## **Review Article**

Zenebe Tadesse Tsegay, Slim Smaoui, Theodoros Varzakas\*

# Toxicological qualities and detoxification trends of fruit by-products for valorization: A review

https://doi.org/10.1515/biol-2025-1105 received October 14, 2024; accepted March 24, 2025

Abstract: The abundant and renewable resources from fruit by-products are getting emphasis on their valorization. These by-products may contain toxic substances due to factors such as cultivation, harvesting, transportation, preservation, or processing. Hence, presenting scientific overviews of the toxicological qualities and detoxification trends of these by-products are critical for implicating their possible valorization. The present demand for valorization of fruit by-products requires emphasis and methodologies for the detoxification of any toxicants to develop healthier products. This review emphasized the toxicological qualities of by-products from fruits for which the maximum global production occurred in 2022. In this review, heavy metals (arsenic, cadmium, cobalt, chromium, nickel, lead, and mercury), mycotoxins, toxicant organic compounds, anti-nutritional factors, and pesticide/fungicide residues of the selected fruit byproducts were discussed. Current trends to reduce possible toxicants of these by-products during their valorization were emphasized. Novel functional foods valorized from these fruit byproducts and future perspectives of detoxification were also focused on in this review.

**Keywords:** toxicology, qualities, detoxification, fruit, by-products, valorization

## 1 Introduction

The global population is growing rapidly, which demands more resources. Alongside the expanding growth of fruit production, optimum utilization mechanisms of their byproducts are very important. Valorizing fruit by-products means employing and ensuring methods to exploit fruit wastes such as skin, pomace, and seeds as excellent raw materials for small scale and industrial based usage. Toxicants are biological and chemical components present in fruit by-products that can be harmful for human consumption when their amount is beyond the permissible level. Improving the valorization of fruit by-products not only ensures proper utilization of agricultural products but also protects environmental pollution. However, some toxic components may be available in these fruit by-products. Sufficient data on their toxicity should be available for every fruit by-product. In case of available toxicant component, proper reduction mechanism are required before valorization.

Our current living style, food processing method adopted, nature of food sources, and food market globalization are susceptible to food poisoning. Therefore, many organizations such as the food and drug administration (FDA), Food Safety Commission of Japan, European Food Safety Authority, and World Health Organization (WHO) from different countries have been developing regulations on food toxicological qualities. Food poisoning agents in fruit by-products are chemical and natural toxins, which can originate from factors associated with the raw material of the food products, microorganisms, processing, and conservation conditions. Toxicants from excessive heavy metals, nitrates, oxalates, mycotoxins, and pesticide residues are the main sources of health hazards. Consumption of foods containing maximum concentrations of toxins leads to health hazards. Hence, food supplements, cosmetics, and pharmaceuticals produced from fruit by-products should ensure high food quality and safety levels.

Agro-food-by-products are susceptible to toxicants during maturation, harvesting, preservation, and processing. Although agro-food-by-products are cheaper sources, profitable for local economies, and contain potentially functional ingredients,

<sup>\*</sup> Corresponding author: Theodoros Varzakas, Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100, Kalamata, Greece, e-mail: theovarzakas@yahoo.gr

Zenebe Tadesse Tsegay: Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

Slim Smaoui: Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia

consumers and the food industries need details of their nutritional and toxicological qualities to be able to make use of them. Health hazards mainly mycotoxins such as aflatoxins, ochratoxin A, patulin, zearalenone (ZEN), and deoxynivalenol (DON) present in fruits and its products cause health effects of mutagenic, neurotoxic, nephrotoxic, hepatic carcinoma, and immunodeficiency, respectively [1]. To minimize the risk of mycotoxin contamination, storing fruit by-products properly and discarding any visibly moldy or spoiled produce is important. Toxic heavy metals such as lead, cadmium, chromium, cobalt, and nickel can cause harmful damage to humans. These heavy metals excessively build up in edible plant and fruit bodies from the ecosystem where they are cultivated such as from downstream of leather factories (which use chromium and other chemicals). Besides, the range of hazard quotient for As, Cd, Cr, Co, Cu, Ni, Hg, and Pb should be determined [2,3]. Another potentially toxic component in fruit by-products is pesticide residue. To reduce pesticide exposure, it is advisable to wash the fruit thoroughly before consumption and consider purchasing organic produce whenever possible. Certain fruits also contain naturally occurring toxic compounds that can be harmful if consumed excessively [4,5]. For example, some nightshade fruits contain solanine, a glycoalkaloid that acts as a natural defense mechanism against pests and diseases [6,7]. Oxalates are another toxic component that can be present in fruit byproducts. Oxalates are naturally occurring substances found in many plants. Hence, ingesting high amounts of oxalates can lead to the formation of kidney stones in susceptible individuals [8]. Nitrites are an increased risk of cancer and other health issues. To minimize nitrite formation, storing these fruit by-products properly (refrigerated) and avoiding overheating them is recommended. Toxicological and anti-nutrient qualities of many fruit by-products have not been given much attention, and most of the time these parts are discarded with their hidden food, nutraceuticals, and pharmaceutical potential not realized. Hence, evaluating the toxicological and anti-nutrient contents of these by-products so that the knowledge derived can be used to encourage the use of the by-products, while also encouraging adequate consumption of fruits, is a valueadded application that this review tries to address.

Liu et al. [9] applied shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles to measure pesticide residues in apple, grape, pear, peach, and mango fruit peels. They reported that pesticide residues named as thiram (1.46–7.23 ng/cm²), chlorpyrifos (0.14–0.7  $\mu$ g/cm²), and methyl parathion (0.025–0.5  $\mu$ g/cm²) were found in each of the fruit peels, in which the maximum thiram (7.23 ng/cm²) was observed in mango peel.

Mycotoxins, toxic heavy metals such as arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), cobalt (Co), and

nickel (Ni), pesticide residues, oxalates, and nitrate have recommended daily intake (RDI). Excessive presence of minerals (heavy minerals), saponin, alkaloid, hydrocyanic acid, oxalate, tannins, phytates, and nitrates in fruit by-products compared to recommended daily allowance (RDI) are considered as toxicant components. The range of hazard quotient (mg/kg) for As, Cd, Cr, Co, Cu, Ni, and Pb are 2.71-11.38, 0.60-3.32, 0.81-3.18, 0.03-0.09, 0.09-0.26, 0.08-0.34, and 0.83-2.23, respectively [2]. The acceptable daily intake (ADI) limit or toxicity level of dietary nitrates is 3.7 mg/kg body weight according to the regulations of the Joint Expert Committee of Food and Agriculture and the European Commission's Scientific Committee on Food [10]. RDI values of potassium, magnesium, iron, zinc, manganese, copper, phosphorus, and calcium for adults are 4.6 g/day, 260 mg/day, 14 mg/day, 7 mg/day, 2.3 mg/day, 900 μg/day, 700 mg/day, and 1,000 mg/day, respectively [11]. Heavy metals like As, Pb, and Cd are considered toxicants if their concentrations are greater than the recommended level. Based on the WHO [12] recommendation, the monthly intake level should be <0.2 mg/100 g for aluminum; 0.21 mg/100 g for As and Pb, and 0.25 mg/100 g for Cd. Moreover, the maximum Pb limit for edible parts of crops for human health is 0.02 mg/100 g. Pineapple skin contained lead beyond this maximum limit (0.64 mg/100 g analyzed in dry base), whereas in fruit by-products such as orange peel, watermelon rind, banana peel, apple pomace, strawberry pomace, grape pomace, lead contents were insignificantly detected (below 0.1 µg/L) [13,14]. According to Oyeyinka and Afolayan [15], fresh banana (M. sinensis) peel contains a lower alkaloid (0.66 g/100 g), oxalate (37.0 g/100 g), phytate (2.78 g/100 g), and saponin (6.57 g/100 g) than boiled peel extract of the fruit that composed alkaloid (1.76 g/100 g), oxalate (40.2 g/100 g), and saponin (8.12 g/100 g). Except for oxalate, the alkaloid, phytate, and saponin in this study report are in a safe level for human consumption of the fruit peel. According to the study conducted on the local fruits in Incheon, Korea, the most frequently detected pesticide residues were chlorfenapyr, procymidone, etofenprox, pendimethalin, fluopyram, and azoxystrobin [7].

Anti-nutritional factors (ANFs) such as oxalates, hydrogen cyanides (HCN), alkaloids, phytates, tannins, and glycosides can be found in food products [16]. In particular, fruit by-products contain considerable amounts of ANFs although their level is different, which are summarized in Table 2. The anti-nutritional effect of oxalate (a salt formed from oxalic acid) is that it can bind to nutrients preventing their absorption. Hence, consuming foods containing high concentrations of oxalic acid can cause nutritional deficiencies and irritation of the lining of the gut. In addition to these sources, from the flavonoid groups, tannins are anti-nutrients that cause health effects. Mainly it involves in chelation of minerals like iron

and zinc, which then reduce their absorption, as well as inhibit digestive enzymes, thus causing precipitate proteins [17]. Fruits and berries contain high amounts of oxalates, cyanide-inducing glycoside, amygdalin (AMG), sambunigrin, hydrocyanic acid, and toxins [18-21].

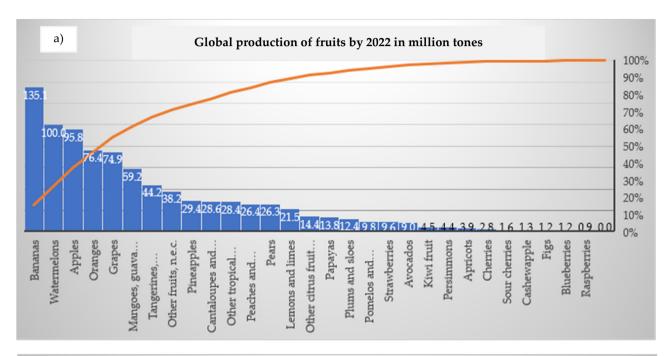
Our study tries to give a comprehensive review of the availability of heavy metals (As, Cd, Co, Cr, Ni, Pb, and Hg), mycotoxins, toxicant organic compounds, ANFs, and pesticide/fungicide residues in fruit by-products that have maximum (>1.2 million tons) global production from FAOSTAT during the year of 2022 [22]. Moreover, the current detoxification trends for the selected fruit by-products were discussed. We focused to review these selected fruit byproducts since much of their by-products are being wasted even though these are important raw materials for small scale and industrial based exploitations. There is greater demand for valorization of these by-products due to their promising bioactive compound contents. Utilization of their by-products for better inspiration of future research and the discovery of biofuel, food ingredients, pharmaceutical, and cosmetic products are getting attention.

## 2 Fruits with maximum global production and their by-products

The global production, consumption, and generation of waste and fruits by-products are increasing from year to year. According to the FAOSTAT database, the fruits with large production during 2022 are bananas, watermelons, apples, oranges, grapes, and the remaining fruits are depicted in Figure 1a in decreasing order [22]. Many fruits are wasted during harvesting, transportation, and processing, and byproducts are produced. Studies have been reporting that from the total fruit weight, about 30-50% accounts for fruit waste and by-products [23]. Percentage waste part of common fruits prioritized in the current review are depicted in Figure 1b. Nearly half of the fruit parts are discarded in terms of peels, seeds, rinds, husks, rags, roots, and pomace during the day-to-day activities in homes and agro-processing industries. It is important to consider that these fruit by-products are important plant sources containing many bioactive substances, dietary fiber, minerals, and others [24,25]. Moreover, fruit by-products contain bioactive substances that show potent ant-microbial activities [25]. Considering their maximum production and by-products that could be generated, we prioritized discussing the toxicity of the fruits with global production greater than 1.2 million tonnes.

Potential toxicants that can persist in the bioactive compounds extracted from fruit by-products are mycotoxins, pesticides, biogenic amines, heavy metals, and microbial contaminations. These contaminants are the main causes of the extracted product's safety, such as biological instability, potential for rapid auto-oxidation, potential pathogenic contaminations, high levels of active enzymes, and high water activity [26].

Many fruit by-products contain potential contaminants such as heavy metals mycotoxin, ant-nutritional contaminants, organic contaminants (biogenic amines), and pesticides [24]. The heavy metals (As, Cd, Co, Cr, Ni, and Pb) present in the prioritized fruit by-products are summarized in Table 1. Moreover, the selected fruit by-products containing mycotoxins, toxicant organic compounds, ANFs, and pesticide/fungicide residues are presented in Table 2.


Studying the amounts and the toxicity level of the waste and by-products of the prioritized fruits is demanded for better valorization. In particular, bananas have the maximum global production in 2022 (Figure 1a). The banana peel represents about 35% of the total fresh harvest mass of ripe fruit, a rich source of dietary fiber, protein, essential amino acids, polyunsaturated fatty acids, antioxidant compounds, and potassium (Figure 1b) [27]. About 25-30% of the apple's total content is represented by by-products which include seeds and peels. Moreover, nearly 20% of the original grape weight accounts for its by-products mainly pomace (skins, stems, and residual pulp) and seeds. Besides, the mango processing produces by-products that range from 40 to 60%, from which about 10-20% represents peels, 10-25% is for seeds, and 15-20% is for kernels. Citrus fruit also creates about 50-70% by-products, which represent seed (1–10%), peel (flavedo and albedo) (range 60–65%), and internal tissues (30-35%) (juice sac residues and rag) [28,29]. The industrial processing of avocados produces byproducts that account for 21-30% of the total, including residues like seeds and peels. Similarly, fresh processing of pineapples creates about 35-46% by-product mainly residual pulp, peels (30–42%), stems (5% core and stem share), and a core only (10%) [28,30]. As mentioned above, the fruits contained considerable by-products, which could be utilized for different types of product development. Much of the fruit byproducts have promising nutritional qualities [31]. Hence, ensuring the toxicity of these by-products for better sustainability and feasibility of valorization is required.

## 3 Toxicological qualities of citrus fruit by-products

Citrus fruits are well-known sour fruits such as oranges, lemons, limes, tangerines, and grapefruit. Czech et al. [32] classified citrus fruits like orange, pomelo (*Citrus maxima*), mandarins, lemon, and grapefruits. The by-products of citrus fruits (Rag, peel, and seeds) account for about 50% [33]. These fruit by-products can contribute to many bioactive compound extractions, sources of pectin, molasses, fibers, oils, and animal feed [31]. Mainly, the citrus fruit peels are raw materials for the functional food products

development such as jams, marmalade, yogurt, crackers (a thin flat crisp biscuit), and meatballs [32].

Heavy metals mainly lead, cadmium, chromium, copper, lead, and nickel were found in orange, lemon, and grapefruit peels as well as in grape skin extracts [34–36]. Bożym et al. [37] analyzed heavy metals (Cd, Cr, Ni, and Pb) present in grape and orange peels as shown in Table 1. Analysis of these



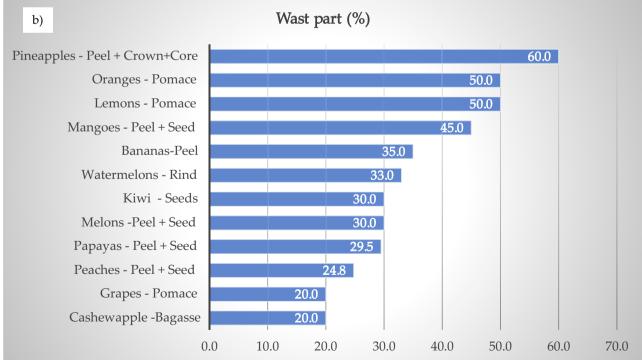



Figure 1: Global fruit production and their waste. (a) Global production of fruits by the year of 2022 [22]. (b) Percentage waste part of common fruits.

heavy metals revealed that their concentrations are within the permissible limits for anaerobic digestion to produce biogas.

The heavy metals reported in citrus fruit peel such as orange (Cd = 0.00049, Pb =  $0.01 \,\text{mg/kg}$ ), lemon (Cd = 0.00047, Pb = 0.0188 mg/kg), red grapefruit (Cd = 0.0019, Pb = 0.03 mg/kg), mandarin (Cd = 0.00062, Pb = 0.02 mg/kg), lime (Cd = 0.0265, Pb = 0.00046 mg/kg), and pomelo (Cd = 0.00136, Pb = 0.0296 mg/kg) were considered. According to the norms for heavy metals (Regulation 1275/2013 and Ordinance 10/2009), the limit for animal feed consumption for cadmium and lead is 1 and 10 mg/kg, respectively. Hence, the reported heavy metal concentrations are below these limits [38].

Mateus et al. [39] investigated heavy metal concentrations in citrus by-products mainly from orange (Citrus sinensis), lemon (Citrus limon), and lime (Citrus aurantifulia) considering As, Cd, Co, Hg, Ni, and Pb. The concentrations of these heavy metals are summarized in Table 1. They reported that the Hg in lemon, orange, and lime and the As in orange and lime by-products were reported as below the detection limit.

