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Abstract: Neuroinflammation represents a critical pathway
in the brain for the clearance of foreign bodies and the main-
tenance of homeostasis. When the neuroinflammatory pro-
cess is dysregulate, such as the over-activation of microglia,
which results in the excessive accumulation of free oxygen
and inflammatory factors in the brain, among other factors, it
can lead to an imbalance in homeostasis and the develop-
ment of various diseases. Recent research has indicated that
the development of numerous neurodegenerative diseases is
closely associated with neuroinflammation. The pathogenesis
of neuroinflammation in the brain is intricate, involving
alterations in numerous genes and proteins, as well as the
activation and inhibition of signaling pathways. Furthermore,
excessive inflammation can result in neuronal cell apoptosis,
which can further exacerbate the extent of the disease. This
article presents a summary of recent studies on the relation-
ship between neuronal apoptosis caused by excessive neu-
roinflammation and neurodegenerative diseases. The aim is
to identify the link between the two and to provide new ideas
and targets for exploring the pathogenesis, as well as the
prevention and treatment of neurodegenerative diseases.
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1 Introduction

Neurodegenerative diseases are defined as conditions char-
acterized by the gradual loss or deterioration of neurons
and myelin sheaths, leading to impaired function over
time. A number of neurodegenerative diseases are commonly
encountered in clinical practice, including Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD) and amyotrophic lateral sclerosis (ALS), among others
[1]. Neurodegenerative diseases constitute a substantial threat
to human health and quality of life. For example, AD, the
most prevalent neurodegenerative disease globally, is esti-
mated to affect approximately 55 million individuals world-
wide, with over 10 million cases in China [2,3]. The incidence
rate is 5-6% at the age of 65, 10% at the age of 70, and 48% at
the age of 90. The age of onset is earlier. It is projected that by
2050, the global prevalence of patients will reach 152 million
[4]. As indicated by the World Health Organization, neurode-
generative diseases may become the second leading cause of
mortality in humans by 2040 [5]. Neurodegenerative diseases
not only inflict significant suffering on patients but also place
considerable economic and psychological burdens on families
and society. Currently, however, there is no effective treat-
ment for neurodegenerative diseases. The pathogenesis of
these diseases is complex and still controversial, and an in-
depth understanding of the pathogenesis of neurodegenera-
tive diseases will help to discover new therapeutic targets and
drugs, providing new treatment ideas and theoretical founda-
tions for the diagnosis and treatment of neurodegenerative
diseases.

It is becoming increasingly clear that neuroinflamma-
tion may play an important role in the pathogenesis of
neurodegenerative diseases that cannot be ignored. In
the brain, the occurrence of inflammatory reactions can
result in oxidative stress and damage to the antioxidant
defense system of nerve cells, thereby accelerating the pro-
gression of neurodegenerative diseases [6]. Concurrently,
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Table 1: Neurologic diseases and neuroinflammatory factors associated with neuroinflammation

Disease Inflammatory factors References

AD TNF-q, IL-1B, IL-6, Tau, NFT [14,15,22-30,76-82]

PD TNF-a, IL-1B, IL-6, NLRP3, Iba-1, GFAP, iNOS, COX-2 [14,15,22-28,31-35,116-118,178,179]
HD TNF-a, IL-1B, IL-6, HTT [14,15,22-28,36-39,121-136]

Multiple sclerosis (MS)
Traumatic brain injury (TBI)
Gulf war diseases (GWI)
ALS

IL-1B, IL-6, CXC1, CCL2, CCL3, CCL4

TNF-q, IL-1B, IL-6, IL-8, IL-10, ROS, GFAP

IL-1B, IL-6, IL-2, IL-10, IFN-y, IL-4, IL-5, IL-17A, IL-33, TSPO
G-CSF, 112, IL15, IL17, MCP-1, MIP1a, TNF-a, VEGF

[14,15,40-42]
[14,15,43-46]
[14,15,47-51]
[14,15,52-55]

neurodegenerative diseases can also result in aberrant
protein accumulation and the release of inflammatory
mediators, thereby establishing a vicious cycle. Addition-
ally, inflammatory cells are capable of secreting neurotoxins
such as glutamate, which can result in neuronal overexcite-
ment and subsequent damage. Moreover, inflammatory
factors can also stimulate neuronal apoptosis signaling path-
ways, ultimately leading to neuronal death. Consequently,
the inflammatory response is intimately associated with the
progression of neurodegenerative diseases, manifesting not
only in the initial stages of the disease but also progressively
worsening as the disease progresses. Inflammation is a pro-
tective mechanism of the body that maintains the internal
environment of the brain in a balanced state by repairing,
regenerating, and removing damaged histiocytes or infec-
tious agents, toxins from the body [7-10]. Nevertheless, the
role of inflammation in the process of organismal aging is
also significant. It is a concomitant response to cellular
senescence and organismal aging [11-13]. During the aging
process, the functionality of the immune system is disrupted
due to a deterioration of the body’s immunological defenses.
These defenses play a pivotal role in the eradication of patho-
gens. Consequently, when they weaken, both the innate and
acquired immunity systems of the organism become compro-
mised. This results in an imbalance in immune system func-
tioning, which in turn affects the ability of the immune system
to clear pathogens, damaged tissues, and senescent cells. Con-
sequently, there is increased expression of pro-inflammatory
cytokines (e.g, tumor necrosis factor-a [TNF-q], interleukin
[IL]-1B, IL-6, IL-8, reactive oxygen species [ROS]) and C-C che-
mokine ligand-regulated factors (CCL-2 and CCL-5), which con-
tribute to the inflammatory response [14,15] (Table 1). The
chronic stimulation of these factors not only results in a
chronic, low-grade, microinflammatory senescent state of
the organism, but also induces neuroinflammation and leads
to neuronal damage, ultimately resulting in age-related neu-
rodegeneration (Table 1) [16-19].

