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Abstract: In a cross-sectional analysis of 14,973 adults from
North China, thyroid nodules (TNs) were detected via high-
resolution ultrasonography in 8,104 participants (54.1%),
with a higher prevalence among women. The mean age
of those with TNs was significantly higher (51.39 ± 15.41
vs 41.83 ± 12.43 years, p < 0.001). Univariate analyses indicated
that female sex (OR ≈ 2.0), older age (OR ≈ 1.03 per year),
elevated low-density lipoprotein cholesterol, low high-density
lipoprotein cholesterol, and higher BMI were significantly
linked to TNs. In contrast, total cholesterol and uric acid did
not reach significance in the final model. A nomogram incor-
porating these risk factors demonstrated moderate predictive
performance (AUC = 0.84 in the training set; 0.78 in the vali-
dation set). While the study’s large sample size is a strength,
its cross-sectional design limits conclusions about causality,
and potential overfitting cannot be excluded. Future research
should include thyroid hormone measurements, external
validation of the nomogram, and longitudinal follow-up to
clarify the role of metabolic factors. These findings highlight
the importance of age, sex, and metabolic profiles – particu-
larly dyslipidemia and obesity – in screening for TNs during
routine health examinations.
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1 Introduction

The thyroid is an essential endocrine organ in the human
body, and thyroid nodules (TNs) are the most common
thyroid disease encountered in clinical practice [1]. The
detection rate of TNs can be as high as 67% through palpa-
tion or physical examination, aided by high-resolution
ultrasound. Approximately 5–15% of patients with TNs
may progress to thyroid cancer [2–4]. According to the
2018 report by the International Agency for Research on
Cancer, the global incidence of thyroid cancer is about 6.7
per 100,000 individuals, with around 190,000 new cases
occurring annually in China [5]. Consequently, TNs have
emerged as a notable public health concern. Previous stu-
dies have associated TNs with iodine intake, genetic pre-
disposition, immune factors, endocrine disturbances, and
radiation exposure [6–8]. Although several investigations
have demonstrated a significant link between TNs and
metabolic diseases [9–11], these findings remain inconsis-
tent across different populations.

Various risk factors contribute to the occurrence of
TNs, including age, gender, obesity, impaired fasting glu-
cose, and insulin resistance [12–14]. Moreover, high thyroid
stimulating hormone (TSH) levels have been linked to an
increased likelihood of malignancy in euthyroid nodules,
whereas larger nodules are more often benign [15]. Certain
cytomorphological criteria – such as nuclear atypia and the
presence of multiple significant parameters – further cor-
relate with a higher risk of malignancy in TNs. Under-
standing these risk factors is crucial for early detection,
prevention, and treatment strategies.

Numerous studies have explored the development of
prediction models to improve diagnostic accuracy and
clinical decision-making processes. One study proposed a
multimodality ultrasound prediction model that integrates
conventional ultrasound, shear wave elastography, strain
elastography, and contrast-enhanced ultrasound, significantly
enhancing the differential diagnosis of TNs ≤ 10mm [16].
Another investigation employed a Bagged CART model for
thyroid cancer prediction, achieving high accuracy, sensitivity,
and specificity, with variables such as size, TSH, and blood flow
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identified as key predictors [17]. Additionally, researchers have
examined factors influencing needle visualization during fine-
needle aspiration of TNs, leading to the development of a
nomogram for predicting the clarity of needle tip display
[17,18]. Furthermore, a nomogram model based on clinical
and ultrasound features was constructed to optimize thyroid
C-TI-RADS classification, demonstrating favorable accuracy
and potential clinical utility.

The aim of this study is to determine the prevalence of TNs
among a healthy population in North China using high-resolu-
tion ultrasonography, while pinpointing key demographic and
biochemical risk factors such as cholesterol levels, blood glu-
cose, and uric acid (UA). An important objective is to develop
and validate a risk prediction model founded on these factors,
thereby enhancing early detection capabilities. Ultimately, the
findings are intended to support targeted screening and inter-
vention strategies, contributing to improved prevention and
management of TNs, particularly among high-risk groups.

2 Methods

This study enrolled 14,973 individuals who underwent routine
physical examinations at our hospital’s physical examination
center between January 2021 and December 2021. Exclusion
criteria included acute or chronic liver and kidney dysfunction,
use of thyroid hormonemedications within the past 6months, a
history of neck surgery, coexisting malignant tumors, or a his-
tory of severe mental and neurological diseases.