The heavy metal (lead and cadmium) analysis conducted on citrus fruit peels (orange, pomelo, lemon, and grapefruits) as shown in Table 1 was reported by Czech et al. [34]. However, according to WHO (0.1-0.2 mg/kg fresh weight of fruit for lead and 0.05 mg/kg for cadmium), the reported results are not beyond the acceptable levels. Moreover, they reported that the peels of these fruits contained tannins (Table 2). The concentration of tannins in grape, orange, and pomelo fruit peels may limit the use of these fruit peels, which demand reduction mechanisms.

According to the European Commission [56], heavy metals and other metals of safety concern (mg/Kg) analyzed in lyophilized citrus by-products (lemon. orange, and lime) should have a maximum residual level (MRL) of As (0.02 mg/kg), Cd (0.02 mg/kg), Co (not applicable), Hg (not applicable), Ni (not applicable), and Pb (0.1 mg/kg). The citrus by-products reviewed in the present study are below this MRL.

The mineral binding anti-nutrients such as oxalates and phytic acid concentrations in citrus fruits (lemon, orange, and grapes) pomace were investigated as

Table 1: Dominant heavy metals in fruit by-products

|             |                   |             | н                     | leavy metals | (mg/kg)  |            |             | References       |
|-------------|-------------------|-------------|-----------------------|--------------|----------|------------|-------------|------------------|
| Commodity   |                   | As          | Cd                    | Cr           | Со       | Ni         | Pb          |                  |
| Apple       | Peel              |             | <1                    | 0.57-3.8     |          | <1         | <1          | [37,40,41]       |
|             | Seed              |             |                       |              |          |            |             |                  |
|             | Pomace            |             |                       |              |          |            |             |                  |
| Apricot     | Kernel            |             | 0.1–6                 |              | 2.7-35.7 |            |             | [42]             |
|             | Pomace            |             |                       |              |          |            |             |                  |
| Avocados    | Seeds             |             |                       | 0.57-2.29    | 0.00     |            | 0.00        | [40,43]          |
| Bananas     | Peels             | <0.0001     | 0.0013-0.18           | 1.42-4.04    | 0.4-47.2 |            | 0.0038-0.64 | [36,44,45]       |
| Blueberries | Pomace            |             | 0.011                 | 0.242        | 0.08     | 0.592      | 0.73        | [46]             |
| Grape       | Peel/skin/pomace  |             | <0.5                  | 0.18-2.41    |          | <0.5       | 0.021-1.11  | [34,35,37]       |
| Lemons      | Peels by-products | 0.004       | 0.00047-0.25          | 1.04         | 0.038    | 0.973-1.24 | 0.0188-0.22 | [34,36,39]       |
| _imes       | By-products       | ND          | 0.003                 |              | 0.073    | 1.678      | 0.128       | [39]             |
| Mangoes     |                   |             |                       | 0.33         | 28.0     |            |             | [45]             |
| Orange      | Peel              |             | <0.5                  | 1.04-4.14    | 0.015    | 0.05-2.36  | 0.01-1.75   | [34,36,37,39,47] |
|             | Seed              |             |                       |              |          |            |             |                  |
| Papayas     | Peel              | 0.0287-0.03 | 0.0027-0.00685        | 0.278-7.36   | 0.4-219  | 0.246-13.2 | 0.03-0.044  | [45,48,49]       |
|             | Seed              |             |                       |              |          |            |             |                  |
| Peaches     |                   |             |                       | 0.17-1.38    |          |            | <0.10       | [50]             |
| Pineapples  | Peels             | <0.0001     | 0.0074                | 8.77         | 70.3     |            | 0.0027      | [44,45]          |
| Plums       | Peels             | 1.2         | ND                    |              |          | 2.8        | ND          | [51,52]          |
|             | Kernels           | <0.1        | 0.13                  |              | 0.2      | 1.7        | 0.13        |                  |
| Pomelos     | Peels             |             | $1.36 \times 10^{-3}$ |              |          |            | 0.0296      | [34]             |
| Raspberries | Pomace            |             | 0.0084                | 0.116        | 0.073    | 0.762      | 0.047       | [46]             |
| Strawberry  | Pomace            |             | 0.0078                | <0.01        |          | 0.00336    | 0.0011      | [53,54]          |
| Mandarins   |                   |             | 0.00062               |              |          |            | 0.020       | [38]             |
| Watermelons | Peel              |             | 0.008-0.1             | 4.65         |          |            | 0.06-0.09   | [40,55]          |
|             | Seed              |             |                       |              |          |            |             |                  |

ND: Not determined.

 Table 2: Toxicant compounds in fruit by-products

|             |                             | Mycotoxins (mg/kg)                                                                            | Toxicant organic<br>compounds<br>(mg/kg)                  | Anti-nutritional<br>contaminants (mg/kg)                                                          | Fungicide/pesticide<br>residues (mg/kg)                                                         | References |
|-------------|-----------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|
| Apple       | Peel/skin<br>Seed<br>Pomace | AOH-3-S = 1.4-10.8<br>$\times$ 10 <sup>-3</sup><br>AME-3-S = 1.7-10 $\times$ 10 <sup>-3</sup> | Naphthaleneacetic<br>acid = 0.433<br>AMG =<br>1,000–4,000 | Oxalates = 890.7<br>HCN = 960.4<br>Alkaloids = 79 9                                               | Acetamiprid = 72–81                                                                             | [57-61]    |
| Apricots    | Seeds                       | AFB1 and AFB2 =<br>0.0017–22.451                                                              | AMG = 52,000                                              | Alkaloids = 79.9<br>Phytates = 14.2<br>Tannins = 1564.4<br>Phytic acid = 1171.5<br>Oxalates = 156 |                                                                                                 | [62–64]    |
| Avocados    | Seeds                       |                                                                                               |                                                           | Tannins = 7.6 Alkaloids = 54 Phytates = 4.4 Oxalates = 44                                         |                                                                                                 | [43]       |
| Bananas     | Peels                       |                                                                                               |                                                           | Phytate = 2.11–9,270 Alkaloids = 0.45–5.45 Oxalate = 20–8,280 Glycosides 149,020 Tannin = 900     | Chlorpyrifos = 0.11–0.8<br>methiocarb = 0.014–0.183                                             | [65,66]    |
| Blueberries | Pomace                      |                                                                                               |                                                           |                                                                                                   | Chlorpyrifos-methyl = $4.27 \times 10^{-3}$<br>Thiametoxan $5.15 \times 10^{-3}$                | [67,68]    |
| Grapes      | Peel/skin<br>Pomace         | $OTA = 0.1 - 0.32 \times 10^{-3}$                                                             |                                                           | Oxalate = 0.6–0.7<br>Tannins = 0.274–0.41                                                         | Cyprodinil = 1.07–1.94  Dimethomorph = 0.56–2.73  Feamoxadone = 1.55                            | [34,35,69] |
| Lemons      | Peels/<br>pomace            |                                                                                               |                                                           | Oxalate = 0.4–0.5<br>Tannins = 0.28                                                               | Pyriproxyfen = 0.039<br>Fludioxonil = 0.008<br>Propiconazole = 0.008<br>Pyrimethanil = 3.8      | [34,39,69] |
| Limes       | Pomace                      |                                                                                               |                                                           |                                                                                                   | Fudioxonil = 0.009 Flutriafol = 0.11 Propiconazole = 0.008 Imazalil = 1.49 Tebuconazole = 0.076 | [39]       |
| Mangoes     |                             |                                                                                               | Putrescine = 0.9                                          | Phytic acid = 254.8<br>Oxalate = 724<br>Tannin = 153 $\times$ 10 <sup>3</sup>                     |                                                                                                 | [70–72]    |

Table 2: Continued

| Commodity                      |                              | Mycotoxins (mg/kg)                                                                                                                                            | Toxicant organic<br>compounds<br>(mg/kg)                        | Anti-nutritional<br>contaminants (mg/kg)                                   | Fungicide/pesticide<br>residues (mg/kg)                                                                                     | References         |
|--------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|
| Orange                         | Peel                         | Tryptoquialanine A<br>= 248.1                                                                                                                                 | Putrescine =<br>11.34–151.1                                     | Tannins = 0.228                                                            | Etoxazole = 0.010–0.637                                                                                                     | [34,60,69,72–75]   |
|                                | Pomace                       | Tryptoquialanine C =<br>375.80                                                                                                                                |                                                                 | Oxalates = 1.2–997.8<br>HCN = 397.9<br>Alkaloids = 54.4<br>Phytates = 23.4 | Imidacloprid = 162.16<br>Carbendazim = 372.1<br>Abamectin = 0.261<br>Cypermethrin = 495.6<br>Prochloraz = 8.11.7            |                    |
| Papayas                        | Peel                         |                                                                                                                                                               | Putrescine = 5.3–19.3                                           | Tannin = 17.6–500<br>Oxalate = 0.6<br>Phytate = 0.6                        |                                                                                                                             | [71,72,76]         |
| Peaches                        | Seeds                        |                                                                                                                                                               | Putrescine =<br>1.82–2.02                                       | Tannins = 5137.6 Phytic acid = 2126.3 Oxalates = 385.9 HCN = 372           |                                                                                                                             | [63,72]            |
| Pears                          |                              |                                                                                                                                                               | Putrescine = 23.6–24.2                                          |                                                                            |                                                                                                                             | [72]               |
| Pineapples                     | Pineapple<br>shell<br>Pomace | Fusarium = 250  Aflatoxin B <sub>2</sub> = 0.008  × 10 <sup>-3</sup> Aflatoxin G <sub>1</sub> = 0.013-0.033 × 10 <sup>-3</sup> OTA = 0.051 × 10 <sup>-3</sup> | 23.0-24.2<br>Putrescine =<br>1.39-7.96                          | Oxalates = 0.4–1290.6<br>HCN = 715<br>Alkaloids = 161.9<br>Phytates = 19.9 | Carbaryl = 0.262 Carbofuran = 14.3 Fenobucarb = 0.01 Isoprocarb = 0.313 Propachlor = 0.015                                  | [60,69,72–79]      |
| Pomelos<br>Strawberry          | Peels<br>Pomace              |                                                                                                                                                               | Putrescine = 2.04–6.42 DEHP = 0.25 DIBP = 0.283 and DBP = 0.222 | Tannins = 0.315                                                            | Total pesticides = 0.216 Total pesticides = 2.143 Procymidone = 0.7 acetamiprid = 0.212 Boscalid = 0.745 Carbendazim = 0.13 | [53,72,80]         |
| Tangerines<br>Watermelo-<br>ns | Peels<br>Peel                | AOH = 0.003-0.017                                                                                                                                             |                                                                 | Phytate = 9,900                                                            | Dimethoate = 1,730                                                                                                          | [39]<br>[60,81,82] |

negligible amounts (Table 2). Hence, the pomace of these fruits can be valorized into value-added products [69]. However, the presence of tannins should be considered.

Mycotoxins such as aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), ZEN, toxin T2 (T2), and fumonisins (FB1 and FB2) were found in orange, lemon, or lime pomace. Moreover, alternariol (AOH), and alternariol mono-methyl ether (AME) were determined in other citrus fruit by-products such as tangerine (*Citrus reticulata*) peels (range from 0.003 to 0.017 mg/kg) [39,83].

Mateus et al. [39] studied the presence of pesticide residues in fresh citrus pomace. Mainly they determined these pesticides in orange (pyriproxyfen = 0.027, fludioxonil = 0.355, imazalil = 0.007, and Pyrimethanil = 2.77 mg/kg), lemon (pyriproxyfen = 0.039, fludioxonil = 0.008, propiconazole = 0.008, and pyrimethanil = 3.8 mg/kg), and lime (fludioxonil = 0.009, flutriafol = 0.11, propiconazole = 0.008, imazalil = 1.49. and tebuconazole = 0.076 mg/kg) pomace.

Socas-Rodríguez et al. [84] studied the pesticides in citrus by-products. They reported that malathion (0.045 mg/kg) and pyriproxyfen (0.0495 mg/kg) were found dominantly in the studied citrus by-product samples. The malathion was below the MRL whereas the pyriproxyfen was found approximately near the MRL (0.05 mg/kg). However, other types of pesticides studied were below the detection limit (from 0.0085 to 0.1288 mg/kg).

Mycotoxins such as AOH and AME were found in citrus fruit by-products. In particular, AOH, a type of mycotoxin, was identified in tangerine (*Citrus reticulata*) peels [39].

According to the MRL developed by European Food Safety et al. [85] for some fungicides such as carbendazim (0.2 mg/kg), thiabendazole (7 mg/kg), imazalil (4 mg/kg), and insecticides such as  $\lambda$ -cyhalothrin (0.2 mg/kg), carbofuran (0.01 mg/kg), and chlorpyrifos (1.5 mg/kg); the reviewed results of the fungicides and insecticides in citrus fruits were below the MRLs.

## 3.1 Oranges

Orange fruit is the fourth globally produced fruit (Figure 1). Large amounts of orange fruits are utilized for juice production, which accounts for about 85% of total processed consumption [86]. Its by-products are peels, seeds, and pomace.

The heavy metals (Cr, Ni, and Pb) analyzed in orange fruit (*Citrus sinensis*) seeds and peels were reported as beyond the RDI set by WHO/FAO [87] (Cr = 0.05-0.2, Ni = 1.4, and Pb = 0.214 mg/day), which are summarized in Table 1 [47]. Hence, careful handling of these by-products is required when valorized in functional foods.

Citrus aurantium (L.) is commonly known as bitter orange, sour orange, Seville orange, bigarade orange, or marmalade orange, which is a rich source of many bioactive compounds.

Oral administration of these fruit peel extracts did not cause mortality or signs of acute toxicity in mice at a 2,000 mg/kg dose. Hence, this fruit peel can extract many non-toxic phytoconstituents [88].

Essential oils (EOs) extracted from bitter orange peel were studied for their oral administration toxicity in mice from 48 h to 14 days with a concentration of 2,000 mg/kg. It is reported that any of clinical symptoms, acute toxicity, or mortality, as well as no change in food intake, behavior, or body weight were observed on the tested mice at the specified time. Other studies have also proven that oral administration of mice with a dose of 5,000 mg/kg EOs did not show any such toxicity except reducing serum total cholesterol of the mice at 10 mg/kg of EOs from these extracts [88,89].

The pesticide residues (imidacloprid, abamectin, cypermethrin, and prochloraz) in orange fruits were particularly distributed in its peels and the second most distributions were in the fruit pomace (Table 2). Washing during the fruit process can reduce the pesticide residues from 43.6 to 85.4%. The fruit pomace that passed the juice extraction process contained residues from 46.0 to 94.7% of imidacloprid, abamectin, cypermethrin, and prochloraz. However, the residue carbendazim was found to lower concentration. Hence, unless proper removal of these pesticide residues is applied valorizing the orange fruit by-products could have health effects [74].

Epicarp layer of orange fruit was found to contain tryptoquialanines A and C (Table 2). However, these concentrations were found within the range of limits of tremorgenic mycotoxins, which can cause deleterious effects on vertebrates [73].

Pesticides like imidacloprid, carbendazim, abamectin, cypermethrin, prochloraz, thiabendazole, and carbaryl, and mycotoxins such as fumonisin B1, tryptoquialanines A and C are present in peels and orange by-products [73,74,90].

The ANFs reported in orange fruit peels were oxalates (997.8 mg/kg), HCN (397.9 mg/kg), alkaloids (54.4 mg/kg), and phytates (23 mg/kg). The reported value for HCN in orange fruit peel is below the threshold value (below 3,500 mg/kg) reported as the safety limit [60].

In general, orange fruit peels can be valorized into valuable products by applying toxicity reduction mechanisms. Figure 2 shows some toxicant components present in orange fruit peels.

#### 3.2 Pomelos

Pomelos is a type of citrus fruit, that includes sweet oranges (*Citrus sinensis*), lemons (*Citrus limon*), limes (*Citrus aurantifulia*), tangerines (*Citrus reticulata*), and grapefruit (*Citrus paradisi*). About 166.4 million tonnes of these fruits and other

citrus fruits (mandarins, clementines, pomelos, grapefruits) were globally produced during 2022 [39]. About 9.6 million tonnes of pomelos were produced during 2022 (Figure 1). The pomelo peel extract accounts for 19.56% of the total fresh fruit weight [91].

Li et al. [92] analyzed the total concentration of pesticides in the pomelo waste parts (epicarp and seeds of pomelo fruit). They reported that the epicarp (0.216 mg/kg) contained the highest than the mesocarp (0.0095 mg/kg), endocarp (0.0044 mg/kg), seed (0.0038 mg/kg), and pulp (0.0011 mg/kg). The reported concentrations were below the ADI limit.

Pomelo peels contain heavy metals like Cd and Ni (Table 1), which are below the maximum level set by the European Commission [56].

