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Abstract: The development of lung squamous cell carcinoma
(LUSC) is associated with the intratumoral microbiota. To facil-
itate faster clinical decisions and predict patient prognosis, we
constructed an intratumoral microbial abundance prognostic
scoring (MAPS) model for LUSC and analyzed its prognostic
performance. Data on the LUSC tumor microbiome, patient
survival, and clinical information were downloaded from
The Cancer Microbiome Atlas and The Cancer Genome Atlas
databases. Differentially abundant microbial genera in LUSC
tumors were analyzed, and their prognostic value was
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evaluated. The differential abundance of key genera in the
MAPS model was validated using lung adenocarcinoma
(LUAD) tumors and normal tissues. Of 52 microbial genera
with increased abundance and 437 with decreased abundance
in LUSC tumors, 462 were highly related to the disease. Seven
of 13 genera that were significantly related to prognosis were
selected to construct the MAPS model. The MAPS risk grouping
was identified as a prognostic risk factor for LUSC. Among the
seven genera in the MAPS model, Indibacter, Oceanospirillum,
Thalassomonas, and Thermopetrobacter differed in abundance
between LUAD tumors and normal tissues and may be the key
intratumoral microorganisms involved in LUSC and LUAD
development. In conclusion, our MAPS model may be a
powerful prognostic biomarker for LUSC.

Keywords: intratumoral microbiota, lung squamous cell
carcinoma, prognosis

1 Introduction

Cancer poses a heavy burden on the health, longevity, and
quality of life of patients and their families. The risk factors
for cancer include family genetics, lifestyle factors, obesity,
smoking, nutritional deficiency, drinking, ultraviolet radia-
tion, and sources of infection [1]. Microbial communities
are commonly found in tumor tissues, and different tumor
types have unique microbial communities [2]. Over the past
few decades, many microorganisms have been extensively
studied, and 11 types have been identified as grade 1 carcino-
gens [3]. The mucosal surfaces of the lungs, which have the
largest surface area in the human body, are continuously
exposed to various airborne microorganisms and environ-
mental pollutants through inhalation. Most of the micro-
organisms that invade healthy human lungs belong to four
phyla (Bacteroides, Firmicutes, Proteus, and Actinomycetes),
with Streptococcus, Neisseria, Hemophilus, and Fusobac-
terium being the most abundant genera [4,5]. The
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characteristics of lung microbial communities vary according
to the tissue and tumor type and depend on microbial com-
munity-host interactions [6,7]. Several studies have con-
firmed that many chronic respiratory diseases, such as
asthma, chronic obstructive pulmonary disease, cystic
fibrosis, and non-small cell lung cancer (NSCLC), are related
to changes in microbial diversity in the respiratory tract [8,9].

Lung squamous cell carcinoma (LUSC) accounts for
approximately 30% of all NSCLC cases [10]. Although smoking
and environmental exposures are the most common risk fac-
tors for LUSC [11], the number of non-smoking patients with
this NSCLC subtype has risen sharply over the past decade,
suggesting the contribution of other additional but unidenti-
fied risk factors [12]. The diversity of intratumoral micro-
organisms is related to the clinical stage of the disease. Com-
pared with lung adenocarcinoma (LUAD), LUSC with TP53
mutations has been found to be positively correlated with
an abundance of Acidovorax [13].

Microbes are key regulators of carcinogenesis and the
Immune response to cancer cells, and cancer-causing immune
cells have been linked to the composition of specific microbial
groups [14]. The steady state of the lung immune system is not
very stable because its interaction with the microbial commu-
nity is dynamic and changes with age, heredity, and environ-
mental exposure. Ecological imbalance in the lung microbial
community leads to a disruption in lung homeostasis, rendering
the host prone to lung diseases. At the same time, the abun-
dance of the lung microbial community is significantly posi-
tively correlated with tumor growth [15]. The mechanisms
underlying the emergence and progression of pulmonary
microbial dysbiosis and the role that such microbiome imbal-
ance plays in the development of lung diseases remain poorly
understood. Next-generation sequencing technology provides a
powerful tool for analyzing the diversity of tumor-associated
microbial communities, enabling detailed characterization of
the microbial composition in lung tumors and their alterations
under specific conditions at the community or group level
Therefore, the aims of this study were to determine and estab-
lish the relationship between LUSC tumors and the intratu-
moral microorganisms, further explore the occurrence and
development of LUSC, and establish new diagnostic and treat-
ment methods for this malignant disease.