2.1 Data collection

This study recorded each participant’s height, weight, body
mass index (BMI), and blood pressure. Height and weight
were measured using a standard height-weight scale, with
height recorded in meters (m) and weight in kilograms (kg).
BMI was calculated by dividing weight (kg) by the square of
height (m). According to the “Guidelines for the Prevention
and Control of Overweight and Obesity in Chinese Adults,” a
BMI below 18.5 kg/m² was categorized as underweight,
18.5–23.9 kg/m² as normal weight, 24–27.9 kg/m² as over-
weight, and 28 kg/m² or above as obese.

Informed consent: Informed consent has been obtained
from all individuals included in this study.

Ethical approval: The research related to human use has
been complied with all the relevant national regulations,
institutional policies, and in accordance with the tenets of
the Helsinki Declaration, and has been approved by the

Ethics Committee of the First Hospital of Hebei Medical
University (S00376).

2.2 Laboratory measurements

Venous blood samples were collected from participants
after 8–12 h of fasting. Biochemical indicators were mea-
sured using an automatic biochemical analyzer (Beckman
AU5800). The parameters assessed in this study included
fasting blood glucose (FBG), UA, total cholesterol (TC), tri-
glyceride (TG), low-density lipoprotein cholesterol (LDL-C),
and high-density lipoprotein cholesterol (HDL-C).
According to the “Guidelines for the Prevention and
Treatment of Type 2 Diabetes in China (2007 Edition),”
the normal range for FBG is 3.9–6.1 mmol/L. The normal
reference range for UA is 202.3–416.5 μmol/L. For blood
lipids, the reference ranges are TC < 5.2 mmol/L, TG <

2.26 mmol/L, 1.90 mmol/L < LDL-C < 3.10 mmol/L, and
1.00 mmol/L < HDL-C < 1.55 mmol/L. Any abnormality in
one or more of these four lipid indicators is defined as
dyslipidemia.

2.3 Thyroid ultrasonography

Thyroid ultrasonography was performed by qualified ultra-
sound specialists using a LOGIQE8 color Doppler system
equipped with a 3.0–12MHz probe. Participants lay supine
with their shoulders elevated to fully expose the neck. A
high-frequency ultrasound probe was then used for multi-
sectional scanning to record each nodule’s dimensions
(length, width, depth), location, number, echogenicity, mar-
gins, and any cystic components. The largest nodule size
noted was documented as the TN diameter. Based on these
ultrasonographic findings, participants were classified into
thyroid nodular status (TNS) and non-TNS groups.
Individuals with a history of partial or total thyroidectomy
were excluded from the study.

2.4 Nomogram construction and evaluation

To develop a predictive model for TNs, the overall cohort
was split into two groups: a training set (N = 7,500) and a
validation set (N = 7,473). In the training set, univariate and
multivariate logistic stepwise regression analyses were con-
ducted to identify independent predictors of TN. Based on
these predictors, a nomogram was constructed. The perfor-
mance of the resulting nomogram was then evaluated using
receiver operating characteristic (ROC) analysis.
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2.5 Statistical analysis

Data analysis in this study was conducted using SPSS 26.0.
Measurement data were expressed as the mean value ±

standard deviation (x̄ ± s) and compared using the t-test.
Categorical data were presented as frequencies (n [%]) and
compared using the χ² test. Additionally, multivariate
logistic regression was employed to analyze factors related
to the prevalence of TNs, with odds ratios (OR) and corre-
sponding 95% confidence intervals (CI) calculated.

3 Results

3.1 Comparison of clinical data between the
two groups

Table 1 provides a comparative analysis of clinical charac-
teristics between individuals with TNS and those without
(Non-TNS). A significant difference in gender distribution
was observed: 49.9% of the TNS group were male com-
pared to 58.1% in the Non-TNS group, while 58.9% of the
TNS group were female compared to 41.1% in the Non-TNS
group (p < 0.001). Age also differed notably, with TNS par-
ticipants averaging 51.39 ± 15.41 years and Non-TNS parti-
cipants 41.83 ± 12.43 years (p < 0.001). By contrast, there
was no statistically significant difference in BMI between
the two groups.