Pu et al. [93] assessed pomelo seed oil cytotoxicity in human liver LO<sub>2</sub> and human liver cancer Hep G2 [HEPG2] cells. They reported that IC $_{50}$  values of the Pomelo seed oils were in the range of 16.31 and 28.8 mg/mL, which is acceptable since the non-cytotoxic compounds have IC $_{50}$  values greater than 1 mg/mL. The cytotoxicity dose of the Majia pomelo seed oil concentration tested in human liver cancer HepG $_2$  cells was in the range of 500–4,000 µg/mL, which were also found to be non-toxic.

## 3.3 Mandarin

The etoxazole concentration (0.010~0.637 mg/kg), which is a type of pesticide in citrus (*Citrus reticulata Blanco*) peel, was found larger than its pulp part (0.010–0.011 mg/kg). However, the chronic dietary risk of etoxazole in this fruit

Figure 2: Toxicant elements and chemicals in orange fruit by-product (peel).

peel was in an acceptable range (0.035–0.951%) of the daily consumption recommended dosage [75].

Rossi et al. [94] studied the cytotoxic effects of EO extracted from *Citrus deliciosa* fruit peels harvested at different stages of maturation (immature, intermediate, and mature) against HT-29 cells. They reported that the peel extract from mature fruit showed significant cytotoxic properties (IC $_{50}$  of 110 µg/mL). Hence, bioactive compounds present in these fruit peels like monoterpenes and citronellol can kill or damage cells, and slow or stop the development of rapidly proliferating cancer cells [95].

## 3.4 Lemon

Lemon fruit structure is divided into albedo, flavedo, and pulp. The albedo and flavedo are by-products of lemon during its juice production, which are the main sources of pectin, cellulose, EOs, and pigments. Moreover, the albedo is rich in flavonoids like hesperidin and eriocitrin [96]. The heavy metal concentrations analyzed in kaffir lime peel considered were Cr, Co, Ni, Pb, Cd, Pb, and Hg as shown in Table 1. In this study, all except Hg (Hg = 0.0145 mg/kg) were reported below the detection limit [97]. However, other toxicity studies on fruit peels are scarcely studied. Hence, the valorization of the lemon fruit peel should be done with further investigations of toxicities.

## 3.5 Grape

Grapefruit is the fifth globally produced fruit with 74.9 million tons (Figure 1). The fruit skins, stems, and seeds of grapefruit account for about 20%, mostly found as pomace during grape juice processing [33].

Grape skin extract contained potential safety hazards such as pesticides (cyprodinil, dimethomorph, and feamoxadone), mycotoxins (OTA), biogenic amines (ethanolamine and ethylamine), and heavy metals (Cd and Pb) [35]. In particular, Moncalvo et al. [35] investigated the pesticide residues (cyprodinil, dimethomorph, and feamoxadone) as well as heavy metals in grape skin powders and extracts. The concentration of these pesticide residues shown in Table 2 is below the minimum recommended limit set by the European Union (cyprodinil = 15, dimethomorph = 15, and feamoxadone = 10 mg/kg). Similarly, the heavy metal concentrations are also below the minimum recommended limit (Pb = 0.23 and Cd = 0.23 mg/kg). The biogenic amines analyzed in waste grape skin powders were also found

below the toxicity level. The mycotoxin (OTA =  $0.1-0.32 \times 10^{-3}$  mg/kg) content in grape skin powders was also below the maximum residue levels for ochratoxin (0.01 mg/kg). Furthermore, from the review reported by Georganas et al. [98], the potential hazards found in grape pomace were heavy metals such as As, Pb, Cd, and Ni), toxins like OTA, and biogenic amines.

Proanthocyanidins are part of polyphenols which are used as plant pigments and are found in grape seeds and skins. Proanthocyanidins found in bioactive extracts from grape seeds and skins were studied for their acute oral toxicity, genotoxicity, and lethal dose 50 (LD $_{50}$ ). It is reported that their LD $_{50}$  is greater than 5,000 mg/kg and up to 2,000 mg/kg did not show genotoxicity (micronucleated erythrocytes for 72 h treatments) [99,100]. Moreover, during daily administration of 1,420 mg polyphenols enriched with ellagitannin extracts for 4 weeks, human safety was also found safe [101]. Figure 3 depicts some toxicant components present in grapefruit pomace.

## 4 Toxicological qualities of tropical fruit by-products

Tropical fruit by-products considered here are the peel, pomace and/or seed from avocado, pineapple, banana, papaya, watermelon, and melon fruits.

Tropical fruit by-products contained hazard heavy metals. de Matuoka e Chiocchetti et al. [45] studied the heavy metals (Co and Cr) present in banana, papaya, and pineapple peels, summarized in Table 1. The amounts are above the range of hazard quotient (Cr = 0.81-3.18 mg/kg and Co = 0.03-0.09 mg/kg) [2]. Moreover, the heavy metals analyzed in pineapple and banana peels were As, Cd, Sn, Hg, and Pb. In both peels, low concentrations of these heavy metals were reported (Table 1). In particular, the As, Sn, Hg, and Pb were <1 ×  $10^{-3}$  mg/kg [44].

Hassan et al. [40] studied heavy metal concentrations in avocado seeds and watermelon silage and considered Cr and Ni concentrations. They reported that both fruit byproducts contained insignificant (negligible) Ni. However, the Cr concentrations in avocado seeds and watermelon silage were 0.57–2.29 and 4.65 mg/kg.

The anti-nutritional contaminants present in avocado seeds were tannins, alkaloids, phytates, and oxalates, the reported concentrations are summarized in Table 2 [43]. Moreover, the ANFs reported in pineapple, banana, and watermelon fruit peels were oxalates, HCN, alkaloids, and phytates, and their concentrations are presented in Table 2.

The reported values for HCN in these fruit peels are below the threshold value (below 3,500 mg/kg) reported as the safety limit [60].

The amount of toxic substances summarized in this review can vary from place to place and in different measurement techniques applied. Hence, the reported toxicant components imply that the by-products should be valorized with the application of further toxicant reduction techniques.

### 4.1 Avocado

Avocados have nine million tons of global production (Figure 1). Avocados contain peel (7–15%) and stone (including the seed) (14–24%) waste parts of the total fresh fruit weight. These waste parts are sources of many functional components such as antioxidants, bio-oil, bioethanol, etc. [102].

The heavy metals analysis considering Co and Pb in avocado seeds was reported as insignificant [43]. Hence, avocado fruit seeds can be valorized for many applications.

Cytotoxicity study conducted on avocado agro-industrial by-products (peel and seed) of two varieties (Hass and Fuerte) did not exhibit a cytotoxicity effect on RAW 264.7 cells. Specifically, the cytotoxicity test was performed at different concentrations ranging from 0.1 to 100  $\mu$ g/mL of the fruit varieties peels and seeds extract and concentrations up to 10  $\mu$ g/mL have no cytotoxicity effect [103].

Other toxicant compositions in avocado fruit by-products are scarcely studied. Hence, further toxicity studies on these by-products are required to fully valorize them.

## 4.2 Pineapple

Pineapples have about 29.4 million tons of global production. Therefore, much of its by-products can be valorized into valuable products. The pineapple fruit waste accounts for 60% of the weight of pineapple fruit interns of peeled skin, core, crown end, etc. [104].

As, Cd, Cr, Co, and Pb were found in pineapple peels (Table 1) [44,45]. The As concentration is almost

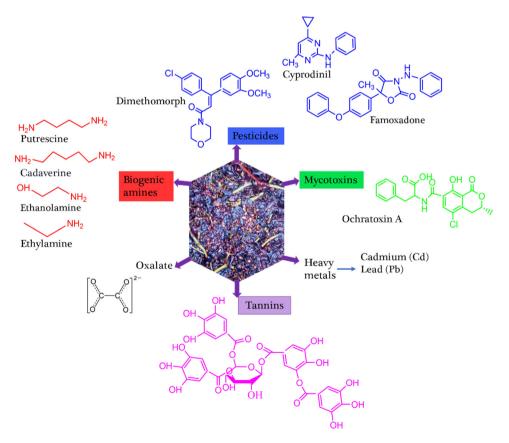



Figure 3: Toxicant elements and chemicals in grapefruit by-product (pomace).

insignificant, whereas the Cr and Co amounts are considerable. Hence, careful treatment is required before valorization.

The main reasons for mycotoxins development in fruit by-products are the refrigeration temperature conditions and water activity during storage. In a study on mycotoxins toxicity (aflatoxin  $B_2$ , aflatoxin  $G_{1,}$  and OTA) levels (shown in Table 2) in pineapple shells were determined below the detection limits  $(2.9 \times 10^{-3} \text{ mg/kg})$  [77].

Oxalates and phytic acid concentrations in pineapple pomace are negligible (Table 2), which assures its applicability for value-added products [69].

Stępień et al. [78] reported the pineapple skin infected with mycotoxin mainly containing fusarium (250 mg/kg). The US FDA mycotoxin exposure guidelines state that the total fusarium in cereal foods should be 2–4 mg/kg. Hence, the reported result can be hazardous to human health without proper pretreatment.

Wanwimolruk et al. [79] analyzed pesticide residues in unpeeled pineapples and reported that considering carbaryl (0.262 mg/kg), carbofuran (1.43 mg/kg), fenobucarb (0.01 mg/kg), isoprocarb (0.313 mg/kg), and propachlor (0.015 mg/kg). Moreover, they analyzed the peeled pineapples which contained pesticide residues much lower than the unpeeled.

In general, pineapple skins are not safe for valorizing into food products as well as for animal forages without detoxification of their toxicants. Other toxicological qualities of fruit by-products are scarcely studied.

#### 4.3 Banana

According to the FAOSTAT database [22], bananas were the first globally produced fruit in 2022 (Figure 1). During the banana processing, the peel part accounts for about 35%. Hence, this percentage of the banana fruit is wasted throughout the processing unless it can be valorized.

The heavy metals analyzed in banana peels were As, Cd, Cr, Co, and Pb, and their concentrations are summarized in Table 1 [36,44,45]. In all the analyzed reports, the concentrations of the heavy metals are below the range of the hazardous limits [2].

Šeremet et al. [105] studied the cytotoxicity of banana peel extract on cells of tongue epithelium (CAL 27), colon epithelial cells (Caco-2), and liver cells (HepG2) in a range of 0.014–10 mg/mL extract concentration and treatment times of 0.5, 1, and 2 h. They reported that polysaccharides containing banana peel aqueous extract has no cytotoxic/proliferative effect on epithelium (CAL 27) and liver cells (HepG2) at any of the tested concentrations or treatment times, whereas 10 mg/mL of the polysaccharides-free aqueous extract has

shown slight proliferative effect in all three treatment times on the colon epithelial cells (Caco-2).

Fusarium proliferatum is a fungal species that causes crown rot in banana fruits mainly occurring during infection on postharvest [106]. Studies have shown that fumonisin B1 can contaminate banana peels during postharvest [106,107]. Gomes et al. [65] reviewed pesticide concentrations in bananas. Accordingly, they reported that pesticides such as chlorpyrifos and methiocarb are within the minimum residual limit set by Codex. Moreover, Mohd Zaini et al. [66] summarized the anti-nutrient composition of banana peel processing using different processing conditions (Table 2). From their report, the phytate, alkaloids, oxalate, and glycoside content in the banana processed by fermentation has shown the maximum concentrations compared to the banana processed by microwave drying, boiling, and air and oven drying methods. A large concentration of glycosides was found in banana peel [108]. Cyanogenic glycosides are the main precursor of HCN, which can be converted through hydrolysis. Glycosides are carcinogens and HCN are also toxic substance, which are formed during the chemical reaction of acids with metal cyanides [66]. Furthermore, the banana and papaya peels contain about 900 and 500 mg/kg of tannins [71]. This value could be varied due to different conditions. Hence, careful reduction mechanisms of banana fruit peel contaminants are required during valorization.

## 4.4 Papaya

Papayas have 13.8 million tons of global production in 2022 as shown in Figure 1 [22]. The waste part (by-product) of papaya rind and seeds accounts for 10–20% [33]. Hence, much of the fruit waste can be valorized into valuable products.

Availability of heavy metals such as As, Cd, Cr, Co, Ni, and Pb were reported in papaya fruit by-products, and their concentrations are summarized in Table 1 [45,48,49]. Except for the Cr, which is slightly higher, all the reported heavy metals were below the range of the hazardous limits [2].

Kumar et al. [48] investigated the presence of higher nickel in a mature papaya peel (13.2 mg/kg) than in young peel (7.96 mg/kg), mature seed (7.41 mg/kg), and yang seed (5.99 mg/kg). Moreover, about 7.36 and 6.41 mg/kg of chromium in mature and young peel were determined, respectively. Similarly, the cobalt analyzed in mature seeds and young peels were 0.15 and 0.4 mg/kg, respectively. In another study reported by Vinha et al. [49], the heavy metal such as chromium, cobalt, arsenic, cadmium, nickel, and lead were determined as summarized in Table 1.

The ANFs such as tannins, oxalates, and phytate analyzed in pawpaw (Carica papaya) seed flour are presented in Table 2 [76]. Toxicants in papaya seed such as phytates (3.04%), glucosinolates (10%), tannins (6.35%), and isothiocyanate (0.03%) were analyzed as dry weight of defatted seed meal. Compared to other toxicants glucosinolates account for the highest proportion of the fruit seed. Besides, the presence of isothiocyanate in the papaya seed oil implies the thioglucosinolate present in the seed hydrolysis to some degree by the thioglycosidase enzyme [109,110]. Thus, the presence of these toxicants limits the use of papaya seed and its oil for animal or human consumption unless further processing to remove these toxicants could be adopted. Pineapple skin contains larger (597 mg/kg) total toxic metal contents than orange peel, watermelon rind, banana peel, apple pomace, strawberry pomace, and grape pomace, in all of which it is below 50 mg/kg [14].

## 4.5 Watermelon

Watermelon fruits have global production of 100 million tons in 2022 [22], which is the second most highly produced fruit. The watermelon fruit contains a high amount of water (91%) and sugar (6%). From its total weight of analysis, it consists of rind and seeds, which account for 40-45% [111].

Heavy metal concentrations of Citrullus lanatus (watermelon) and Citrullus colocynthis (egusi melon) seeds varieties were reported considering selenium (13-28 mg/kg), cadmium (0.008-0.1 mg/kg), and lead (0.06-0.09 mg/kg). These heavy metal concentrations are below the ADI level (Pb = 0.21-0.25 and Cd = 0.06-0.07 mg/day) developed by FAO/WHO regulations [55].

In a study conducted on pesticide residues (diazinon, dimethoate, and metalaxyl) in flesh and the flesh plus peel (rind) of watermelon samples, the dimethoate was found in higher concentration (diazinon =  $2.1 \times 10^{-5}$  mg/kg, dimethoate =  $1.95 \times 10^{-3}$  mg/kg, and metalaxyl =  $2.9 \times 10^{-5}$  mg/kg) in the rind part. However, this was much lower than the recommended MRL (dimethoate =  $2 \times 10^{-2}$  mg/kg) [82]. Hence, properly treated watermelon rind could be the main source of bioactive compound recovery, functional, nutraceutical, and industrial applications [112,113].

Jyothi Lakshmi and Kaul [81] investigated the anti-nutritional quality of watermelon whole meal seeds. They reported that the phytate (9,900 mg/kg), tannin (32  $\times$  10<sup>5</sup> mg/kg), and oxalate (2,130 mg/kg). These amounts could cause health effects and require pretreatment of the watermelon by-products before consumption or valorization.

## 4.6 Melon

About 28.6 million tons of melon and other related fruit products were produced globally in 2022 (Figure 1). Melon by-products mainly peels and seeds, which account for 58-62% of the raw material, are discarded as residue. These waste parts are rich sources of nutritional qualities, bioactive compounds, and other valuable products [114]. Therefore, many of these fruit by-products could be valorized into valuable products.

Anti-nutritional contaminants such as saponins, oxalates, phytates, and tanning were found in melon by-products, and their concentrations are presented in Table 2 [17]. Other hazardous heavy metals, toxicant organic compounds, mycotoxins, and pesticides/fungicides were scarcely studied on fruit melon by-products. Hence, further studies on these issues are advisable for better valorization.

## 5 Toxicological qualities of fruit berries

Fruit berries contain by-products that can be valorized into many products. The inedible fractions of blueberries, cranberries, raspberries, and strawberries from different literature data were reviewed by De Laurentiis et al. [115]. They reported that fruit berries such as blueberries (9-15%), cranberries (14–17%), raspberries (0%), and strawberries (2–6%) fractions were found. Except for the blueberries and strawberries, other fruit berry by-product toxicity analysis was scarcely studied. Therefore, further investigations on toxicity analysis are required before valorizing them.

Some studies indicated that the berry fruit by-products are susceptible to mycotoxins. In particular, mycotoxins like AOH, monomethyl ether, tentoxin, aflatoxins, and OTA were found in fruit berry by-products [116]. Moreover, some fungicides such as carbendazim and thiophanatemethyl (Table 2) were found beyond the MRL developed by European Food Safety et al. [85], which are carbendazim (0.1 mg/kg) and thiophanatemethyl (0.1 mg/kg).