2 Materials and methods

2.1 Data source

LUSC-related patient survival data and clinical information
were downloaded from The Cancer Genome Atlas (TCGA)
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database [16]. LUSC tumor microbiome data were down-
loaded from The Cancer Microbiome Atlas database [17]. To
best characterize putative cancer-associated microbes, the
potential effects of contamination must be reduced. There-
fore, potential contaminants in this dataset were rigor-
ously removed using in silico decontamination methods
described in a previous study [17]. After Voom-SNM stan-
dardization, 1,553 genera were detected and quantified.
The two groups of data were matched according to the
sample number, and the tumor microbiome data of
repeated samples were averaged. The LUSC dataset from
TCGA included information on intratumoral microbiota
abundance, age, sex, tumor stage, smoking, patient status,
and overall survival (OS) for 82 tissue samples. Of these
samples, 50 were tumor tissues and 32 were adjacent non-
tumor tissues. Among the 50 tumor samples, 2 were from
Black or African-American patients, 38 were from White
patients, and 10 had no related race information. Of the 32
control samples, one sample was from Black or African-
American patient, 21 samples were from White patients, and
10 samples had no related race information. The detailed
information on these 82 samples is shown in Table S1.

2.2 Identification of differentially abundant
genera

The differentially abundant genera between tumor and
normal tissue samples were analyzed on the basis of the
matched LUSC tumor microbiome data from TCGA. The
threshold values for selecting differentially abundant
genera were a P-value of less than 0.05 and |log2 fold
change| of greater than 0.3 [18].

2.3 Screening LUSC-related modules

On the basis of the tumor microbiome data of the 82 sam-
ples in the LUSC dataset, the weighted gene co-expression
network analysis (WGCNA; version 1.72.5) tool in the R
package [19] was used to analyze 1,553 genera to identify
highly coordinated microbiome modules. The pickSoft-
Threshold function in WGCNA was used for network
topology analysis to calculate the soft-threshold power
and scale-free fit index (ranging from 1 to 20). An appro-
priate soft-threshold value was selected on the basis of R?
(scale-free fit index) being greater than 0.85. Next using the
selected soft-threshold value, an adjacency matrix was
computed and a topological overlap matrix was
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constructed. The values in this latter matrix reflect simila-
rities in the co-regulatory relationships between the
genera. The cluster tree was cut using a dynamic tree-cut-
ting algorithm. The minModule Size parameter (minimum
number of genera in each module) was set to aggregate the
genera into modules. The eigengene for each module was
calculated using principal component analysis. Finally, the
eigengene module was used to compute the module-pheno-
type correlation. Modules with a P-value of less than 0.05
were selected as LUSC-related ones.

On the basis of the WGCNA results, the genera in the
LUSC-related modules were selected to extract intratu-
moral microbiome abundance data from the disease sam-
ples. The correlation between genera was calculated using
the Spearman algorithm, and the microbial co-regulatory
network was constructed using Gephi (version 0.10.1) soft-
ware [20].

2.4 Identification of key genera

A Venn analysis of the genera in the WGCNA module and
differentially abundant genera was performed, and those
that overlapped were considered key genera.

2.5 Construction and validation of a
microbial abundance prognostic scoring
(MAPS) model

On the basis of the clinical data (OS time and status) from
tumor samples in the LUSC dataset of TCGA and corre-
sponding intratumoral microbiome data, univariate Cox
regression was applied to assess the prognostic significance
of each genus using survival (version 3.5-8) in the R package.
A P-value of less than 0.05 was set as the threshold to identify
genera significantly associated with prognosis.

