moreover, research conducted by Menzl et al. has iden-
tified TTC8 as one of the genes that are commonly down-
regulated in BC cases, which is in line with our study, as its
higher expression was associated with a better prognosis [45].
In our study, however, we have linked the TTC8 gene with
SLC5A7 (LATI) and PLCHI, standing as one of the potential
signatures. It has been noted that the SLC7A5 gene is related
to a variety of tumors [46—49]. Regarding BC, SLC7A5 seems to
be especially linked with the aggressive and highly prolifera-
tive ER+ subtype, and is also associated with the MYC driver
gene [46]. The main function of SLC7AS5 involves the import of
crucial amino acids into cancer cells, thus making it a viable
therapeutic target for cancer management [46,50]. The last
gene from this particular signature associated with both ER
status and OS of BC patients is PLCH1, an enzyme linked with
the breakdown of phosphatidylinositol 4,5-bisphosphate [51].
Although recognized as a potentially significant therapeutic
target for BC by other studies employing multi-omics data,
this gene remains insufficiently studied [52].

In summary, the ER signature, intricately associated
with the survival outcomes of BC patients, encompasses
TTC8, SLC7AS5, and PLCHI1 genes. This collective set exhibits
influence on the OS of BC patients, potentially serving as a
combined biomarker panel.

Concerning the ER+ signature linked to DFS, consis-
tency is observed with two of the three notable genes
that are also present in the context of OS. Specifically,
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SLC7A5 and PLCH1 maintain their significance, and they are
accompanied by the inclusion of ZNF695. In a study evalu-
ating KRAB-ZNF factors, ZNF695 has been found to positively
correlate with advanced tumor stage in BC tissues [53].

Comparative bioinformatics analysis of the Wnt pathway in breast cancer = 11

Another research found that ZNF695 is associated with the
upregulation of several cell cycle genes, mostly in basal-like
BC tumors [54]. In addition to ER-associated signatures, ana-
lysis of comparisons in normal and tumor samples allowed us

Table 1: Summary of genes included in at least one signature for BC patients provided with favorable expression status, short functional annotations,
and experimental validation summary

Gene Favorable Name and summarized function of the Experimental validation in the literature

symbol expression status  protein [94]

ANLN Low Actin-binding protein that participates in cell growth, Often overexpressed in tumors; strongly correlated
migration, and cytokinesis with poor prognosis [95-97]

(DCA3 Low F-box-like protein essential for mitosis initiation Found overexpressed in tumors and cell lines; linked

with poor prognosis [80,98]

DTL Low Denticleless E3 ubiquitin protein ligase homolog Found overexpressed in tumors, while high
associated with cell cycle regulation, responds to DNA  expression predicts worse survival ratio [99,100]
damage, and translesion DNA synthesis

KIF20A Low Kinesin family member 20A is engaged in the Found overexpressed in tumors, knockdown reduces
formation of microtubule bundles, midbody cell proliferation, and is linked with poor prognosis
abscission, and the regulation of cytokinesis [65,101]

MYBL2 Low Myb-related protein B is a transcription factor Overexpressed in tumors and cell lines, and high
involved in cell cycle progression expression linked with poor prognosis; in BC cell

models, inhibition of MYBL2 was found to reduce
proliferation [102-104]

PLCH1 Low Phospholipase C Eta 1 is an intracellular enzyme Overexpressed in tumors; knockdown in cell lines
associated with lipid metabolism, particularly lipid inhibits cell proliferation [105]
degradation

RAD54L Low RAD54-like protein plays an essential role in the High expression predicts poor prognosis; cell line
homologous recombination of the DNA double-strand  studies show regulation of DNA repair dynamics;
breaks pathway mostly supported only by expression and pan-cancer

data [106,107]

SKA3 Low Spindle and kinetochore-associated protein 3; Found overexpressed in tumors; high expression
component of the outer kinetochore complex predicts poor prognosis and is associated with ER/PR
responsible for proper chromosome segregation status [68,108]

SLC7A5 Low Solute carrier family 7 member 5, taking part in Overexpressed in BC tissues; expression is the
amino-acid transport; possibly mediates the transport  highest in more aggressive BRCA subtypes; supports
of thyroid hormones growth and survival of rapidly dividing cancer cells

[46,109]

SPC25 Low SPC25 component of the NDC80 kinetochore complex  Found overexpressed in tumors; high expression
is essential for chromosome segregation and spindle  linked to advanced stage, higher grade, and poor
checkpoint activity prognosis [55,110]

e High Tetratricopeptide repeat domain 8 is associated with  Potential mechanistic links to Wnt signaling or cancer
cilium biogenesis and degradation, with a function progression remain speculative and mostly
related to protein transportation characterized by bioinformatic and expression

data [45]

TTK Low Monopolar spindle 1 (Mps1) kinase phosphorylates Found overexpressed in breast tumors, high
proteins on serine, threonine, and tyrosine, and is expression correlates with poor prognosis and
possibly related to cell proliferation enhanced tumor aggressiveness; inhibition in cell

lines suppresses neoplastic growth; a promising
candidate for radiosensitizing strategies for patients
with basal-like BC [111,112]

ZNF695 Low Zinc finger protein 695 is a transcription factor that ~ Found overexpressed in breast tumors and cell lines;

potentially facilitates the activity of DNA-binding
transcription factors

associated with BRCA molecular subtypes; the
highest expression found in aggressive subtypes;
multiple alternatively spliced variants detected in BC
cells; no direct functional studies reported [53,54,113]
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to select several genes influencing either OS or DFS. The
signature associated with OS that was found significant as a
collective set of genes included SPC25, ANLN, KPNA2, and
SLC7A5. The SPC25 gene encodes a protein that participates
in interactions of the kinetochore microtubule, as well as the
activity of the spindle checkpoint. Recently, it has been found
to positively correlate with poorer prognosis and survival of
BC patients [55,56]. ANLN, crucial in cytokinesis and myosin
contraction, contributes to immune evasion by cancer cells.
Elevated ANLN expression is linked to poor cervical cancer
survival and serves as a negative prognostic factor. In BC, in
silico analysis suggests ANLN impacts Th1/Th2 balance in
basal and luminal-B subtypes, correlating with poor prog-
nosis [57-59].