## 5.1 Blueberries

Shotyk [46] studied the heavy metals in wild blueberries and raspberries considering the metals such as Cd, Cr, and Co, whose amounts are summarized in Table 1. They reported that the raspberries contained slightly lower toxic elements considering the established limit of 0.01 mg/100 g (according to Regulation (EC) No. 396/2005 of the European Parliament and Council).

The chlorpyrifos-methyl concentration  $(4.27 \times 10^{-3} \, \text{mg/kg})$  in the blueberry bluecrop variety was reported below the established limit of 0.01 mg/100 g (according to the Regulation (EC) No. 396/2005 of the European Parliament and Council) [67]. Moreover, other blueberries from Serbia contained thiametoxan and azoxytrobin (shown in Table 2) below the abovementioned established limit [68].

### 5.2 Strawberries

The Cr  $(1.47 \times 10^{-6} - 3.41 \times 10^{-6} \text{ mg/kg})$  and Ni  $(2.33 \times 10^{-6} - 3.56 \times 10^{-6} \text{ mg/kg})$  analyzed in strawberry fruits grown in different mediums containing different minerals were found to be below the maximum daily intake limit (Ni = 0.002 mg/kg and Cr = 1.5 mg/kg) [54].

Shao et al. [53] studied pesticides, phthalates, and heavy metals in strawberries grown in Shanghai, China. Phthalates such as bis-2-ethylhexyl phthalate (DEHP), dissobutyl phthalate (DIBP), and dibutyl phthalate (DBP), as well as heavy metal residues like Pb, Cd, and Ni were detected in strawberry pomace. Moreover, the dominantly detected pesticides were procymidone, acetamiprid, boscalid, and carbendazim and their concentrations are summarized in Table 2. They reported that the pesticides, DEHP, DIBP, and DBP, as well as the lead, cadmium, and nickel, were below the estimated daily intake.

Strawberry press-cake is the main source of ellagitannins and dietary fiber, which are important for human health. Total pesticides (2.143 mg/kg) mainly containing fungicides and insecticides are present in this by-product. The ADI (% ADI) of pesticides in the ellagitannins should be between 0.2 and 4.1% [80]. Hence, this strawberry presscake is in the acceptable range for a human dose, which is equivalent to 100 g of strawberries.

The MRL of some fungicides such as carbendazim  $(0.1\,\text{mg/kg})$ , thiabendazole  $(0.05\,\text{mg/kg})$ , imazalil  $(0.05\,\text{mg/kg})$ , thiophanatemethyl  $(0.1\,\text{mg/kg})$ , and insecticides such as  $\lambda$ -cyhalothrin  $(0.01\,\text{mg/kg})$ , carbofuran  $(0.05\,\text{mg/kg})$ , formethanate  $(0.05\,\text{mg/kg})$ , and fenoxicarb  $(0.05\,\text{mg/kg})$  in strawberries was developed by European Food Safety et al. [85]. Except for the carbendazim  $(0.1\,\text{mg/kg})$  and thiophanatemethyl  $(0.1\,\text{mg/kg})$  in strawberries, which were reported equivalent to the MRL, all the analyzed fungicides and pesticides were below the MRLS [80]. Hence, since the concentrations of the above fungicides and pesticides can vary from area to area as well as during measurements, their reduction mechanisms is very much required during valorization.

## 6 Toxicological qualities of other fruits by-products

Many other fruit by-products listed below are also produced globally. According to the study reported by De Laurentiis et al. [115], conducted on the amount of fruit purchased and related unavoidable wastes by EU households in 2010, apples (1.2 metric tons), apricots (0.03 metric ton), cherries (0.05 metric ton), and sour cherries (0.01 metric ton) were reported as waste.

Some hazardous metals, mycotoxins, toxicant organic compounds, ANFs, and pesticides/fungicides that are present in fruit by-products were reported. For instance, pesticides such as thiram, chlorpyrifos, and methyl parathion were found in apple and mango fruit peels [9].

## 6.1 Cherry

Cherries have a global production of 2.8 million tons in 2022 that is shown in Figure 1 [22]. However, about 0.05 metric tons of fruits are unavoidable wastes [115]. Hence, many of these by-products can be valorized into many valuable products.

Pesticide residues in sweet Cherry pits analyzed beyond the MRL set by the European Commission, 2005 (0.01 mg/kg for imidacloprid and phosmet) were phosmet (0.023–0.439 mg/kg) and imidacloprid (0.029 mg/kg). However, many of the other types of pesticide residuals were reported below the maximum residual limit (Table 2). The total pesticide residues in this fruit seeds were reported ranging from 0.139 to 2.544 mg/kg [117].

Mateus et al. [117] analyzed the availability of mycotoxins in sweet cherry pits. They reported that none of the mycotoxins from the analyzed nine mycotoxins aflatoxins (AFs), ochratoxin A (OTA), fumonisins (FBs), zearalenone (ZEN), and trichothecenes (T-2) were found in the sweet cherry pits.

The valorization methods of cherry by-products should consider a further analysis of hazardous metals, mycotoxins, pesticides, ANFs, and toxicant organic components, since limited studies have been conducted.

### 6.2 Apple

Apple is the third globally most-produced with 95.8 million tons in 2022 (Figure 1). During the study conducted on the amount of fruit purchased and related unavoidable wastes by EU households in 2010, apples had 1.2 metric tons of unavoidable waste [115]. During the apple processing, its pomace, peel, and seeds are found as by-products.

Some studies have reported that apple peels contain heavy metals such as Cr and Cd. In particular, the heavy metal concentrations (Cu = 3.7, Zn = 4.13, Cr = 2.25, and Cd = 0.002 mg/kg) analyzed in apple peel were below the safety qualification for agricultural products except for chromium (Cr = 0.5 mg/kg) [41]. Moreover, heavy metals (Cd, Cr, Ni, and Pb) found in apple pomace were analyzed below the permissible limits to implicate their non-toxicity during biogas production (Table 1) [37].

Fruit by-products may contain naturally occurring plant toxins like cyanogenic glycosides, which include AMG. In particular, the AMG composition studied in apple seeds (from 1,000 to 4,000 mg/kg) is higher than its pulp fruit juice. Hence, excessive ingestion of this fruit seed can cause sub-acute cyanide poisoning. However, fruit processing methods such as crushing, fermentation, boiling, soaking, and drying help to reduce the cyanide contents in such fruits [57]. Similarly, the naphthaleneacetic acid residue on seven varieties of apple skin was found to be 43.3 mg/kg [61].

From the review reported by Georganas et al. [98], the potential hazards found in apple by-products were AMG, pesticides (e.g., neonicotinoids and arsenic-based pesticides), patulin. The AMG is found in the apple seeds, which can cause acute cyanide poisoning in humans with the consumption of about 800 g of apple pomace. Moreover, the pesticide residues like neonicotinoids and acetamiprid were detected in apple pomace. Fungicides such as thiophanate, carbendazim, and pyrimethanil in apple pomace were detected in apple pomace although the reported amounts were below the toxicity level set by the United States environmental protection agency [118].

Pavicich et al. [59] investigated Alternaria mycotoxins such as AOH, AME, AME 3-sulfate (AME-3-S), altenuene (ALT), tenuazonic acid (TeA), tentoxin (TEN), alternariol 3-glucoside (AOH-3-G), AME 3-glucoside (AME-3-G), and altertoxin-I (ATX-I), alternariol 3-sulfate (AOH-3-S) present in apple by-products (pomace). These by-products passed through different processing (grinding, clarification, centrifugation, and water evaporation) were found to contain AME-3-S, and AME-3-G (Table 2). Alternaria mycotoxins are considered relatively stable and their contamination levels can be reduced during apple concentrate processing listed above.

The ANFs reported in apple fruit peels were oxalates, HCN, alkaloids, and phytates, and their concentrations are summarized in Table 2. The reported value for HCN in this fruit peel is below the threshold value (below 3,500 mg/kg) reported as the safety limit [60].

Pesticides such as boscalid and deltamethrin mainly concentrate in the apple skin rather than in the pulp part. These pesticides can be removed employing thermal processing. However, pesticides like acetamiprid cannot be reduced by drying, wet pasteurization, and frying processes except by using the lyophilization method [58].

The overall analysis of the reported data on the toxicity of apple fruit by-products is healthy for further valorization. However, due to these data varying from production place to place and from measurement to measurement, the valorization method should be done concurrently with toxicity investigations.

## 6.3 Mango

Mangoes and their related fruits have a global production of 59.2 million tons in 2022 (Figure 1). Mango processing has by-products of mainly peel and stone, which account for 45% of the total fresh fruit weight.

de Matuoka e Chiocchetti et al. [45] investigated the heavy metals (Co = 28 and Cr = 0.33 mg/kg) present in mango fruit peels. The reported amounts are above the range of hazard quotient Cr = 0.81-3.18 mg/kg and Co = 0.03-0.09 mg/kg, respectively [2]. Hence, a careful reduction method of these heavy metals is required.

Mango peels contain higher phytic acid (254.8 mg/kg) and oxalate (724 mg/kg) than its pulp part [70]. Moreover, mango seed kernels contain a large amount (153 × 10<sup>3</sup> mg/ kg) of tannins [71]. The ANFs reported in mango fruit peels were oxalates, HCN, alkaloids, and phytates, whose concentrations are summarized in Table 2. The reported HCN concentration in mango fruit peels is below the threshold value (below 3,500 mg/kg) reported as the safety limit [60]. Moreover, the anti-nutritional contaminants present in mango kernel flour were tannins, phytic acid, oxalates, and HCN. The reported concentrations (mg/kg) for tannins, phytic acid, oxalates, and HCN were 1027.4, 1149.8, 213.4, and 0.00, respectively [63]. These ANFs are below the safety limit stated above.

### 6.4 Plum

The plums and sloes together have a global production of 12.4 million tons in 2022 (Figure). According to the study conducted on the amount of fruit purchased and related unavoidable wastes by EU households in 2010, from the 0.58 metric tons of plums and sloes purchased, about 0.04 metric tons were reported as unavoidable waste [115].

Mohammadi-Moghaddam et al. [52] analyzed heavy metals such as As, Cd, Ni, Hg, and Pb in the black plum peel. They reported that the Hg, Cd, and Pb were absent, whereas As and Ni were 1.2 mg/kg and 2.8 mg/kg, respectively. Moreover, Akter et al. [51] reported the heavy metal such as As, Cd, Co, Ni, Pb, and Hg concentrations in plum kernels. They reported that the As and Hg concentrations were <0.1 mg/kg. These heavy metal concentrations were reported as below the tolerable upper intake level recommended by many Food Safety authorities.

Other toxicity reports were scarcely reported. Hence, further studies are required to fully valorize the plum fruit by-products.

## 6.5 Peaches

Peaches and nectarines together have a global production of 26.4 million tons in 2022 as shown in Figure 1. According to the study conducted on the amount of fruit purchased and related unavoidable wastes by EU households in 2010, from the 1.85 metric tons of peaches and nectarines purchased, about 0.16 metric tons were reported as unavoidable waste [115].

The mineral content of peach fruit homogenized with its peel and pulp was analyzed. The heavy metals considered in this study were reported as chromium (Cr = 0.17–1.38 mg/kg) and lead (Pb < 0.10 mg/kg). These results are below the maximum permissible limit value (2.3 mg/kg) for human consumption [50].

Other toxicity properties of the peach fruit by-products are scarcely investigated. Hence, further studies are required for better valorization of the by-products.

## 6.6 Apricot

Apricots have a global production of 3.9 million tons in 2022 (Figure 1). According to the study conducted on the amount of fruit purchased and related unavoidable wastes by EU households in 2010, from the 0.4 metric tons of apricot fruit purchased, about 0.03 metric tons were reported as unavoidable waste [115]. Hence, the unavoidable waste can be valorized into valuable products.

Heavy metals such as cobalt (Co), cadmium (Cd), and lead (Pb) were studied in apricot kernel and pomace. The heavy mineral concentration reported in the apricot kernel and pomace are summarized in Table 1. However, the concentration of lead (Pb) in these by-products is reported as insignificant [42]. The AMG content in apricot seeds (AMG = 52,000 mg/kg) did not induce any effect in rabbit spermatozoa

conducted *in vivo*. In particular, the dose of apricot seeds (3.0 mg AMG/kg body weight) on the rabbit spermatozoa parameters did not induce any change [62].

The anti-nutritional contaminants present in apricot kernel flour were tannins, phytic acid, oxalates, and HCN. Moreover, these ANFs were investigated in raw peach fruit kernel flour. The concentrations of these ANFs are presented in Table 2 [63].

The aflatoxins B1 and B2 present in apricot kernels were measured in the range of 0.0017–22.451 mg/kg. In this study, removing the discolored kernels was able to remove 97.3–99.5% of the total aflatoxins [64].

Generally, the apricot by-products have less toxicity although further confirmation tests are important during valorization.

## 7 Current trends on fruit by-product toxicant reduction

Several foods worldwide are contaminated by pesticides and mycotoxins due to the pollution of fruits, vegetables, and cereals [119–124]. Pesticide reduction constitutes one of the sustainable development goals. Gavahian and Cullen [125] reported on the use of innovative food processing technologies, including high-pressure processing (HPP), pulsed electric fields (PEF), cold plasma (CP), supercritical carbon dioxide, and ultrasound (USN) processing as those with good potential for mycotoxin and pesticide reduction. They depend on processing parameters, the type of pesticide/mycotoxin, and the food matrix. Some of the thermal, chemical, and non-thermal mechanisms of toxicant reduction are depicted in Figure 4.

In the same context, Adebo et al. [126] studied novel non-thermal food processing techniques, particularly HPP, PEF, CP, and USN processing for the decontamination of mycotoxins in food with complete decontamination of mycotoxins in some cases. They also discussed the mechanisms by which reduction/elimination occurs. This takes place through the decomposition of toxins after collision with ions/electrons. Cleavage of bonds, structural degradation of the mycotoxin structure, and cleavage of functional groups are the immediate effects after this decomposition. Other mechanisms include Photolysis/photolytic damage leading to an attack on double bonds and/or heterocyclic moieties in the mycotoxin molecule, dihydroxylation, dehydrogenation, modification of terminal furan ring/alteration, and hydrolysis of lactone ring.

Natural and chemical decontamination of mycotoxins leading to significantly reduced levels in foods with no

generation of degradable toxic by-products has been discussed by Agriopoulou et al. [127].

Prevention strategies should also be followed throughout the food production chain. Management should take place before any fungal infestation; the second step of control should be during the period of fungal invasion of plant material and mycotoxin production; and the third step should be initiated when the agricultural products have been identified as heavily contaminated as reported by Čolović et al. [128].

Wang et al. [129] suggested that protective agents, including plant extracts, yeast products, bacteria, peptides, enzymes, H<sub>2</sub>, oligosaccharides, amino acids, adsorbents, vitamins, and selenium could reduce effectively DON-induced organ toxicity.

Fu et al. [130] showed that ZEN exposure resulted in oxidative stress and ferroptosis by glutathione-dependency. Moreover, melatonin supplement through enhanced productions of glutathione peroxidase 4 and glutathione alleviate ZEN-induced abnormalities. Similarly, Zhang et al. [131] discussed the detoxification of AFB1 in ducks' primary hepatocytes by the key glutathione S-transferase (GST) isozymes.

EOs with broad-range antimicrobial effectiveness, low toxicity, and diverse mechanisms of action have been discussed by Prakash et al. [132] with detailed mechanistic understanding, safety profile, and risk assessment. Singh et al. [133] referred to the use of *Coleus aromaticus* EO, with thymol as the major compound as a natural antimicrobial agent against food-spoilage bacteria and *A. flavus* and AFB1 contamination to extend the shelf-life of food products.

Toxic mechanisms of multiple mycotoxins have been reviewed in the editorial New insight into mycotoxins and bacterial toxins [134].

Lowering of pesticide residue levels in foods can be carried out by washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, CP, ultrasonic cleaning, ozone treatment, and enzymatic treatment [135,136]. Significance of precision agricultural practices and integrated pest management (IPM) techniques has been mentioned in the review by Munir et al. [137].

Organic farming methods have been demonstrated to lower the amount of pesticides consumed through food [138]. In addition, IPM techniques – integrating chemical, biological, cultural, and physical approaches to control pests – reduce insecticide applications by 95% while leading to the preservation or increase in crop yields by conserving wild pollinators [139].

Different hormones and internal and external factors influence plant mechanisms ultimately effecting mycotoxin growth, which could be affected by antioxidants and fertilizers available during plantation [140]. For instance, the applications of sodium nitroprusside and melatonin for the distraction of heavy metal stress improve antioxidant response during plantation of crops [141,142].