Stepwise multiple regression analysis for prognostic
genera was used to calculate the Akaike information cri-
terion (AIC). The feature genus was selected on the basis of
the minimum AIC value, and a MAPS model was con-
structed as follows:

7
MAPS = Z(abundance of microbe i) x coef.

i=1

All patient samples were grouped into high-risk (MAPS
higher than the median value) and low-risk groups (MAPS
lower than the median value) according to the median
MAPS value. Kaplan-Meier and receiver operating
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characteristic (ROC) curves of 1-, 3-, and 5-year survival
predictions were used to evaluate the performance of the
MAPS model in predicting OS. Additionally, to comprehen-
sively compare the performance of the MAPS model with
other published signatures, we searched the PubMed data-
base for published prognostic gene signatures associated
with lung cancer. On the basis of the LUSC dataset of TCGA,
a multivariate Cox regression model was constructed using
the expression of signature genes and their corresponding
coefficients, and the risk scores were subsequently calcu-
lated. The gene sets from studies where more than 10% of
the genes were missing in the dataset were deleted. On the
basis of the risk scores and patient survival information,
the concordance index (C-index) of these signatures in pre-
dicting patient prognosis was analyzed using the CoxPH
function. Finally, the C-indexes from these published sig-
natures and the MAPS model were compared.

2.6 Prognostic value of the MAPS model

To explore the correlations between different clinical fea-
tures and MAPS values, the rank-sum test was used to
calculate the differences in different clinical features
(age, sex, pathological T, pathological N, tumor stage,
smoking, and patient status) and MAPS risk grouping
between the tumor and normal samples. Univariate and
multivariate Cox regression analyses were used to evaluate
the prognostic value of MAPS risk grouping and clinical
data (age, sex, pathological T, pathological_N, tumor stage,
and smoking), and the regression results were displayed in
a forest plot drawn using forest plot (version 3.1.3). Factors
with a P-value of less than 0.05 in both univariate and
multivariate regression analyses were considered indepen-
dent factors. On the basis of the independent factors, a
nomogram was constructed using rms (version 6.8-0) in
the R package to predict the survival rate of patients
with LUSC [21]. Calibration curve and decision curve ana-
lyses were performed to evaluate the performance of the
nomogram.

2.7 Abundance analysis of model genera

After downloading the LUAD tumor microbiome data from
The Cancer Microbiome Atlas database, we extracted and
analyzed the genus-level data of normal and tumor tissues
from patients. The differences between tumor and normal
tissues were calculated on the basis of the abundance data
of the genera in the MAPS model, and the results were
visualized using ggplot2 (version 3.5.0) in the R package.
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Figure 1: Identification of differentially abundant microbial genera. (a) Volcano map of differentially abundant microbial genera. (b) Scale-free fitting
index. (c) Hierarchical clustering tree. (d) Correlation heat map between modules and traits. (e) Blue module belonging to the horizontal microbial
interaction network. (f) Turquoise module belonging to the horizontal microbial interaction network.
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2.8 Statistical analyses

The Spearman algorithm was used for correlation analysis
and a correlation heat map was drawn. The box diagram
was displayed using ggplot2 (version 3.5.0). The Wilcoxon
rank-sum test was used to calculate the differences
between groups. Hazard ratios and 95% confidence inter-
vals were presented for all prognostic factors.

(a)
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3 Results

3.1 Identification of differentially abundant
microbial genera

The differential analysis of 1,553 genera revealed that 52
were increased and 437 were decreased in abundance in
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Figure 2: Analysis of prognosis-related microbial genera. (a) Venn diagram of the differentially abundant genera related to LUSC. (b) Univariate Cox
regression analysis results revealing prognosis-related genera. (c) Correlation heat map of prognosis-related genera.
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Table 1: Regression coefficient of characteristic bacteria in the optimal

model

Genus Coeff (fit.step)
Sediminibacter -0.497
Terriglobus 0.625
Indibacter 0.781
Betaretrovirus -0.611
Thermopetrobacter 0.476
Oceanospirillum -0.486
Thalassomonas 0.437
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the tumor samples relative to their abundances in the con-
trol samples (Figure 1a).