Furthermore, another essential gene of this module,
KPNA2, is found to be an oncogenic factor, being also impli-
cated in nuclear transport [60]. Several studies have iden-
tified this gene as a poor prognosis factor for breast and
ovarian cancer patients [60—62]. In addition, its expression
has also been linked with lower concentrations of DNA
repair proteins in the cell nuclei [63]. Taken together, com-
bined SPC25, ANLN, KPNA2, and SLC7A5 expression seems
to be crucial for the OS of individuals with BC. At the same
time, each gene of the signature is notably amplified in
these patients, in comparison to normal tissue.

The very last signature of the tumor occurrence analysis
includes genes such as SPC25, KIF20A, SKA3, DTL, CDCA3,
ANLN, TTK, RAD54L, MYBL2, ZNF695, and SLC7A5, which
collectively influence the DFS of BC patients. Several genes
have been previously mentioned in connection with other
signatures; however, KIF20A, SKA3, DTL, CDCA3, TIK,
RAD54L, and MYBL2 are found to be specifically valuable
for DFS, at the same time being significantly overexpressed
in cancer tissue. KIF20A is a gene encoding a cytokinesis-
related protein [64]. The current literature confirms that in
ER+ cases of BC, the gene has been found to serve as an
independent prognostic factor [65,66]. Its expression has
also been linked with poorer prognosis of such patients, indi-
cating a potential to be a therapeutic target as well [65]. Next,
SKA3 encodes a protein that is a part of a larger complex,
functioning during mitosis via microtubule attachment to the
kinetochores [67]. The gene’s overexpression has been linked
with promoting the growth of BC, and thus, is associated with
a worse survival ratio in this group of patients. This is due to
the regulation of PLK-1, which is also involved in eukaryotic
cell division, as its expression is frequently elevated in certain
tumors [68—71]. Another component of the signature, DTL, is
also associated with cells [72]. It has a vital role in cancer
progression by taking part in the PDCD4 protein degradation,
which is known to be a tumor suppressor influencing pro-
grammed cell death [73]. DTL’s elevated expression is often

DE GRUYTER

associated with lower survival rates of various cancer
patients, thus proving the gene’s clinical value [74-77].
CDCA3 is another gene of the signature associated with cell
multiplication, being one of the pivotal regulators of cell
mitosis [78]. The current literature reports that inhibiting
CDCA3 expression might be of great importance in neoplastic
proliferation suppression [79,80]. TTK encodes a Kkinase
involved in mitosis and cell proliferation, playing a role in
neoplastic development. Its inhibition enhances radiosensi-
tivity in basallike BC. Although often elevated in TNBC,
TTK was identified as a positive prognostic biomarker for
this type of cancer [81-83].

Next, RAD54L is a member of the DEAD-like helicase
superfamily and is implicated in homologous recombina-
tion and repair of DNA [84]. The current literature con-
firms its association with carcinogenesis, e.g., by promoting
progression or influencing repair mechanisms in various
cancers [85,86]. Also, RAD45L expression is reported to be
upregulated in BC and other neoplasms [87]. MYBL2, a
proto-oncogene involved in de novo purine synthesis, reg-
ulates the cell cycle and is linked to poor prognosis in
tumors. It promotes neoplastic proliferation and metas-
tasis via CDCA3 activation. Frequently overexpressed in
aggressive BCs like TNBC, MYBL2 is a potential therapeutic
target [88-90].

Multiple genes included in our signatures have been
previously reported as potential biomarkers in various
cancers. However, the specific roles of several signature
genes in BC remain poorly understood. Thus, the con-
structed signatures do not replace classical markers but
rather expand the landscape of Wnt and ER-related prog-
nostic tools in BC by incorporating less characterized effec-
tors. In addition, such panels may better capture the mole-
cular heterogeneity of BC [91-93].

Table 1 describes the characteristics of each identified
gene to summarize the review of signature-based genes.

5 Conclusions

The Wnt pathway plays a crucial role in BC progression,
firmly linked to the ER status. Ontological analysis of its com-
ponents revealed their involvement in cell cycle regulation,
RNA metabolism, membraneless organelle assembly, and
neddylation. The study identified four novel prognostic sig-
natures influencing BC patients’ survival: two differentiate
ER-positive from ER-negative cases, and two distinguish
tumor from normal tissues with high accuracy. Studies
have supported the relevance of some genes in these signa-
tures, such as ANLN, CDCA3, KIF20A, SKA3, SLC7A5, and TTK.
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However, multiple genes included in our signatures, such as
DTL, MYBL2, PLCH1, RAD54L, SPC25, TTC8, and ZNF695, are
either poorly characterized or have not been previously
described in the context of BC, making them promising can-
didates for further investigation. Overall, genes included in
the signatures have been proven to have clinical value and
could contribute to improved diagnosis and prognosis of BC
patients. In the future, such panels may also serve as novel
sets of therapeutic targets for further management of malig-
nancies, possibly being more effective in particular treat-
ments than a single factor.
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