Dietary fibers and prebiotics recovery from fruits and vegetable wastes and by-products display important biological activities, such as gut microbiota modulation, lowering the glycemic load. These have been mentioned in

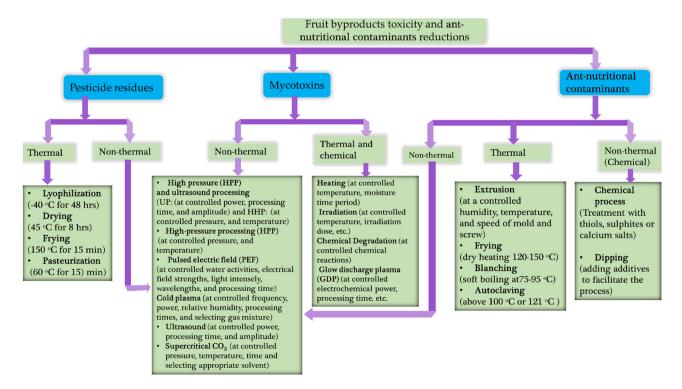



Figure 4: Methods for fruit by-product toxicity reduction.

the review by Pop et al. [143], who also addressed aspects, such as recovery and extraction procedures, characterization, and utilization in different food matrixes.

Proper waste management practices, including waste reduction, safe handling, and appropriate treatment should be followed to alleviate from climate change, environmental degradation, and human health problems. Circularity and sustainable growth are solutions to these problems along with thermophilic microbes in the bioremediation of waste as reported by Najar et al. [144]. These thermophiles emphasize biotechnology and industrial bioprocess progressions toward the build-up of a zero-carbon maintainable bioeconomy [145]. Since thermophiles (heat-loving bacteria) can endure extremely high temperatures, they are a major source of various industrial and biotechnological applications with production of enzymes such as amylase, cellulase, protease, xylanases, pullulanases, pectinases, chitinases, esterases, dehydrogenases, and isomerases [146,147].

Thermophilic microbes have been utilized as sources of therapeutic agents, in the food industries, bioremediation, and valorization [148,149].

Moreover, hazardous pollutant remediation from contaminated environments could be carried out by mycoremediation, a green and eco-friendly tool for pollution management as reported by Navina et al. [150], Bhattacharya et al. [151], and Kalia et al. [152]. This is due to the abundance in hyphal network, heavy metal resistance, generation of hydrolytic and degradative enzymes, high surface area to volume ratio, site for metal-binding proteins, high stability and flexibility toward different temperatures and pH. A wide range of contaminants, including pesticides, hydrocarbons, heavy metals, and various synthetic substances can be removed or reduced. Bioremediation refers to the use of organisms for elimination or reduction in pollutants [122].

Three different mechanisms for expunging the environmental pollutants and initiating a balance in the environment are followed by fungi and include bioconversion, biodegradation, and biosorption. Myco-remediation includes the involvement of fungi in the myco-extraction process to remove heavy metals from polluted materials. Fungi accumulate heavy metals and then extraction of heavy metals takes place along with their secure disposal from their biomass [153].

## 8 Novel detoxification techniques

The consumption of foods comprising phytonutrients provides a concurrent anti-oxidation, metal chelation, anti-inflammation, and genes activation related to detoxification. These arrangements are significant in stabilizing the cellular attack

by heavy metals and persistent organic pollutants (POPs). As an illustration, the consumption of green tea appears to be a possible dietary line to detoxify heavy metals and POPs. In green tea, the well-investigated flavonoid (epigallocatechin-3gallate, EGCG) established these protective actions. EGCG triggers the Nrf2-intervened detoxifying and anti-oxidant enzyme like glutathione peroxidase and GST [154]. By arylhydrocarbon receptor suppression and of Nrf2-regulated genes stimulation, Newsome et al. [155] reported that green tea EGCG decreases PCB 126 toxicities. Therefore, green tea consumption seems to be a potential dietary approach to detoxify heavy metals and POPs. On the other hand, it has been stated that guercetin plays a crucial role as a modulator of phase I and phase II detoxifying enzymes. Its molecular structure possesses three conceivable chelating sites, which explicate why it may act as a natural chelator of heavy metals and creates complex with transition metal ions [156]. An animal study displayed that quercetin powerfully regularized the As-induced toxicity in the liver and brain, and Al-induced oxidative harm in the brain [157]. Through its chelation, free radical scavenging, antiinflammation, and trigger of anti-oxidant detoxification enzymes by upregulation of Nrf2 pathway, García-Niño and Pedraza-Chaverrí [158] confirmed that curcumin defends against heavy metal-induced liver harm. Similar trends reported the same protective effect of curcumin against Cd, As, and cisplatin toxicity [159]. An in vivo study concluded that curcumin repressed 2,3,7,8-tetrachlorodibenzo-p-dioxininduced irregular intracellular signaling cascade of cytochrome P450 [157].

Many studies demonstrated the application of novel methods for detoxifications of toxicants in fruit and vegetable by-products. Some of the techniques are low-intensity electrical current and USN applications [160], membrane filtration [161] and application of free chlorine coupled with USN process for pesticide/fungicide residues detoxification [162], microwave, and USN applications for the removal of ANFs [16], and biological detoxification of mycotoxins [163] (Figure 4). Most studies addressed the applications of novel detoxifications for mycotoxins and pesticide/fungicide residues. However, novel technologies for the detoxification of heavy metals (As, Cd, Co, Cr, Ni, Pb, and Hg), toxicant organic compounds, and ANFs are scarcely studied. For instance, Adebo et al. [126] summarized novel non-thermal food processing techniques for mycotoxin reduction, which lead to decomposition of toxins occurred due to collision with ions/ electrons by causing cleavage of bonds, degrade structural properties of the mycotoxins, and cleavage of its functional groups. Biological methods such as surface binding by extracellular polymeric substances, degradation by enzyme, and cellular metabolism are potent to reduce toxic metabolites originate from fungi [163]. Moreover, nanotechnology

(nanoparticles), PEF, applying plant extracts, and using omics are being alternative solutions to chemical and physical methods for the distraction of mycotoxins in plant products after harvesting [164].

Novel technologies like low-intensity electrical current, membrane filtration, microwave, and USN applications are being more preferable to physicochemical techniques. The physicochemical techniques, are less supportive for mycotoxin detoxification due to causing loss of nutrients, require expensive equipment, and the process can be lengthy [164,165]. Hence, these novel technologies are being applicable for detoxification and preparation of fruit by-products during industrial exploitation.

In plants, consecutive hydroxylation, glycosylation and demethylation of fungal phytotoxins can evade plant cell death and stun the fungal invader [166]. In this line, detoxification of fungal phytotoxins through biotransformation by plants should be a significant plant defensive mechanism against fungal pathogens [166]. By the hydroxylase produced by cruciferous plants like Brassica napus, the Destruxin B was detoxified into hydroxydestruxin B [166]. According to Makhuvele et al. [167], ellagic acid and curcumin could avoid the AFB1 metabolism and develop the activity of GST involved in the detoxification of xenobiotics. In addition, numerous glycosyltransferases of mycotoxins existed in plants. A UDPglucosyltransferase involved in the detoxification of DON was revealed from rice (Oryza sativa) [168]. The main detoxification reactions of Alternaria toxins were glycosylation and glucuronidation by plants [168]. In this line, the transformation pathways of Alternaria toxins are (1) glycosylation, (2) hydroxylation, (3) reduction, and (4) methylation and demethylation.

In corn plants, both 15-monoacetoxyscirpenol (15-MAS) and 4,15-diacetoxyscirpenol (4,15-DAS) were, respectively, converted to 15-MAS 3-glucoside and 4,15-DAS 3-glucoside, which are called masked mycotoxins [169]. Regarding citrinin, the chief transformation pathways are (1) decarboxylation: the citrinin was transformed to decarboxycitrinin and (2) oxido-reduction: the citrinin was converted to dihydrocitrinone [169]. In relation to the detoxification of trichothecenes, numerous biotransformation pathways: (1) Glycosylation or glucuronidation, (2) epimerization, (3) de-epoxidation, and (4) hydrolysis [169].

Studies on the removal of pesticide residues from vegetable samples were underscored although limited studies were conducted on fruit by-products [170]. In particular, fungicides and insecticides can be removed by washing with tap and ozone water, ultrasonic cleaning, which could be alternative to other chemical methods using acid/alkali [162]. Moreover, Yang et al. [171] studied the mechanism for the removal of pesticide residues from fresh vegetables by applying free chlorine coupled with USN process. They reported that from 20 to 40 kHz ultrasonic frequency and at 25 mg/L free chlorine concentration, the damage for the vegetable qualities was negligible. In a study reported by Cengiz et al. [27], combined low-intensity electrical current and USN applications were found to be novel techniques to reduce pesticide residues from lettuce samples. This technique was found effective at a current of 1,400 mA and USN frequency of 24 kHz at 10 min. At these combined conditions, the captan, thiamethoxam and metalaxyl residues were reduced by 92.57, 81.99, and 93.09%, respectively.

The hydroxylation usually takes place on pesticide detoxification [172]. For instance, the carbon hydroxylation convoluted in detoxification of chlorsulfuron and triasulfuron by CYP71C6v1 in wheat [173], triasulfuron, fluometuron, linuron, and diuron by CYP71A10 in soybean [174] and pesticide pelargonic acid by CYP72A18 in rice [175]. In addition, the plants Tau and Phi strongly contribute in the pesticides detoxification [176]. In this regard, biophysical and crystallographic valuations exposed that there are at least two ligand-binding sites in GSTs counting the G-site and GSH-binding region [177]. In certain leguminous species, β-alanine substitutes glycine to produce GSH analog homoglutathione (hGSH) [178]. In alfalfa, hGSH replacement of chlorine in atrazine was measured as one of the most essential detoxification pathways [178]. HmGSH conjugates of atrazine and acetochlor are also associated with detoxification of the pesticides in rice [178]. Both hmGSH and hGSH have a nucleophilic thiol group on cysteine residues which can act together with pesticides on their electrophilic metabolites, rendering them detoxified [178]. Additionally, pesticides methylation was described to be crucial for their detoxification in plants [179]. In Medicago sativa, C-methylation of an ethyl group on atrazine has been elucidated [178].

ANFs can be minimized by applying novel detoxification technologies and using fermentation [16,180]. Novel detoxification techniques like microwave heating are being applicable to reduce heat labile ANFs such as phytic acid, trypsin inhibitors, tannins, saponins and oxalate in food products [16] as shown in Figure 4.

## **Novel functional foods from fruit** by-products free from toxication

Many functional foods can be derived from different food byproducts. Fruits contain vitamins, antioxidants, minerals, and dietary fiber.

Globally, 14% of food is lost during harvest. Food loss and waste affect food security and nutrition negatively and

Table 3: Uses of some fruit by-products in the food industry

| Fruit by-products                    | Functional foods                                                                                                                                                                                                                                                                      | References |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Apple pomace                         | Dietary fiber source in baked foods, chicken-meat-based sausages, and yogurt products, stabilizer for oil-water emulsions                                                                                                                                                             | [190–192]  |
| Avocado by-product and avocado peels | Antioxidants, antimicrobials, and food additives such as colorants, flavorings, thickening agents, and functional beverage formulation                                                                                                                                                | [193,194]  |
| Banana peel                          | Antioxidant, antibacterial, antifungal activity, reduction in blood sugar, lower cholesterol, and show anti-angiogenic activity and neuro-protective effect, synthesis of bio-inspired silver nanoparticles                                                                           | [195,196]  |
| Citrus peel                          | Source of molasses, pectin, oil, and limone, thickener, emulsifier, and stabilizer in many foods, pectin is a suitable polymeric matrix for edible films for active food pack by-product                                                                                              | [197,198]  |
| Grape pomace                         | Meat and fish derivatives containing grape pomace powders, fiber in bakery products, oil from grape seed                                                                                                                                                                              | [199–201]  |
| Mango peel                           | Antioxidant and dietary fiber in macaroni, sources of phytochemicals in biscuits, edible films                                                                                                                                                                                        | [202-205]  |
| Pineapple peel, core and stem        | Pineapple peel is a rich source of sugar that can be used as a nutrient in fermentation processes, core can be used in pineapple juice concentrates, vinegar, and wine production, bromelain enzyme extracted from the pineapple stem used as a meat tenderizer, bread dough improver | [206,207]  |

significantly lead to greenhouse gas emissions, environmental pollution, degradation of natural ecosystems, and biodiversity loss (https://www.fao.org/policy-support/policy-themes/food-loss-food-waste/en/).

Same for fruit waste where despite the reduction in fruit waste, there is still a need for an improvement in biowaste utilization.

One such example is pineapple due to its excellent organoleptic quality and nutritional quality and good source of phenolic compounds. Pineapple by-products are used mainly in animal feed and the pharmaceutical industry and constitute 29–40% shell, 9–10% core, 2–6% stem, and 2–4% crown, representing approximately 50% (w/w) of the total weight of the pineapple [77]. The by-products contain dietary fiber, vitamins, minerals, phenolic compounds, and other bioactive compounds [181–184]. Natural sources of dietary fiber, antioxidants, pectin, enzymes, organic acids, food additives, EOs, etc., through different methods of extractions, purifications,

and fermentations could be derived from pineapple waste utilization as reported by Roda and Lambri [185].

Peaches are primarily consumed fresh; however, some peaches are being processed and used as animal feed or fertilizers, or disposed of in landfills from peach by-products (PB) consisting of pulp and peel/skin, constituting 15–28% of the initial weight [186,187]. These by-products could be converted into higher-value byproducts, such as bioplastics at approximately \$1,000 per ton of biomass [188]. Peach juice by-products are rich in bioactive compounds, particularly polyphenols, and can produce food additives, antioxidants for pharmaceuticals and cosmetics, and fermentable sugars for bioproducts [189].

Some challenges that need to be taken into account include the composition of the by-products from fruit processing, which depends on the fruit and the stage of processing [186]. Another significant problem might be the underestimation of the real antioxidant capacity and potential of the

Table 4: Medicinal and pharmaceutical used from the exploitation of fruit by-products

| Fruit by-products    | Medicinal and pharmaceutical exploitation                                                                                                                                                                                                | References |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Apple peel           | Reduces metabolic syndrome and atherogenic progression                                                                                                                                                                                   | [208]      |
| Avocado peel         | Inhibitor for the inflammation mediator nitric oxide by a possible reduction of free radicals during inflammation, anticancer, antidiabetic, and antihypertensive effects                                                                | [103,209]  |
| Banana peel          | Antioxidant, antibacterial, antifungal activity, reduce blood sugar, lower cholesterol, and show anti-<br>angiogenic activity and neuro-protective effect, silver nanoparticles, which are used as antimicrobials to<br>pathogenic fungi | [195,210]  |
| Citrus pulp and seed | D-limonene showing a therapeutic effect on lung cancer in mice and breast cancer in mice and rats                                                                                                                                        | [210,211]  |
| Mango                | Anti-inflammatory and antioxidative properties during <i>in vivo</i> studies related to obesity, diabetes, cardiovascular disease, and skin cancer, reduction of carcinogenesis                                                          | [212–214]  |
| Peach kernel         | Phenols, carotenoids, and cyanogenic glycosides of peach kernel possess antidiabetic, antioxidative, and anti-aging properties                                                                                                           | [215]      |

feedstocks arising from the ineffective characterization of the phenolic content in the extraction of the non-extractable phenolic compounds [177]. The polyphenol profile of both extractable polyphenols and hydrolyzable polyphenols (HPP) from peach by-products and peach peels has been determined [217,218].

Sample preparation and storage conditions are additional factors that need to be carefully designed to prevent perishability and preserve the bioactive components. Reduction in the water content to below 15% is suitable for maintenance of the microbiological quality of dehydrated vegetables while achieving volume reduction [219].

García-Aparicio et al. [220] aimed to assess the PB, generated at the pulp refinement stage for juice concentrate production, as feedstock for a biorefinery for production of fermentable sugars and novel functional products simultaneously. Different conventional and novel enzymatic extraction methods were applied to extract extractable and non-extractable bioactive compounds such as oven drying and freeze drying. They proposed that the solid residue enriched in recalcitrant phenolic compounds and proteins could be used to develop novel functional products for food/feed sectors. Table 3 presents the use of some fruit byproducts in the food industry (Adapted from Teshome et al. [28]). Moreover, Table 4 presents medicinal and pharmaceutical use from the exploitation of fruit by-products.

## 10 Conclusion

Many of the prioritized fruit by-products have lower toxicity levels, which are analyzed in terms of heavy metals (As, Cd, Co, Cr, Ni, Pb, and Hg), mycotoxins, toxicant organic compounds, ANFs, and pesticide/fungicide residues. However, for full valorization of these by-products, pre-treatment mechanisms should be applied to reduce their toxicity. A holistic revalorization of these by-products with regard to major components, such as fermentable sugars, and value-added components such as the phenolic compounds is required. Details regarding composition, bioactive compounds profile (free and bound compounds), antioxidant capacity, and the impact of the drying process are essential for the development of processes and technologies for their reuse, and targeting of industrial sectors for their exploitation. Mycotoxin detoxification and pesticide reduction mechanisms and control strategies have been discussed as being highly beneficial for the development of food safety and security. The heavy metals, mycotoxins, toxicant organic compounds, anti-nutritional contaminants, and fungicide/pesticide residues of some by-products of fruits prioritized in our study were scarcely studied, Hence, toxicity analysis of each of these fruit by-products demands further investigations.