3.2 Screening LUSC-related modules using
WGCNA

The network topology analysis showed that the scale-free
fitting index R* was 0.94 (Figure 1b). A topological overlap
matrix was constructed according to the selected
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Figure 3: MAPS model analysis. (a) Sample distribution among the risk groups. (b) ROC curves showing the value of the MAPS model in predicting 1-,
3-, and 5-year survival times. (c) Kaplan-Meier curves revealing the overall difference between the two risk groups. (d) The C-indexes of the published
signatures and MAPS model.
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threshold, and the genera were divided into five modules.
We analyzed the correlation between these modules
and phenotypes. Among these, the turquoise (r = —0.28,
P = 0.01) and blue modules (r = -0.39, P < 0.05)
were significantly related to LUSC and were thus
selected. The turquoise module contained 797 genera,
whereas the blue module contained 452 genera (Figure
1c and d).

Microbial co-regulatory networks were constructed
using genera significantly related to LUSC in the blue and
turquoise modules. The results showed that the microbial
co-regulatory network of the blue module had 79 nodes
(Figure 1e) and that of the turquoise module had 131 nodes
(Figure 10).

3.3 Genera related to prognosis

Venn analysis comparing the genera in the WGCNA mod-
ules and the differentially abundant genera showed that
462 genera were highly related to LUSC (Figure 2a). Uni-
variate Cox regression analysis showed that 13 genera were
significantly correlated with prognosis (P < 0.05) (Figure
2b). The Spearman correlation heat map of the 13 prog-
nostic genera is shown in Figure 2c.

3.4 Construction of the MAPS model

After further screening of the 13 prognostic microbial genera
using the stepwise multiple regression method, we obtained
the optimal MAPS model. This included seven genera:
Sediminibacter, Terriglobus, Indibacter, Betaretrovirus,
Thermopetrobacter, Oceanospirillum, and Thalassomonas.
The regression coefficients for the seven genera are listed
in Table 1.

The samples were divided into high- and low-risk
groups on the basis of the MAPS model. The sample dis-
tribution and abundance of model genera among the risk
groups are shown in Figure 3a. The ROC curves revealed
that the model had high 1-, 3-, and 5-year survival predic-
tion values (AUC = 0.87, 0.96, and 0.99, respectively) (Figure
3b). The Kaplan—Meier curves showed that patients in the
high-risk group had shorter survival times than those in
the low-risk group (P < 0.0001; Figure 3c). Moreover, we
compared the C-indexes of these published signatures with
that of the MAPS model. The C-index of the MAPS model
was the highest, suggesting that it has high predictive per-
formance (Figure 3d).
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3.5 Clinical characteristics of patients

The risk scores of the MAPS model were analyzed using clin-
ical data, including age, sex, pathological T, pathological N,
tumor stage, smoking, and patient status. Significant differ-
ences in the MAPS scores were observed between the patient
status (alive and dead) groups but not between the other
groups of clinical factors (Figure 4a). The correlations
between the abundances of genera in the MAPS model and
different clinical features are shown in Figure 4b. Univariate
Cox regression analysis revealed that pathological N stage
was a prognostic risk factor (Table 2, Figure 5a).

Considering that pathological N and the tumor stage
were confounding factors, sex, pathological T,
pathological N, smoking, and age were included in a multi-
variate regression analysis for correction to ensure the
reliability of the results (Table 3). According to the results,
pathological N and MAPS risk grouping were independent
prognostic factors for patients with LUSC (Figure 5b). A
nomogram was constructed using pathological N and
MAPS risk grouping, which showed high performance in
predicting 1-, 3-, and 5-year survival (Figure 5c). The cali-
bration curve and decision curve analyses confirmed the
reliability of the nomogram (Figure 5d and e).