3.2 Detection of TNs in different gender and
age groups

Table 2 displays the prevalence of TNs by age group and
gender, showing both the total number of individuals
examined and the corresponding numbers (and percen-
tages) diagnosed with TNs. Overall, 49.93% of males
(4,007 out of 8,025) and 58.97% of females (4,097 out of

6,948) were found to have TNs. Additionally, the data indi-
cate that the prevalence of TNs increases with advan-
cing age.

3.3 Comparison of glucose and lipid
metabolism levels between the two
groups

Table 3 compares glucose and lipid metabolism levels
between individuals with TNS and those without (Non-
TNS). The variables evaluated include total cholesterol
(TC), HDL-C, LDL-C, TG, FBG, and UA.

Overall, there were significant differences in all mea-
sured parameters between the TNS and Non-TNS groups.
TC levels were marginally higher in the TNS group (5.143 ±
1.093 mM) compared with the Non-TNS group (5.059 ±

1.061 mM) (p < 0.0001). Both HDL-C and LDL-C also exhib-
ited statistically significant variations between the two
groups. Notably, TG and FBG were higher in the TNS group
(5.910 ± 1.392 mM and 5.910 ± 1.392 mM, respectively),
whereas UA was lower (359.0 ± 97.25 μM in TNS vs 372.4
± 102.0 μM in Non-TNS).

Since thyroid hormone levels were not evaluated in
the participants, we compared key clinical and laboratory
parameters between TNS negative (n = 57) and TNS positive
(n = 43) individuals with additional confounder data on
iodine intake, radiation exposure, and family history of

Table 1: Comparison of clinical data between the two group

Variable TNS group (n = 8,104) Non-TNS group (n = 6,869) χ²/t p

Gender 122.431 <0.001
Male, n (%) 4,007 (49.4%) 4,018 (58.5%)
Female, n (%) 4,097 (50.6%) 2,851 (41.5%)

Age (years), mean value ± SD 51.39 ± 15.41 41.83 ± 12.43 41.27 <0.001
BMI (kg/m2), mean value ± SD 25.48 ± 25.62 24.45 ± 3.77 3.310 0.09

Table 2: Comparison of the prevalence of thyroid nodules

Age (year) Male Female

Total TN, n (%) Total TN, n (%)

<30 800 290 (36.25%) 838 336 (40.10%)
30–39 2,081 654 (31.43%) 1,920 839 (43.70%)
40–49 1,691 751 (44.41%) 1,472 844 (57.34%)
50–59 1,763 1,019 (57.80%) 1,354 944 (69.72%)
>60 1,690 1,293 (76.51%) 1,364 1,134 (83.14%)
Total 8,025 4,007 (49.93%) 6,948 4,097 (58.97%)
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thyroid disease in a pilot subset (Table S1). The TNS positive
group exhibited older mean age (53.4 ± 13.0 vs 46.1 ± 12.4
years, p = 0.002), higher TSH (3.0 ± 1.2 vs 2.3 ± 1.0 mIU/L, p =
0.01), elevated LDL-C (3.3 ± 0.8 vs 2.8 ± 0.7 mmol/L, p = 0.05),
and lower HDL-C (1.2 ± 0.3 vs 1.4 ± 0.3 mmol/L, p = 0.02)
(Table S1). BMI also remained significantly higher in TNS
positive individuals (27.0 ± 4.0 vs 24.6 ± 3.1 kg/m², p = 0.004)
(Table S1).

Family history of thyroid disease was significantly
more common in the TNS positive group (20.9% vs 8.8%,
p = 0.04), while variations in iodine intake and radiation
exposure showed no statistical significance in this small
sample (Table S1). Taken together, these pilot findings sug-
gest that, beyond metabolic and thyroid function markers,
familial predisposition may be relevant in identifying indi-
viduals at higher risk for TNs.