**Funding information:** Authors state no funding involved.

Author contribution: Conceptualization: Z.T. and T.V.; methodology: Z.T. and T.V; software: Z.T.; validation: Z.T. and T.V.; formal analysis: Z.T. and T.V.; investigation: Z.T. and T.V.; resources: Z.T. and T.V.; data curation: Z.T. and T.V.; writing - original draft preparation: Z.T. and T.V.; writing - review and editing: Z.T., S.S., and T.V.; visualization: Z.T., T.V., S.S., and T.V.; project administration: T.V.; funding acquisition: T.V. All authors accepted the responsibility for the entire content of the manuscript and consented to its submission, reviewed all the results, and approved the final version of the manuscript.

**Conflict of interest:** Authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

## References

- [1] Pushparaj K, Meyyazhagan A, Pappuswamy M, Mousavi Khaneghah A, Liu WC, Balasubramanian B. Occurrence, identification, and decontamination of potential mycotoxins in fruits and fruit by-products. Food Front. 2023;4(1):32-46. doi: 10. 1002/fft2.198.
- [2] Abuzed Sadee B, Jameel Ali R. Determination of heavy metals in edible vegetables and a human health risk assessment. Environ Nanotechnol Monit Manag. 2023;19:100761. doi: 10.1016/j.enmm. 2022.100761.
- [3] Gebrekidan A, Weldegebriel Y, Hadera A, Van der Bruggen B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol Environ Saf. 2013;95:171-8. doi: 10.1016/j.ecoenv.2013.05.035.
- [4] Saqib S, Zaman W, Ayaz A, Habib S, Bahadur S, Hussain S, et al. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal Agric Biotechnol. 2020;28:101729. doi: 10.1016/j.bcab.2020.101729.
- [5] Sagib S, Zaman W, Ullah F, Majeed I, Ayaz A, Hussain Munis MF. Organometallic assembling of chitosan-iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae. Appl Organomet Chem. 2019;33(11):e5190. doi: 10.1002/aoc.5190.
- [6] Nepal B, Stine KJ. Glycoalkaloids: Structure, properties, and interactions with model membrane systems. Process. 2019;7(8):513, https://www.mdpi.com/2227-9717/7/8/513.
- [7] Park BK, Kwon SH, Yeom MS, Joo KS, Heo MJ. Detection of pesticide residues and risk assessment from the local fruits and vegetables in Incheon, Korea. Sci Rep. 2022;12(1):9613. doi: 10. 1038/s41598-022-13576-5.

- [8] Salgado N, Silva MA, Figueira ME, Costa HS, Albuquerque TG. Oxalate in foods: Extraction conditions, analytical methods, occurrence, and health implications. Foods. 2023;12(17):3201, https://www.mdpi.com/2304-8158/12/17/3201.
- [9] Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, et al. Shell thicknessdependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem. 2012:84(1):255-61. doi: 10.1021/ac202452t.
- [10] Uddin R, Thakur MU, Uddin MZ, Islam GMR. Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Sci Rep. 2021;11(1):4704. doi: 10.1038/s41598-021-84032-z.
- [11] Santos CMd, Abreu CMPd, Freire JM, Queiroz EdR, Mendonça MM. Chemical characterization of the flour of peel and seed from two papaya cultivars. Food Sci Technol. 2014;34(2):353-7.
- WHO. The public health impact of chemicals: Knowns and [12] unknowns. WHO document production services, Geneva, Switzerland; 2016.
- [13] Hong C, Jia Y, Yang X, He Z, Stoffella P. Assessing lead thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Bull Environ Contam Toxicol. 2008;80(4):356-61.
- [14] Kuppusamy S, Venkateswarlu K, Megharaj M. Evaluation of nineteen food wastes for essential and toxic elements. Int J Recycl Org Waste Agric. 2017;6(4):367-73.
- [15] Oyeyinka BO, Afolayan AJ. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments. Plants. 2019;8(12):598.
- Suhag R, Dhiman A, Deswal G, Thakur D, Sharanagat VS, Kumar K, [16] et al. Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT. 2021;150:111960. doi: 10.1016/j.
- [17] Silva MA, Albuquerque TG, Alves RC, Oliveira MBPP, Costa HS. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends Food Sci Technol. 2020;98:181-9. doi: 10.1016/j.tifs.2018.07.005.
- [18] Dhanisha SS, Drishya S, Guruvayoorappan C. Pithecellobium dulce induces apoptosis and reduce tumor burden in experimental animals via regulating pro-inflammatory cytokines and anti-apoptotic gene expression. Food Chem Toxicol. 2022;161:112816. doi: 10.1016/j.fct.2022.112816.
- [19] Erukainure OL, Msomi NZ, Beseni BK, Salau VF, Ijomone OM, Koorbanally NA, et al. Cola nitida infusion modulates cardiometabolic activities linked to cardiomyopathy in diabetic rats. Food Chem Toxicol. 2021;154:112335. doi: 10.1016/j.fct.2021.112335.
- [20] Inanc ME, Gungor S, Yeni D, Avdatek F, Ipek V, Turkmen R, et al. Protective role of the dried white mulberry extract on the reproductive damage and fertility in rats treated with carmustine. Food Chem Toxicol. 2022;163:112979. doi: 10.1016/j.fct.2022. 112979.
- [21] Shendge AK, Panja S, Basu T, Ghate NB, Mandal N. Ameliorating effects of white mulberry on iron-overload-induced oxidative stress and liver fibrosis in Swiss albino mice. Food Chem Toxicol. 2021;156:112520. doi: 10.1016/j.fct.2021.112520.
- [22] FAOSTAT. Food and agricultural data. FAOSTAT; 2022, https://www.fao.org/faostat/en/#data.
- [23] Jiménez-Moreno N, Esparza I, Bimbela F, Gandía LM, Ancín-Azpilicueta C. Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges. Crit Rev

- Environ Sci Technol. 2020;50(20):2061-108. doi: 10.1080/ 10643389.2019.1694819.
- [24] Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan S. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. Bioresour Bioprocess. 2024;11(1):10. doi: 10.1186/s40643-023-00722-8.
- [25] Tsegav ZT, Mulaw G. Antimicrobial activities and mode of action of bioactive substances from vegetable and fruit byproducts as a current option for valorization. Waste Biomass Valoriz. 2024;16:1-28. doi: 10.1007/s12649-024-02587-0.
- [26] Vilas-Boas AA, Pintado M, Oliveira ALS. Natural bioactive compounds from food waste: toxicity and safety concerns. Foods. 2021:10(7):1564.
- [27] Gomes S, Vieira B, Barbosa C, Pinheiro R. Evaluation of mature banana peel flour on physical, chemical, and texture properties of a gluten-free Rissol. J Food Process Preserv. 2022;46(8):e14441. doi: 10.1111/jfpp.14441.
- [28] Teshome E, Teka TA, Nandasiri R, Rout JR, Harouna DV, Astatkie T, et al. Fruit by-products and their industrial applications for nutritional benefits and health promotion: a comprehensive review. Sustainability. 2023;15(10):7840.
- [29] Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol. 2013;48(2):221-37. doi: 10.1111/j.1365-2621.2012.
- [30] Choonut A, Saejong M, Sangkharak K. The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia. 2014;52:242-9. doi: 10.1016/j.egypro.2014.07.075.
- [31] Tsegay ZT, Gebreegziabher ST-B, Mulaw G. Nutritional qualities and valorization trends of vegetable and fruit byproducts: a comprehensive review. J Food Qual. 2024;2024(1):5518577. doi: 10.1155/2024/5518577.
- [32] Czech A, Zarycka E, Yanovych D, Zasadna Z, Grzegorczyk I, Kłys S. Mineral content of the pulp and peel of various citrus fruit cultivars. Biol Trace Elem Res. 2020;193(2):555-63. doi: 10.1007/ s12011-019-01727-1.
- Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. Fruit and [33] vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf. 2018;17(3):512-31. doi: 10.1111/1541-4337.12330.
- [34] Czech A, Malik A, Sosnowska B, Domaradzki P. Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. Int J Food Sci. 2021;2021(1):6662259. doi: 10.1155/2021/6662259.
- [35] Moncalvo A, Marinoni L, Dordoni R, Duserm Garrido G, Lavelli V, Spigno G. Waste grape skins: evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Addit Contam: Part A. 2016;33(7):1116-26. doi: 10.1080/19440049.2016.1191320.
- [36] Saleem M, Saeed MT. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J King Saud Univ - Sci. 2020;32(1):805-10. doi: 10.1016/j.jksus.2019.02.013.
- [37] Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M. An analysis of metal concentrations in food wastes for biogas production. Renew Energy. 2015;77:467–72. doi: 10.1016/j.renene. 2014.11.010.

- Neshovska H. Determination of heavy metal content (CD and PB) in citrus feed raw material. Tradit Mod Vet Med. 2023;1(14):59-64.
- [39] Mateus AR, Marino-Cortegoso S, Barros SC, Sendón R, Barbosa L, Pena A, et al. Citrus by-products: A dual assessment of antioxidant properties and food contaminants towards circular economy. Innov Food Sci Emerg Technol. 2024;95:103737. doi: 10.1016/j.ifset.2024.103737.
- Γ**4**01 Hassan M, Belanche A, Jiménez E, Rivelli I, Martín-García AI, Margolles A, et al. Evaluation of the nutritional value and presence of minerals and pesticides residues in agro-industrial by-products to replace conventional ingredients of small ruminant diets. Small Rumin Res. 2023;229:107117. doi: 10.1016/j. smallrumres.2023.107117.
- [41] Wang O. Liu I. Cheng S. Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China. Environ Monit Assess. 2014;187(1):4178. doi: 10.1007/ s10661-014-4178-7.
- [42] Tareen AK, Panezai MA, Sajjad A, Achakzai JK, Kakar AM, Khan NY. Comparative analysis of antioxidant activity, toxicity, and mineral composition of kernel and pomace of apricot (Prunus armeniaca L.) grown in Balochistan, Pakistan. Saudi | Biol Sci. 2021;28(5):2830-9. doi: 10.1016/j.sjbs.2021.02.015.
- [43] Okoye OOFNC. Comparative study of the constituents of the fruits pulps and seeds of Canarium ovatum, Persea americana and Dacryodes edulis. Jordan J Chem (JJC). 2017;12(2):113-25.
- [44] Aboul-Enein AM, Salama ZA, Gaafar AA, Aly HF, Abou-Elella F, Ahmed HA. Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. J Chem Pharm Res. 2016;8(4):46-55.
- de Matuoka e Chiocchetti G, De Nadai Fernandes EA, Bacchi MA, [45] Pazim RA, Sarriés SR, Tome TM. Mineral composition of fruit by-products evaluated by neutron activation analysis. | Radioanal Nucl Chem. 2013;297(3):399-404. doi: 10.1007/s10967-
- Shotyk W. Trace elements in wild berries from reclaimed lands: Biomonitors of contamination by atmospheric dust. Ecol Indic. 2020;110:105960. doi: 10.1016/j.ecolind.2019.105960.
- Simeon EO, Amamilom NS, Azuka IW. Metal assessment and phytochemical screening of orange fruit (Citrus sinensis) seeds and peels. J Pharmacogn Phytochem. 2018;7(3):709-14.
- Kumar SS, V GT, K K, John M. Antioxidant potential and mineral [48] elemental profiling of young and mature fruit and leaf of Carica papaya L. cultivar 'Red Lady'. J Trace Elem Miner. 2024;9:100166. doi: 10.1016/j.jtemin.2024.100166.
- Vinha AF, Costa A, Espírito Santo L, Ferreira DM, Sousa C, Pinto E, et al. High-value compounds in papaya by-products (Carica papaya L. var. Formosa and Aliança): Potential sustainable use and exploitation. Plants. 2024;13(7):1009.
- [50] Mihaylova D, Popova A, Desseva I, Petkova N, Stoyanova M, Vrancheva R, et al. Comparative study of early- and mid-ripening peach (Prunus persica L.) varieties: Biological activity, macro-, and micro-nutrient profile. Foods. 2021;10(1):164.
- Akter S, Netzel ME, Fletcher MT, Tinggi U, Sultanbawa Y. Chemical [51] and nutritional composition of terminalia ferdinandiana (Kakadu Plum) Kernels: A novel nutrition source. Foods. 2018;7(4):60.
- [52] Mohammadi-Moghaddam T, Firoozzare A, Kariminejad M, Sorahi M, Tavakoli Z. Black plum peel as a useful by-product for the production of new foods: chemical, textural, and sensory characteristics of Halva Masghati. Int I Food Prop. 2020;23(1):2005-19. doi: 10.1080/10942912.2020.1835953.

- Shao W-C, Zang Y-Y, Ma H-Y, Ling Y, Kai Z-P. Concentrations and related health risk assessment of pesticides, phthalates, and heavy metals in strawberries from Shanghai, China. J Food Prot. 2021;84(12):2116-22. doi: 10.4315/JFP-21-165.
- [54] Tozzi F, Renella G, Cristina M, Masciandaro G, Gonnelli C, Colzi I, et al. Agronomic performance and food safety of strawberry cultivated on a remediated sediment. Sci Total Environ. 2021;796:148803. doi: 10.1016/j.scitotenv.2021.148803.
- [55] Falade OS, Otemuyiwa IO, Adekunle AS, Adewusi SA, Oluwasefunmi O. Nutrient composition of watermelon (Citrullis lanatus (Thunb.) Matsum. & Nakai) and egusi melon (Citrullus colocynthis (L.) Schrad.) seeds. Agric Conspec Sci. 2020;85(1):43-9.
- [56] Commission regulation (EU), 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing regulation (EC), 103-157 § 119; 2023.
- [57] Bolarinwa IF, Orfila C, Morgan MRA. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 2015;170:437-42. doi: 10.1016/j.foodchem.2014.08.083.
- [58] Hrynko I, Kaczyński P, Pietruszyńska M, Łozowicka B. The effect of food thermal processes on the residue concentration of systemic and non-systemic pesticides in apples. Food Control. 2023;143:109267. doi: 10.1016/j.foodcont.2022.109267.
- [59] Pavicich MA, De Boevre M, Vidal A, Iturmendi F, Mikula H, Warth B, et al. Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control. 2020;118:107388. doi: 10.1016/j.foodcont.2020.107388.
- [60] Romelle FD, Rani A, Manohar RS. Chemical composition of some selected fruit peels. Eur J Food Sci Technol. 2016;4(4):12-21.
- [61] Skinner RC, Gigliotti JC, Ku K-M, Tou JC. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr Rev. 2018;76(12):893-909. doi: 10.1093/nutrit/nuy033.
- [62] Kolesar E, Tvrda E, Halenar M, Schneidgenova M, Chrastinova L, Ondruska L, et al. Assessment of rabbit spermatozoa characteristics after amygdalin and apricot seeds exposure in vivo. Toxicol Rep. 2018;5:679-86. doi: 10.1016/j.toxrep.2018. 05.015.
- Sorour M, Mehanni A-H, Hussein SM, Mustafa MA. Utilization of treated seed kernel flours of some fruits in biscuit manufacture. Eur I Nutr Food Saf. 2022:14(3):1-13.
- Zivoli R, Gambacorta L, Piemontese L, Solfrizzo M. Reduction of [64] aflatoxins in apricot kernels by electronic and manual color sorting. Toxins. 2016;8(1).
- Gomes HO, Menezes J, da Costa J, Coutinho H, Teixeira R, do Nascimento RF. Evaluating the presence of pesticides in bananas: An integrative review. Ecotoxicol Environ Saf. 2020;189:110016. doi: 10.1016/j.ecoenv.2019.110016.
- [66] Mohd Zaini H, Roslan J, Saallah S, Munsu E, Sulaiman NS, Pindi W. Banana peels as a bioactive ingredient and its potential application in the food industry. J Funct Foods. 2022;92:105054. doi: 10.1016/j.jff.2022.105054.
- [67] Dorosh O, Fernandes VC, Delerue-Matos C, Moreira MM. Blueberry pruning wastes: From an undervalued agricultural residue to a safe and valuable source of antioxidant compounds for the food industry. Foods. 2024;13(2):317.
- [68] Milinčić DD, Vojinović UD, Kostić AŽ, Pešić MB, Špirović Trifunović BD, Brkić DV, et al. In vitro assessment of pesticide residues bioaccessibility in conventionally grown blueberries as affected by complex food matrix. Chemosphere. 2020;252:126568. doi: 10.1016/j.chemosphere.2020.126568.