3.6 Abundance analysis of model genera

LUAD tumor microbiome data were downloaded from The
Cancer Microbiome Atlas database, which includes 228
normal and 683 tumor tissues. Differences in the abundances
of five genera (Betaretrovirus, Indibacter, Oceanospirillum,
Thalassomonas, and Thermopetrobacter) were found
between LUAD tumor tissues and normal tissues (Figure
6a). The abundance change trends of Betaretrovirus, Oceanos-
pirillum, and Thermopetrobacter were consistent with those
found in the LUSC samples (Figure 6b).

Table 2: Univariate Cox regression results

Characteristics Hazard ratio 95% CI P value
MAPS Group 13.87 (3.691:52.119) p < 0.001
Gender 1.393 (0.545:3.559) 0.489
Pathologic_T 1.323 (0.619:2.824) 0.47
Pathologic_N 2.329 (1.307:4.15) 0.004
Stage 2.318 (1.24:4.332) 0.008
Smoke 2111 (0.896:4.971) 0.087
Age 0.995 (0.949:1.043) 0.829
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Figure 5: Prognosis analysis and nomogram construction. (a) Univariate Cox regression forest map. (b) Multivariate Cox regression forest map. (c)

Nomogram constructed using independent prognostic factors. (d) Calibration curve. (e) Decision curve analysis results.




10 =— Rongxin Shang et al.

Table 3: Multivariate Cox regression results

Characteristics Hazard ratio 95% CI P value
MAPS Group 29.099 (5.232:161.848) p < 0.001
Gender 1.967 (0.645:5.997) 0.234
Pathologic_T 0.957 (0.39:2.35) 0.924
Pathologic_N 1.915 (1:3.666) p <0.05
Smoke 0.535 (0.175:1.636) 0.273
Age 1.01 (0.951:1.075) 0.727

4 Discussion

In this study, we constructed a MAPS model using seven
intratumoral microbial genera: Sediminibacter, Terriglobus,
Indibacter, Betaretrovirus, Thermopetrobacter, Oceanospirillum,
and Thalassomonas. This model showed high performance in
predicting the prognosis of LUSC. Indibacter, Oceanospirillum,
Thalassomonas, and Thermopetrobacter were the key genera in
both LUSC and LUAD.

As one of the common malignant tumors threatening
human health, lung cancer has a high incidence, a compli-
cated pathogenesis, no obvious symptoms in the early

DE GRUYTER

stages, and poor treatment effects [22]. It is the main cause
of cancer morbidity and mortality in men and ranks third
in terms of incidence and second in terms of mortality
among women [23]. Although minimally invasive surgery,
chemotherapy, and targeted therapy for this disease have
progressed in recent years, the 5-year survival rate of
patients with lung cancer remains unsatisfactory, being
only between 10 and 20% in most areas worldwide [24].
If benign and malignant lung shadows can be distin-
guished earlier and more accurately, patients can be oper-
ated on early to improve their 5-year survival rate.

The rapid development of next-generation sequencing
approaches has aided the revelation that even healthy
lungs have unique and complex microbial communities
[25,26]. Pseudomonas, Streptococcus, Clostridium, Mega-
coccus, and Clostridium cocci are dominant in healthy
lungs [27,28]. Various microorganisms colonize the lungs
and are closely associated with the development of respira-
tory diseases. Moreover, microorganisms in the lungs are
clearly associated with high risk factors for lung cancer.
Studies have shown that the distribution of lung micro-
biotas may differ among patients with NSCLC with
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Figure 6: Differences in the abundance of model genera between tumor and normal tissue samples. (a) Box diagram showing the differences in
abundance of model genera between LUAD and normal samples. (b) Box diagram showing the differences in abundance of model genera between