3.4 Univariate logistic regression analysis of
factors related to TNs

Each metabolic or demographic parameter was treated as
a continuous variable in the univariate logistic regression
analysis. Female sex (compared to male) was associated
with approximately double the odds of having TNs (OR =

2.07, 95% CI: 1.88–2.27, Table 4). With each additional year
of age, the odds increased by about 3% (OR = 1.03, 95% CI:
1.02–1.04, Table 4). Among the lipid parameters, both
higher LDL-C (OR = 1.20, 95% CI: 1.13–1.28) and TC (OR =

1.05, 95% CI: 1.01–1.08) showed positive associations with
TNs, whereas HDL-C displayed an inverse relationship (OR
= 0.75, 95% CI: 0.68–0.83) (Table 4). Each 1 mmol/L increase
in TG raised the odds by 4% (OR = 1.04, 95% CI: 1.02–1.06)
(Table 4). Regarding glycemic indicators, higher fasting
plasma glucose correlated with a moderate rise in odds
(OR = 1.07, 95% CI: 1.03–1.11). Uric acid (scaled per 10
μmol/L) demonstrated a small yet significant effect (OR =

1.01, 95% CI: 1.004–1.016). Finally, each 1 kg/m² increment in
BMI resulted in a 6% increase in the likelihood of TNs (OR =

1.06, 95% CI: 1.04–1.08) (Table 4).

3.5 Multivariate logistic regression analysis
of factors related to the occurrence
of TNS

Each metabolic and demographic parameter is entered
into a multivariate logistic regression model, controlling for
all other covariates. Female sex remains significantly asso-
ciated with a nearly twofold odds of having TNs (OR = 1.97,
95% CI: 1.80–2.14), while each additional year of age confers a
3% increment in odds (OR = 1.03, 95% CI: 1.02–1.04) (Table 5).
Notably, LDL-C retains a strong positive association (OR = 1.18,
95% CI: 1.11–1.27), whereas HDL-C is inversely related (OR =

0.81, 95% CI: 0.74–0.89) (Table 5). In contrast, TC is no longer
statistically significant in this adjusted model (p = 0.092). Ele-
vated TG, FBG, and increased UA each display modest but
significant contributions to nodule risk. BMI (OR = 1.05, 95%
CI: 1.03–1.06 per 1 kg/m2 increment) also remains an indepen-
dent predictor of TNs (Table 5).

Table 3: Comparison of glucose and lipid metabolism levels

Variables TNS Non-TNS t p

TC (mM) 5.143 ± 1.093 4.959 ± 1.061 4.775 <0.0001
HDL-C (mM) 1.247 ± 0.2641 1.304 ± 0.2930 12.46 <0.0001
LDL-C (mM) 3.357 ± 0.8007 3.272 ± 0.7750 6.587 <0.0001
TG (mM) 1.668 ± 1.269 1.538 ± 1.478 5.774 <0.0001
FBG (mM) 5.910 ± 1.392 5.569 ± 1.175 41.27 <0.0001
UA (μM) 359.0 ± 97.25 372.4 ± 102.0 3.354 <0.0008

Table 4: Univariate logistic regression analysis with continuous variables

Variable B SE Wald χ² p-value OR (95% CI)

Gender
(Female = 1, Male = 0) 0.726 0.042 299.195 <0.001 2.07 (1.88–2.27)
Age (per 1-year) 0.029 0.002 196.478 <0.001 1.03 (1.02–1.04)
TC (per 1 mmol/L) 0.045 0.018 6.190 0.013 1.05 (1.01–1.08)
HDL-C (per 1 mmol/L) -0.292 0.048 37.005 <0.001 0.75 (0.68–0.83)
LDL-C (per 1 mmol/L) 0.182 0.027 45.605 <0.001 1.20 (1.13–1.28)
TG (per 1 mmol/L) 0.039 0.010 14.600 <0.001 1.04 (1.02–1.06)
FBG (per 1 mmol/L) 0.065 0.021 9.558 0.002 1.07 (1.03–1.11)
UA (per 10 μmol/L) 0.011 0.003 12.215 <0.001 1.01 (1.004–1.016)
BMI (per 1 kg/m2) 0.054 0.007 57.320 <0.001 1.06 (1.04–1.08)
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3.6 Construction of a prediction model for
the occurrence of TNs

Based on the multivariate logistic regression findings, a
nomogram was constructed to predict the occurrence of
TNs (Figure 1). The participants were stratified into low risk
(points < 30), intermediate risk (30–80 points), and high risk
(over 80 points). In the training set, the model achieved an
area under the receiver operating characteristic curve (AUC)
of 0.84 (95% CI: 0.83–0.85), while in the validation set, the AUC
was 0.78 (95% CI: 0.77–0.79) (Figure 2a and b).