- [69] Nagarajaiah SB, Prakash J. Chemical composition and bioactivity of pomace from selected fruits. Int J Fruit Sci. 2016;16(4):423-43. doi: 10.1080/15538362.2016.1143433.
- [70] Madalageri DM, Bharati P, Kage U. Physicochemical properties, nutritional and antinutritional composition of pulp and peel of three mango varieties. Int J Educ Sci Res. 2017;7:81-94.
- Melesse A, Steingass H, Schollenberger M, Rodehutscord M. Component composition, in vitro gas and methane production profiles of fruit by-products and leaves of root crops. I Agric Sci. 2018;156(7):949-58. doi: 10.1017/S0021859618000928.
- [72] Sánchez-Pérez S, Comas-Basté O, Rabell-González J, Veciana-Nogués MT, Latorre-Moratalla ML, Vidal-Carou MC. Biogenic amines in plant-origin foods: Are they frequently underestimated in low-histamine diets? Foods. 2018:7(12):205.
- [73] de Vilhena Araújo É, Vendramini PH, Costa JH, Eberlin MN, Montagner CC, Fill TP. Determination of tryptoquialanines A and C produced by Penicillium digitatum in oranges: Are we safe? Food Chem. 2019;301:125285. doi: 10.1016/j.foodchem.2019.125285.
- [74] Li Y, Jiao B, Zhao Q, Wang C, Gong Y, Zhang Y, et al. Effect of commercial processing on pesticide residues in orange products. Eur Food Res Technol. 2012;234(3):449-56. doi: 10.1007/s00217-011-1651-1.
- [75] Wang Z, Pang J, Liao C, Zhang Q, Sun D. Determination of etoxazole in different parts of citrus fruit and its potential dietary exposure risk assessment. Chemosphere. 2021;268:128832. doi: 10.1016/j.chemosphere.2020.128832.
- [76] Ibrahim S, Inelo ED, Eke MO. Physico-chemical, alveograph and anti-nutritional properties of breads formulated from wheat and pawpaw (Carica papaya) seed flour blends. Asian Food Sci J. 2021;20(3):72-85.
- [77] Santos DI, Martins CF, Amaral RA, Brito L, Saraiva JA, Vicente AA, et al. Pineapple (Ananas comosus L.) by-products valorization: Novel bio ingredients for functional foods. Molecules. 2021;26(11):3216.
- **[781** Stępień Ł, Koczyk G, Waśkiewicz A. Diversity of Fusarium species and mycotoxins contaminating pineapple. J Appl Genet. 2013;54(3):367-80. doi: 10.1007/s13353-013-0146-0.
- [79] Wanwimolruk C, Wanwimolruk S, Kuaykaimuk K, Buddhaprom J, Saenserm P, Soikham S. Food safety of Thailand's pineapples, bananas, and dragon fruits from pesticide contamination: a study using GC-MS analysis. Philipp J Sci. 2022;151(6B):2315-26.
- Sójka M, Miszczak A, Sikorski P, Zagibajło K, Karlińska E, Kosmala M. [80] Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS J. 2015;1:31-7. doi: 10.1016/j.nfs.2015.09.001.
- Jyothi Lakshmi A, Kaul P. Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT - Food Sci Technol. 2011;44(8):1821-6. doi: 10.1016/j. lwt.2011.04.001.
- [82] Wanwimolruk S, Kanchanamayoon O, Boonpangrak S, Prachayasittikul V. Food safety in Thailand 1: it is safe to eat watermelon and durian in Thailand. Environ Health Prev Med. 2015;20(3):204-15. doi: 10.1007/s12199-015-0452-8.
- Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. Chapter Two [83] - The potential of citrus by-products in the development of functional food and active packaging. In: Capanoglu E, Navarro-Hortal MD, Forbes-Hernández TY, Battino M, editors. Advances in food and nutrition research. Vol. 107. Academic Press; 2023. p. 41-90. doi: 10.1016/bs.afnr.2023.06.001.
- Socas-Rodríguez B, Mendiola JA, Rodríguez-Delgado MÁ, Ibáñez E, Cifuentes A. Safety assessment of citrus and olive by-

- products using a sustainable methodology based on natural deep eutectic solvents. J Chromatogr A. 2022;1669:462922. doi: 10.1016/ j.chroma.2022.462922.
- [85] European Food Safety A, Carrasco Cabrera L, Medina Pastor P. The 2020 European Union report on pesticide residues in food. EFSA J. 2022;20(3):e07215. doi: 10.2903/j.efsa.2022.7215.
- [86] Liu Y, Heying E, Tanumihardjo SA. History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Saf. 2012;11(6):530-45. doi: 10.1111/j.1541-4337.2012. 00201.x.
- [87] WHO/FAO/UNU (2007) Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU expert consultation. WHO Technical Report Series 935. Geneva. FAO/ WHO/UNU, 276.
- [88] Benayad O, Bouhrim M, Tiji S, Kharchoufa L, Addi M, Drouet S, et al. Phytochemical profile,  $\alpha$ -glucosidase, and  $\alpha$ -amylase inhibition potential and toxicity evaluation of extracts from citrus aurantium (L) peel, a valuable by-product from Northeastern Morocco. Biomolecules. 2021;11(11):1555.
- [89] Costa CA, Cury TC, Cassettari BO, Takahira RK, Flório JC, Costa M. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment. BMC Complement Altern Med. 2013;13(1):42. doi: 10.1186/1472-6882-13-42.
- [90] Teixeira F, Santos B, Nunes G, Soares JM, Amaral L, Souza G, et al. Addition of orange peel in orange jam: evaluation of sensory, physicochemical, and nutritional characteristics. Molecules. 2020;25(7):1670.
- [91] Phuong TNQ, Van Hung P, Phi NTL. Extraction of flavonoids in pomelos' peels using Box-Behnken response surface design and their biological activities. Vietnam Journal of Science. Technol Eng.
- [92] Li X, Song S, Wei F, Huang X, Guo Y, Zhang T. Occurrence, distribution, and translocation of legacy and current-use pesticides in pomelo orchards in South China. Sci Total Environ. 2024;913:169674. doi: 10.1016/j.scitotenv.2023.169674.
- [93] Pu S, Liang R, Chen J, Liu C, Xu C, Chen M, Chen J. Characterization and evaluation of Majia pomelo seed oil: A novel industrial byproduct. Food Chem Adv. 2022;1:100051. doi: 10.1016/j.focha. 2022.100051.
- [94] Rossi RC, da Rosa SR, Weimer P, Lisbôa Moura JG, de Oliveira VR, de Castilhos J. Assessment of compounds and cytotoxicity of Citrus deliciosa Tenore essential oils: From an underexploited byproduct to a rich source of high-value bioactive compounds. Food Biosci. 2020;38:100779. doi: 10.1016/j.fbio.2020.100779.
- [95] Bhuia MS, Aktar MA, Chowdhury R, Ferdous J, Rahman MA, Hasan MSA, et al. Therapeutic potentials of ononin with mechanistic insights: A comprehensive review. Food Biosci. 2023;56:103302. doi: 10.1016/j.fbio.2023.103302.
- [96] Martínez-Zamora L, Cano-Lamadrid M, Artés-Hernández F, Castillejo N. Flavonoid extracts from lemon by-products as a functional ingredient for new foods: a systematic review. Foods. 2023;12(19):3687.
- [97] Lubinska-Szczygeł M, Kuczyńska-Łażewska A, Rutkowska M, Polkowska Ż, Katrich E, Gorinstein S. Determination of the major by-products of citrus hystrix peel and their characteristics in the context of utilization in the industry. Molecules. 2023:28(6):2596.
- [98] Georganas A, Giamouri E, Pappas AC, Zoidis E, Goliomytis M, Simitzis P. Utilization of agro-industrial by-products for sustainable poultry production. Sustainability. 2023;15(4):3679.

- Lluís L, Muñoz M, Nogués MR, Sánchez-Martos V, Romeu M, Giralt M, et al. Toxicology evaluation of a procyanidin-rich extract from grape skins and seeds. Food Chem Toxicol. 2011;49(6):1450-4. doi: 10.1016/j.fct.2011.03.042.
- [100] Sano A. Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem Toxicol. 2017;108:519-23. doi: 10.1016/j.fct.2016.11.021.
- [101] Heber D, Seeram NP, Wyatt H, Henning SM, Zhang Y, Ogden LG, et al. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. | Agric Food Chem. 2007;55(24):10050-4. doi: 10.1021/jf071689v.
- García-Vargas MC, Contreras MD, Castro E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl Sci. 2020;10(22):8195.
- [103] Tremocoldi MA, Rosalen PL, Franchin M, Massarioli AP, Denny C, Daiuto ÉR, et al. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One. 2018;13(2):e0192577.
- [104] Yusof Y, Yahya SA, Adam A. Novel technology for sustainable pineapple leaf fibers productions. Procedia CIRP. 2015;26:756-60. doi: 10.1016/j.procir.2014.07.160.
- [105] Šeremet D, Durgo K, Jokić S, Huđek A, Vojvodić Cebin A, Mandura A, et al. Valorization of banana and red beetroot peels: Determination of basic macrocomponent composition, application of novel extraction methodology and assessment of biological activity in vitro. Sustainability. 2020;12(11):4539.
- Xie L, Yang Q, Wu Y, Xiao J, Qu H, Jiang Y, et al. Fumonisin B1 biosynthesis is associated with oxidative stress and plays an important role in Fusarium proliferatum infection on Banana Fruit. J Agric Food Chem. 2023;71(13):5372-81. doi: 10.1021/acs. jafc.3c00179.
- [107] Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, et al. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. Environ Pollut. 2021;288:117793. doi: 10.1016/j.envpol.2021.117793.
- Ozabor P, Ojokoh A, Wahab A, Aramide O. Effect of fermentation on the proximate and antinutrient composition of banana peels. Int J Biotechnol. 2020;9(2):105-17.
- [109] Goriainov S, Orlova S, Nikitina E, Vandishev V, Ivlev V, Esparza C, et al. Study of the chemical composition of Carica papaya L. seed oils of various geographic origins. Horticulturae. 2023;9(11):1227.
- [110] Marcinkowska M, Jeleń HH. Inactivation of thioglucosidase from sinapis alba (White Mustard) seed by metal salts. Molecules. 2020;25(19):4363. doi: 10.3390/molecules25194363.
- Capossio JP, Fabani MP, Román MC, Zhang X, Baeyens J, Rodriguez R, et al. Zero-waste watermelon production through nontraditional rind flour: multiobjective optimization of the fabrication process. Processes. 2022;10(10):1984.
- [112] Zia S, Khan MR, Aadil RM, Medina-Meza IG. Bioactive recovery from watermelon rind waste using ultrasound-assisted extraction. ACS Food Sci Technol. 2024;4(3):687-99. doi: 10.1021/ acsfoodscitech.3c00601.
- Zia S, Khan MR, Shabbir MA, Aadil RM. An update on functional, [113] nutraceutical and industrial applications of watermelon byproducts: A comprehensive review. Trends Food Sci Technol. 2021;114:275-91. doi: 10.1016/j.tifs.2021.05.039.
- Rolim PM, Seabra LMAJ, de Macedo GR. Melon by-products: biopotential in human health and food processing. Food Rev Int. 2020;36(1):15-38. doi: 10.1080/87559129.2019.1613662.

- De Laurentiis V, Corrado S, Sala S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manag. 2018;77:238-51. doi: 10.1016/j.wasman.2018.04.001.
- [116] Juan C, Mañes J, Font G, Juan-García A. Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. LWT. 2017;86:344-51. doi: 10.1016/j.lwt.2017.08.020.
- Mateus A, Barros SC, Cortegoso SM, Sendón R, Barbosa-Pereira L, Khwaldia K, et al. Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste. Food Chem: X. 2024;23:101718. doi: 10.1016/j.fochx.2024.
- [118] Lyu F, Luiz SF, Azeredo DRP, Cruz AG, Ajlouni S, Ranadheera CS. Apple pomace as a functional and healthy ingredient in food products: a review. Processes. 2020;8(3):319.
- Cámara MA, Cermeño S, Martínez G, Oliva J. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chem. 2020;325:126936. doi: 10.1016/ j.foodchem.2020.126936.
- Campagnollo FB, Ganev KC, Khaneghah AM, Portela JB, Cruz AG, Granato D, et al. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control. 2016;68:310-29. doi: 10.1016/j.foodcont.2016. 04.007.
- [121] Gomiero T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl Soil Ecol. 2018;123:714-28. doi: 10.1016/j.apsoil.2017.10.014.
- [122] González N, Marguès M, Nadal M, Domingo JL. Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food. Food Chem Toxicol. 2019;125:370-5. doi: 10.1016/j.fct.2019.01.021.
- [123] Khaneghah AM, Fakhri Y, Abdi L, Coppa C, Franco LT, de Oliveira C. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol. 2019;123(8):611-7. doi: 10.1016/j.funbio.2019.05.012.
- [124] Nabizadeh S, Shariatifar N, Shokoohi E, Shoeibi S, Gavahian M, Fakhri Y, et al. Prevalence and probabilistic health risk assessment of aflatoxins B1, B2, G1, and G2 in Iranian edible oils. Environ Sci Pollut Res. 2018;25(35):35562-70. doi: 10.1007/s11356-018-3510-0.
- Gavahian M, Cullen PJ. Cold plasma as an emerging technique for [125] mycotoxin-free food: Efficacy, mechanisms, and trends. Environ Food Rev Int. 2019;36(2):193-214. doi: 10.1080/87559129.2019. 1630638.
- [126] Adebo OA, Molelekoa T, Makhuvele R, Adebiyi JA, Oyedeji AB, Gbashi S, et al. A review on novel non-thermal food processing techniques for mycotoxin reduction. Int J Food Sci Technol. 2021;56(1):13-27. doi: 10.1111/ijfs.14734.
- [127] Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods. 2020;9(2):137.
- [128] Čolović R, Puvača N, Cheli F, Avantaggiato G, Greco D, Đuragić O, et al. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins (Basel). 2019;11(11):617. doi: 10.3390/ toxins11110617.
- [129] Wang P, Yao Q, Meng X, Yang X, Wang X, Lu Q, et al. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food Chem Toxicol. 2023;182:114121. doi: 10.1016/j.fct.2023.114121.

- Fu W, Dai C, Ma Z, Li Q, Lan D, Sun C, et al. Enhanced glutathione production protects against zearalenone-induced oxidative stress and ferroptosis in female reproductive system. Food Chem Toxicol. 2024;185:114462. doi: 10.1016/j.fct.2024.114462.
- [131] Zhang Y, Cao KX, Niu QJ, Deng J, Zhao L, Khalil MM, et al. Alphaclass glutathione S-transferases involved in the detoxification of aflatoxin B1 in ducklings. Food Chem Toxicol. 2023;174:113682. doi: 10.1016/i.fct.2023.113682.
- Prakash B, Singh PP, Gupta V, Raghuvanshi TS. Essential oils as green promising alternatives to chemical preservatives for agrifood products: New insight into molecular mechanism, toxicity assessment, and safety profile. Food Chem Toxicol. 2024;183:114241. doi: 10.1016/j.fct.2023.114241.
- [133] Singh PP, Jaiswal AK, Raghuvanshi TS, Prakash B, Insights into the antimicrobial efficacy of Coleus aromaticus essential oil against food-borne microbes: Biochemical and molecular simulation approaches. Food Chem Toxicol. 2023;182:114111. doi: 10.1016/j. fct.2023.114111.
- [134] Nie T, Wu Q, Long M, Wu W, Kuca K. New insight into mycotoxins and bacterial toxins: Toxicity assessment, molecular mechanism and food safety (preface to the special issue of food and chemical toxicology on the outcomes of Myco & bacterial toxin). Food Chem Toxicol. 2024;188:114655. doi: 10.1016/j.fct.2024.114655.
- [135] Mir SA, Dar BN, Mir MM, Sofi SA, Shah MA, Sidiq T, et al. Current strategies for the reduction of pesticide residues in food products. J Food Compos Anal. 2022;106:104274. doi: 10.1016/j. ifca.2021.104274.
- Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, et al. [136] Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review [Review]. Front Microbiol. 2022;13:962619, https://www.frontiersin.org/journals/ microbiology/articles/10.3389/fmicb.2022.962619.
- Munir S, Azeem A, Sikandar Zaman M, Zia Ul Haq M. From field to table: Ensuring food safety by reducing pesticide residues in food. Sci Total Environ. 2024;922:171382. doi: 10.1016/j.scitotenv. 2024.171382.
- Leskovac A, Petrović S. Pesticide use and degradation strategies: food safety, challenges and perspectives. Foods. 2023:12(14):2709.
- [139] Pecenka JR, Ingwell LL, Foster RE, Krupke CH, Kaplan I. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc Natl Acad Sci. 2021;118(44):e2108429118.
- [140] Wahab A, Batool F, Muhammad M, Zaman W, Mikhlef RM, Qaddoori SM, et al. Unveiling the complex molecular dynamics of arbuscular mycorrhizae: A comprehensive exploration and future perspectives in harnessing phosphate-solubilizing microorganisms for sustainable progress. Environ Exp Bot. 2024;219:105633. doi: 10.1016/j.envexpbot.2023.105633.
- Ullah F, Saqib S, Khan W, Zhao L, Khan W, Li MY, et al. Sodium nitroprusside and melatonin improve physiological vitality and drought acclimation via synergistically enhancing antioxidant response in dryland maize. J Plant Growth Regul. 2025;44(2):891-908. doi: 10.1007/s00344-024-11498-2.
- [142] Ullah F, Sagib S, Zaman W, Khan W, Zhao L, Khan A, et al. Mitigating drought and heavy metal stress in maize using melatonin and sodium nitroprusside. Plant Soil. 2024;44:891–908. doi: 10.1007/s11104-024-07077-9.