LUSC and normal samples.
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different clinicopathological characteristics [29] and that
the lung microflora may affect the development of NSCLC
[30]. The microbial characteristics of local tumors are bio-
markers for predicting the response of NSCLC cells to
immune checkpoint inhibitors and evaluating the disease
prognosis [31]. In two recent studies, bronchoalveolar
lavage fluids were sampled from patients with lung cancer,
patients with benign lung lesions, and healthy individuals
for metagenomic sequencing [32,33]. Bacteroides, Proteus,
Actinomycetes, and Firmicutes were detected in all the sam-
ples. However, in the patients with lung cancer, the abun-
dances of these microbes were significantly decreased and
Proteobacteria was the dominant genus, which was signif-
icantly different from the abundances of genera in the
other two groups [32,33]. Hosgood et al. [9] sequenced the
16S rRNA gene in the sputum of nonsmoking female
patients with lung cancer in Xuanwei, China (an area
with coal-burning exposure). They found that the
increased risk of lung cancer was related to a lower a
diversity, and a decreased microbial diversity was related
to the risk of lung cancer. Other studies have demonstrated
significant differences in microbial species and their abun-
dances between benign and malignant lung lesions [34,35].

Currently, the mechanisms underlying the pathogenic
role of microbial communities in the lungs are not well
understood. However, some researchers speculate that the
microecological balance in the lung is broken under patholo-
gical conditions; that is, a “steady imbalance” exists, which
may be determined by the following three factors [36]: (a) the
abnormal lung function leads to a deficiency in the immune
defense of the host; (b) the abnormal internal environment of
the lung promotes the disease growth, which leads to changes
in the microbial community structure in the lungs; and (c)
some microorganisms can recognize host signaling molecules,
including hormones, neurotransmitters, and cytokines, and
the changes in these molecules can affect the microbial com-
munity structure. Therefore, the lung microbiota can reflect
the health status of the organ, activate and aggregate immune
cells with immunomodulatory activity, and participate in the
formation of an immune defense environment [37,38]. Huang
et al. [29] performed 16S rRNA gene sequencing on bronchial
lavage fluid and sputum samples from patients with different
stages of LUSC and LUAD. The results showed that the abun-
dances of Actinobacillus and Arthrobacter were higher in
patients with early LUAD than in individuals with early
LUSC. In our study, we found that the tumor stage was a
prognostic risk factor, similar to the results of other studies.

This study had some limitations. The heterogeneity of
lung cancer and the objective factors existing in clinical
research (including race, age, sex, smoking status, anti-
biotic use, and other respiratory diseases) require large-
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scale sample-size studies to ensure sufficient statistical
tests to explain the correlation between lung microorgan-
isms and lung cancer. Additionally, the use of healthy lung
tissue as a baseline for microbial comparison may not be
optimal. Some bacterial colonization in healthy lung tissue
could be associated with opportunistic microorganisms
that arise during episodes of lung inflammation or other
respiratory conditions. This could introduce confounding
factors and make it difficult to distinguish between the
microbial composition associated with true lung health
and that influenced by inflammation or transient micro-
bial colonization. Moreover, crucial data on tissue necrosis
and inflammation, which could significantly influence the
microbiome, were not available in the datasets used.
Accurate and specific detection methods should be used
in future studies on lung microorganisms to identify differ-
ential proteins. Furthermore, more accurate methods need
to be developed for the diagnosis and treatment of respira-
tory diseases, such as lung cancer. Obtaining the charac-
teristics of the lung microbiome in patients with lung
cancer is of great significance for improving early
screening of the disease, curative effect monitoring,
follow-up observation, and individualized medication.

5 Conclusion

Our results indicated that the MAPS model may be a powerful
prognostic biomarker for LUSC. Moreover, Indibacter,
Oceanospirillum, Thalassomonas, and Thermopetrobacter
may be the key intratumoral microorganisms involved in
the development of LUSC and LUAD.
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