4 Discussion

Among the 14,973 participants assessed, the newly con-
firmed prevalence of TNs was 54.1%. Notably, this pre-
valence was higher among women and older adults. In
particular, the mean age was significantly higher in the TN
group relative to those without TNs, and female partici-
pants demonstrated an increased risk compared to their

male counterparts. Furthermore, TNs were significantly
linked to several metabolic factors. Individuals with TNs
exhibited elevated levels of LDL-C, lower levels of HDL-C,
higher BMI, and increased blood glucose, underscoring a
strong association between TN presence and adverse meta-
bolic profiles.

The prevalence of TNs in our study (54.1%) aligns with
the previously reported range of 20–68%, influenced by
regional factors such as iodine intake and dietary habits.
A large-scale study in Southwest China with over 120,000
participants found a similar prevalence [19]. Furthermore,
our findings that TNs are more common in women and
older adults are consistent with prior epidemiological
research [20]. Regarding metabolic risk factors, our study
found strong associations between TNs and higher LDL-C,
lower HDL-C, increased fasting glucose levels, and BMI.
These results are in agreement with prior study, which
reported significant metabolic abnormalities among TN
patients [21]. Additionally, studies have confirmed that
metabolic syndrome components, particularly impaired
glucose metabolism, increase TN prevalence [22] and that
proper glycemic control may help reduce TN risk [23].

Table 5: Multivariate logistic regression analysis with continuous variables

Variable B SE Wald χ² p-Value OR (95% CI)

Gender
(Female = 1, Male = 0) 0.680 0.047 208.674 <0.001 1.97 (1.80–2.14)
Age (per 1-year) 0.028 0.002 171.202 <0.001 1.03 (1.02–1.04)
TC (per 1 mmol/L) 0.032 0.019 2.843 0.092 1.03 (0.99–1.08)
HDL-C (per 1 mmol/L) −0.214 0.049 19.150 <0.001 0.81 (0.74–0.89)
LDL-C (per 1 mmol/L) 0.165 0.028 34.732 <0.001 1.18 (1.11–1.27)
TG (per 1 mmol/L) 0.020 0.010 4.200 0.040 1.02 (1.00–1.05)
FBG (per 1 mmol/L) 0.046 0.020 5.290 0.021 1.05 (1.01–1.10)
UA (per 10 μmol/L) 0.007 0.003 5.444 0.020 1.01 (1.00–1.01)
BMI (per 1 kg/m²) 0.045 0.008 31.641 <0.001 1.05 (1.03–1.06)

Figure 1: Nomogram model for the prevalence of thyroid nodules.
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Overall, our results reinforce the growing evidence linking
metabolic disorders, particularly dyslipidemia and obesity,
to TN development.

Our predictive model for TN risk demonstrated mod-
erate accuracy, with an AUC of 0.84 in the training set and
0.78 in the validation set, suggesting a potential overfitting
issue. Overfitting is a common limitation in predictive
models, particularly when the number of predictors
exceeds the available sample size, which may reduce the
model’s generalizability to new populations [24]. Addition-
ally, defining “high-risk” populations remains challenging
due to the high prevalence of metabolic disorders such as
obesity and hyperlipidemia, which complicates the estab-
lishment of a clear cut-off for risk stratification. Previous
studies have highlighted the difficulty of determining
optimal thresholds, as misclassification can lead to unne-
cessary interventions or missed diagnoses [25]. Our model
currently provides a probability estimate rather than a
strict classification, and further refinement of cut-off
points through external validation is essential. To improve
robustness, future research should focus on prospective or
multi-center studies with diverse cohorts to better assess
model performance and avoid selection bias [26]. More-
over, the integration of machine learning techniques and
nested cross-validation approaches has been suggested as a
way to enhance model accuracy while reducing overfitting
risks [27]. Ultimately, before widespread clinical adoption,
further refinements and validations are necessary to estab-
lish more reliable predictive thresholds for TN risk.