- [143] Pop C, Suharoschi R, Pop OL. Dietary fiber and prebiotic compounds in fruits and vegetables food waste. Sustainability. 2021;13:7219.
- [144] Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, et al. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. J Environ Manag. 2024;360:121136. doi: 10.1016/j. ienvman.2024.121136.
- [145] Antranikian G, Streit WR. Microorganisms harbor keys to a circular bioeconomy making them useful tools in fighting plastic pollution and rising CO<sub>2</sub> levels. Extremophiles. 2022;26(1):10. doi: 10.1007/s00792-022-01261-4.
- [146] Najar IN, Sherpa MT, Das S, Das S, Thakur N. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry. Sci Total Environ. 2018;637-638:730-45. doi: 10. 1016/j.scitotenv.2018.05.037.
- [147] Najar IN, Sherpa MT, Das S, Thakur N. Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Funct Integr Genomics. 2020;20(4):479-96. doi: 10.1007/s10142-019-00723-x.
- [148] Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, et al. Extremophilic exopolysaccharides: biotechnologies and wastewater remediation [Mini Review]. Front Microbiol. 2021;12:721365, https://www.frontiersin.org/journals/ microbiology/articles/10.3389/fmicb.2021.721365.
- [149] Mehta R, Singhal P, Singh H, Damle D, Sharma AK. Insight into thermophiles and their wide-spectrum applications. 3 Biotech. 2016;6(1):81. doi: 10.1007/s13205-016-0368-z.
- [150] Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, et al. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications. Chemosphere. 2024;350:141123. doi: 10.1016/j.chemosphere.2024.141123.
- [151] Bhattacharya A, Gola D, Dey P, Malik A. Synergistic and antagonistic effects on metal bioremediation with increasing metal complexity in a hexa-metal environment by Aspergillus fumigatus. Int J Environ Res. 2020;14(6):761-70. doi: 10.1007/ s41742-020-00295-w.
- Γ1521 Kalia S, Bhattacharya A, Prajapati SK, Malik A. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. Chemosphere. 2021;279:130554. doi: 10.1016/j.chemosphere. 2021.130554.
- Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic [153] pollution: current knowledge and future prospects. Biodegradation. 2024;35(3):249-79. doi: 10.1007/s10532-023-10053-2.
- [154] Kanlaya R, Khamchun S, Kapincharanon C, Thongboonkerd V. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci Rep. 2016;6(1):30233. doi: 10.1038/srep30233.
- [155] Newsome BJ, Petriello MC, Han SG, Murphy MO, Eske KE, Sunkara M, et al. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem. 2014;25(2):126-35. doi: 10.1016/j.jnutbio.2013.
- [156] Ravichandran R, Rajendran M, Devapiriam D. Antioxidant study of quercetin and their metal complex and determination of stability

- constant by spectrophotometry method. Food Chem. 2014;146:472-8. doi: 10.1016/j.foodchem.2013.09.080.
- [157] Chung RTM. Detoxification effects of phytonutrients against environmental toxicants and sharing of clinical experience on practical applications. Environ Sci Pollut Res. 2017;24(10):8946-56. doi: 10.1007/s11356-015-5263-3.
- [158] García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol. 2014;69:182-201. doi: 10.1016/j.fct.2014.04.016.
- [159] Flora G, Gupta D, Tiwari A. Preventive efficacy of bulk and nanocurcumin against lead-induced oxidative stress in mice. Biol Trace Elem Res. 2013;152(1):31-40. doi: 10.1007/s12011-012-9586-3.
- Cengiz MF, Basançelebi O, Başlar M, Certel M. A novel technique for the reduction of pesticide residues by a combination of lowintensity electrical current and ultrasound applications: A study on lettuce samples. Food Chem. 2021;354:129360. doi: 10.1016/j. foodchem.2021.129360.
- [161] Jatoi AS, Hashmi Z, Adriyani R, Yuniarto A, Mazari SA, Akhter F, et al. Recent trends and future challenges of pesticide removal techniques - A comprehensive review. J Environ Chem Eng. 2021;9(4):105571. doi: 10.1016/j.jece.2021.105571.
- [162] Lozowicka B, Jankowska M, Hrynko I, Kaczynski P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ Monit Assess. 2015;188(1):51. doi: 10.1007/s10661-015-4850-6.
- [163] Liu L, Xie M, Wei D. Biological detoxification of mycotoxins: current status and future advances. Int | Mol Sci. 2022;23(3):1064.
- Shekhar R, Raghvendra VB, Rachitha P. A comprehensive review of [164] mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep. 2025;14:101952. doi: 10.1016/j.toxrep.2025.101952.
- [165] Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016;32(4):179-205. doi: 10.1007/s12550-016-0257-7.
- [166] Pedras MSC, Khallaf I. Molecular interactions of the phytotoxins destruxin B and sirodesmin PL with crucifers and cereals: Metabolism and elicitation of plant defenses. Phytochemistry. 2012;77:129-39. doi: 10.1016/j.phytochem.2012.02.010.
- [167] Makhuvele R, Naidu K, Gbashi S, Thipe VC, Adebo OA, Njobeh PB. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon. 2020;6(10):e05291. doi: 10.1016/j.heliyon.2020.e05291.
- [168] Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, et al. Crystal Structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry. 2016;55(44):6175-86. doi: 10.1021/acs.biochem.6b00709.
- [169] Li P, Su R, Yin R, Lai D, Wang M, Liu Y, et al. Detoxification of mycotoxins through biotransformation. Toxins. 2020;12(2):121.
- [170] Zhang AA, Sutar PP, Bian Q, Fang XM, Ni JB, Xiao HW. Pesticide residue elimination for fruits and vegetables: the mechanisms, applications, and future trends of thermal and non-thermal technologies. J Future Foods. 2022;2(3):223-40. doi: 10.1016/j. jfutfo.2022.06.004.
- [171] Yang L, Zhou J, Feng Y. Removal of pesticide residues from fresh vegetables by the coupled free chlorine/ultrasound process. Ultrason Sonochem. 2022;82:105891. doi: 10.1016/j.ultsonch.2021.105891.
- [172] Rong Tan L, Chen Lu Y, Jing Zhang J, Luo F, Yang H. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa)

- plants. Ecotoxicol Environ Saf. 2015;119:25-34. doi: 10.1016/j. ecoeny.2015.04.035.
- [173] Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PVV, Jugulam M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants. 2020;9(5):454.
- [174] Ohkawa H, Inui H. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants. Pest Manag Sci. 2015;71(6):824-8. doi: 10.1002/ps.3871.
- Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, et al. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol. 2014;166(3):1232-40. doi: 10.1104/pp.113.231266.
- Г1761 Sylvestre-Gonon E. Law SR. Schwartz M. Robe K. Keech O. Didierjean C, et al. Functional, structural and biochemical features of plant serinyl-glutathione transferases [Review]. Front Plant Sci. 2019;10:608, https://www.frontiersin.org/journals/plant-science/ articles/10.3389/fpls.2019.00608.
- Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol. 2018;38(4):511-28. doi: 10.1080/07388551.2017.1375890.
- [178] Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. Sci Total Environ. 2021;790:148034. doi: 10.1016/j.scitotenv. 2021.148034.
- Liscombe DK, Louie GV, Noel JP. Architectures, mechanisms and [179] molecular evolution of natural product methyltransferases. Nat Prod Rep. 2012;29(10):1238-50.
- [180] Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr. 2020;2(1):6. doi: 10.1186/s43014-020-0020-5.
- Banerjee S, Ranganathan V, Patti A, Arora A. Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci Technol. 2018;82:60-70. doi: 10.1016/j.tifs.2018.09.024.
- [182] de Toledo NMV, Nunes LP, da Silva PPM, Spoto MHF, Canniatti-Brazaca SG. Influence of pineapple, apple and melon by-products on cookies: physicochemical and sensory aspects. Int J Food Sci Technol. 2017;52(5):1185-92. doi: 10.1111/ijfs.13383.
- [183] Debnath P, Dey P, Chanda A, Bhakta T. A survey on pineapple and its medicinal value. Scholars Acad I Pharm. 2012;1(1):24-9.
- Ketnawa S, Chaiwut P, Rawdkuen S. Pineapple wastes: A potential [184] source for bromelain extraction. Food Bioprod Process. 2012;90(3):385-91. doi: 10.1016/j.fbp.2011.12.006.
- [185] Roda A, Lambri M. Food uses of pineapple waste and byproducts: a review. Int J Food Sci Technol. 2019;54(4):1009-17. doi: 10.1111/ijfs.14128.
- [186] Amariz A, Lima MA, Alves RE. Quality and antioxidant potential of byproducts from refining of fruit pulp. Food Sci Technol. 2018;38:203-9.
- [187] Plazzotta S, Ibarz R, Manzocco L, Martín-Belloso O. Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrason Sonochem. 2020;63:104954. doi: 10.1016/j.ultsonch.2019.104954.
- Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, [188] Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. J Environ Manag. 2020;265:110510. doi: 10.1016/j.jenvman.2020.110510.
- Rudke CRM, Zielinski AAF, Ferreira SRS. From biorefinery to food product design: Peach (Prunus persica) by-products deserve attention. Food Bioprocess Technol. 2023;16(6):1197-215. doi: 10. 1007/s11947-022-02951-9.

- [190] Choi Y-S, Kim YB, Hwang KE, Song DH, Ham YK, Kim HW, et al. Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poult Sci. 2016;95(6):1465–71. doi: 10.3382/ps/pew096.
- [191] Huc-Mathis D, Journet C, Fayolle N, Bosc V. Emulsifying properties of food by-products: Valorizing apple pomace and oat bran. Colloids Surf A: Physicochem Eng Asp. 2019;568:84–91. doi: 10.1016/j.colsurfa.2019.02.001.
- [192] Perussello CA, Zhang Z, Marzocchella A, Tiwari BK. Valorization of apple pomace by extraction of valuable compounds. Compr Rev Food Sci Food Saf. 2017;16(5):776–96. doi: 10.1111/1541-4337.12290.
- [193] Ayala-Zavala JF, Vega-Vega V, Rosas-Domínguez C, Palafox-Carlos H, Villa-Rodriguez JA, Siddiqui MW, et al. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res Int. 2011;44(7):1866–74. doi: 10.1016/j.foodres.2011. 02.021.
- [194] Rotta EM, Morais DR, Biondo PBF, Santos VJ, Matsushita M, Visentainer JV. Use of avocado peel (Persea americana) in tea formulation: a functional product containing phenolic compounds with antioxidant activity. Acta Sci Technol. 2016;38(1):23–9.
- [195] Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A: Physicochem Eng Asp. 2010;368(1):58–63. doi: 10. 1016/j.colsurfa.2010.07.024.
- [196] Vu HT, Scarlett CJ, Vuong QV. Phenolic compounds within banana peel and their potential uses: A review. J Funct Foods. 2018;40:238–48. doi: 10.1016/j.jff.2017.11.006.
- [197] Espitia PJ, Du WX, de Jesús Avena-Bustillos R, Soares ND, McHugh TH. Edible films from pectin: Physical-mechanical and antimicrobial properties – A review. Food Hydrocoll. 2014;35:287–96. doi: 10.1016/j.foodhyd.2013.06.005.
- [198] Satari B, Karimi K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl. 2018;129:153–67. doi: 10.1016/j.resconrec.2017.10.032.
- [199] Acun S, Gül H. Effects of grape pomace and grape seed flours on cookie quality. Qual Assur Saf Crop Foods. 2014;6(1):81–8.
- [200] Mainente F, Menin A, Alberton A, Zoccatelli G, Rizzi C. Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders. Int J Food Sci Technol. 2019;54(4):952–8. doi: 10.1111/ijfs.13850.
- [201] Mattos GN, Tonon RV, Furtado AAL, Cabral LMC. Grape byproduct extracts against microbial proliferation and lipid oxidation: a review. J Sci Food Agric. 2017;97(4):1055–64. doi: 10.1002/jsfa.8062.
- [202] Adilah AN, Jamilah B, Noranizan MA, Hanani ZAN. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag Shelf Life. 2018;16:1–7. doi: 10.1016/j.fpsl. 2018.01.006.
- [203] Ajila CM, Aalami M, Leelavathi K, Rao UJSP. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov Food Sci Emerg Technol. 2010;11(1):219–24. doi: 10.1016/j.ifset.2009.10.004.
- [204] Ashoush IS, Gadallah MGE. Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J Dairy Food Sci. 2011;6(1):35–42.
- [205] Torres-León C, Vicente AA, Flores-López ML, Rojas R, Serna-Cock L, Alvarez-Pérez OB, et al. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT. 2018;97:624–31. doi: 10.1016/j.lwt.2018.07.057.

- [206] Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP. Bromelain: an overview of industrial application and purification strategies. Appl Microbiol Biotechnol. 2014;98(17):7283–97. doi: 10.1007/ s00253-014-5889-y.
- [207] Kodagoda K, Marapana R. Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties. J Pharmacogn Phytochem. 2017;6(3):492–7.
- [208] Gonzalez J, Donoso W, Sandoval N, Reyes M, Gonzalez P, Gajardo M, et al. Apple peel supplemented diet reduces parameters of metabolic syndrome and atherogenic progression in ApoE–/– mice. Evid-Based Complement Altern Med. 2015;2015(1):918384. doi: 10.1155/2015/918384.
- [209] Araújo RG, Rodriguez-Jasso RM, Ruiz HA, Pintado MME, Aguilar CN. Avocado by-products: Nutritional and functional properties. Trends Food Sci Technol. 2018;80:51–60. doi: 10.1016/j.tifs.2018.07.027.
- [210] Yu X, Lin H, Wang Y, Lv W, Zhang S, Qian Y, et al. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther. 2018;11:1833–47. doi: 10.2147/ OTT.S155716.
- [211] Miller JA, Thompson PA, Hakim IA, Chow HHS, Thomson CA. d-Limonene: a bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol Rev. 2011;5(1):31–42. doi: 10.1007/s12156-010-0066-8.
- [212] Burton-Freeman BM, Sandhu AK, Edirisinghe I. Mangos and their bioactive components: adding variety to the fruit plate for health [10.1039/C7FO00190H]. Food Funct. 2017;8(9):3010–32. doi: 10. 1039/C7FO00190H.
- [213] Maxwell EG, Belshaw NJ, Waldron KW, Morris VJ. Pectin An emerging new bioactive food polysaccharide. Trends Food Sci Technol. 2012;24(2):64–73. doi: 10.1016/j.tifs.2011.11.002.
- [214] Wang X, Gao L, Lin H, Song J, Wang J, Yin Y, et al. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur J Pharmacol. 2018;824:170–8. doi: 10.1016/j.ejphar.2018.02.009.
- [215] Nowicka P, Wojdyło A. Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, antiaging properties. Eur Food Res Technol. 2019;245(5):1123–36. doi: 10.1007/s00217-018-3214-1.
- [216] Pérez-Jiménez J, Saura-Calixto F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res Int. 2018;111:148–52. doi: 10.1016/j.foodres.2018.05.023.
- [217] Mihaylova D, Popova A, Desseva I, Dincheva I, Tumbarski Y. Valorization of peels of eight peach varieties: GC–MS profile, free and bound phenolics and corresponding biological activities. Antioxidants. 2023;12(1):205.
- [218] Rodríguez-González S, Pérez-Ramírez IF, Amaya-Cruz DM, Gallegos-Corona MA, Ramos-Gomez M, Mora O, et al. Polyphenolrich peach (Prunus persica L.) by-product exerts a greater beneficial effect than dietary fiber-rich by-product on insulin resistance and hepatic steatosis in obese rats. J Funct Foods. 2018;45:58–66. doi: 10.1016/j.jff.2018.03.010.
- [219] Gamboa-Santos J, Soria AC, Fornari T, Villamiel M, Montilla A. Optimisation of convective drying of carrots using selected processing and quality indicators. Int J Food Sci Technol. 2013;48(10):1998–2006. doi: 10.1111/ijfs.12076.
- [220] García-Aparicio MdP, Castro-Rubio F, Marina ML. Unlocking peach juice byproduct potential in food waste biorefineries: Phenolic compounds profile, antioxidant capacity and fermentable sugars. Bioresour Technol. 2024;396:130441. doi: 10.1016/j.biortech.2024.130441.