Thyroid ultrasound remains the gold standard for
detecting TNs; however, routine screening of large popula-
tions may not be clinically necessary or cost-effective
without additional refinement. High-resolution ultrasound
has significantly improved the detection of TNs, but its high
sensitivity can lead to the identification of small,

asymptomatic nodules, raising concerns about overdiag-
nosis and unnecessary interventions. Studies have shown
that the use of US-based risk stratification systems, such as
ACR TI-RADS and the Chinese Thyroid Imaging Reporting
and Data System (C-TIRADS), aims to reduce unnecessary
biopsies while maintaining diagnostic accuracy [28,29].
However, despite these advancements, overdiagnosis
remains a challenge, particularly in cases where clinically
insignificant nodules are detected and treated aggressively
[30]. Overdiagnosis inflates prevalence estimates and may
lead to unnecessary fine-needle aspiration biopsies or even
surgeries. A systematic review found that the unnecessary
biopsy rate varies significantly across different stratifica-
tion systems, with ACR TI-RADS demonstrating relatively
lower sensitivity but better specificity in avoiding over-
treatment [31]. Targeted screening strategies should be
explored to identify individuals at the highest risk based
on metabolic and hormonal profiles [30]. Combining radio-
mics with ultrasound-based risk stratification systems has
been explored as a means to improve specificity and
reduce false-positive cases [32]. To mitigate unnecessary
interventions, risk stratification methods such as elasto-
graphy, which assesses tissue stiffness, and additional bio-
markers may be crucial in distinguishing benign from
malignant nodules more effectively [33]. Integrating meta-
bolic and hormonal data with our nomogram could
enhance risk stratification. Prior research suggests that
combining ultrasound features, thyroid function tests,
and molecular markers can improve specificity and reduce
unnecessary biopsies [34]. Additionally, metabolomic pro-
filing has emerged as a promising tool for distinguishing
benign from malignant nodules and could be incorporated
into future screening models [35]. To better understand the
natural history of TNs, prospective or longitudinal follow-
up studies are needed to track how nodules evolve over

Figure 2: ROC curve for the training (a) and validation set (b).
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time in individuals with different metabolic profiles. Such
studies could clarify which factors truly drive nodule pro-
gression vs those associated with stable, benign lesions,
ultimately refining screening guidelines and treatment
strategies [36].

Our study did not include detailed data on dietary
intake, physical activity, radiation exposure, or socioeco-
nomic status, which are all potential confounding factors
influencing the development of TNs. Prior research sug-
gests that iodine intake and dietary goitrogens significantly
impact thyroid health, with both iodine deficiency and
excess being associated with TN risk [37,38]. Additionally,
physical inactivity and obesity have been linked to
increased TN prevalence, emphasizing the role of meta-
bolic health in thyroid disorders [39]. Socioeconomic status
has also been identified as a factor influencing TN risk, as
lower socioeconomic status is often associated with poorer
diet, reduced access to healthcare, and increased environ-
mental exposure to endocrine-disrupting chemicals [40].
Furthermore, environmental pollutants, including radiation
exposure and industrial chemicals, have been implicated in
thyroid carcinogenesis [41]. To enhance our understanding of
these relationships, future research should incorporate vali-
dated lifestyle questionnaires, urinary iodine concentration
measurements, and detailed radiation exposure history to
clarify the interplay between lifestyle, environmental, and
metabolic factors in TN pathogenesis.

One limitation of our study is the absence of uniform
thyroid function test data, including TSH, FT4, and FT3
levels. Without these biomarkers, it is difficult to discern
whether subclinical hypothyroidism or hyperthyroidism
may have influenced the metabolic factors associated
with TNs. Previous research has emphasized the impor-
tance of thyroid hormone measurements in TN studies,
as variations in TSH levels have been linked to both nodule
formation and malignancy risk [42]. Furthermore, the lack
of thyroid function data limits our ability to distinguish
whether metabolic alterations observed in TN patients
are due to intrinsic thyroid dysfunction or other con-
founding variables [30]. This gap in data also affects the
interpretation of our findings, as some studies suggest that
missing hormone assessments can lead to potential mis-
classification of TN risk factors and incomplete metabolic
profiling [43]. Given these constraints, future studies
should incorporate comprehensive thyroid function
testing to better delineate the relationship between thyroid
hormones and metabolic risk factors in TN development.

Our findings highlight the potential clinical value of
integrating metabolic indicators into routine evaluation
of TNs detected by ultrasound. Incorporating thyroid hor-
mone levels, lifestyle factors, and advanced imaging or

biomarker techniques will help guide more precise risk
stratification and more effective, patient-centered manage-
ment of TNs, ultimately reducing unnecessary procedures
and focusing resources on patients most likely to benefit.
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