Neuroinflammation is defined as an inflammatory
response within the central nervous system (CNS) that
involves intricate interactions between a multitude of
immune cells, factors, and receptors, both in its occurrence

and in subsequent development. The principal immune
cells involved are microglia, astrocytes, macrophages,
T cells, and B cells. The principal factors involved are
cytokines, chemokines, ROS, nitric oxide (NO), and prosta-
glandins. Furthermore, the receptors involved in the inflam-
matory response include pattern recognition receptors (PRRs)
and chemokine receptors (CCR).

Microglia are resident immune cells within the CNS. In
physiological conditions, microglia facilitate brain develop-
ment, repair cellular damage, and promote neuronal sur-
vival, thereby maintaining the internal environment of the
brain in a state of homeostasis. In pathological conditions,
microglia are overactivated by disease factors, which results
in excessive inflammatory responses within the brain. This
results in the release of inflammatory cytokines and the
inhibition of nerve regeneration, which collectively exert
neurotoxic effects [20,21]. As individuals age, the misfolded
proteins, cellular debris, and other inflammatory stimuli
accumulated in the brain lead to the continued stimulation
of microglia, thereby accelerating the aging process. Further-
more, elevated levels of organismal senescence result in a
reduction in the phagocytic capacity and monitoring abilities
of microglia, thereby initiating a self-perpetuating cycle that
stimulates the production of inflammatory substances detri-
mental to neuronal health and facilitates the development of
neurodegenerative diseases [22-24]. Consequently, neurode-
generation resulting from neuroinflammation plays a role in
the progression of neurodegenerative diseases. The role of
microglia-mediated neuroinflammation as a hallmark of sev-
eral CNS diseases, including AD, PD, and HD, is now well-
established (Table 1) [25-28].

A search for inflammatory factors related to several
neurodegenerative diseases with high incidence rates or
significant adverse effects on human health revealed com-
monalities in early neuritis. As illustrated in Table 1, an
increase in the expression of inflammatory factors, including
TNF-0, IL-1B, IL-6, Tau, and NFT was observed in AD [29,30].
A noteworthy increase in inflammatory factors, including
TNF-a, IL-1B, IL-6, NLRP3, Iba-1, glial fibrillary acidic protein
(GFAP), iNOS, and COX-2, was observed in PD [31-35]. In HD, it
has been demonstrated that the expression of inflammatory
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factors such as TNF-q, IL-1B, IL-6, and HTT exhibited a notable
increase [36-39]. In MS, there is a significant increase in the
levels of IL-1B, IL-6, CXCL1, CCL2, CCL3, CCL4, and other fac-
tors [40-42]. A number of inflammatory factors, including
TNF-a, IL-1B, IL-6, IL-8, IL-10, ROS, and GFAP, have been
demonstrated to be significantly elevated in individuals
with TBI [43-46].GulfWar illness (GWI) has been linked
to notable elevations in the levels of various cytokines,
including IL-1B, IL-6, IL-2, IL-10, IFN-y, IL-4, IL-5, IL-17A, IL-
33, TSPO, and others, which have been demonstrated to
exhibit significant increases in a number of cases [47-51].
A number of factors, including G-CSF, IL-2, IL-15, IL-17, MCP-
1, MIP-1a, TNF-a, VEGF, and other factors have been identi-
fied in the context of ALS research [52-55].

Neuroinflammation is a critical element in the patho-
genesis and progression of neurodegenerative disorders.
In recent years, there have been significant advancements
in research on the factors, pathways, and cell fate asso-
ciated with neuroinflammation in neurodegenerative dis-
eases. This article will discuss and summarize the research
progress of neuroinflammation in typical neurodegenera-
tive diseases from several perspectives, including neuroin-
flammation, neuroinflammatory signaling pathways, and
changes in cell fate caused by neuroinflammation. The
objective is to provide an understanding of the molecular
mechanisms of inflammation that contribute to the occur-
rence and development of neurodegenerative diseases,
and to offer insights into potential molecular targets and
strategies for the treatment of neurodegenerative diseases
at the neuroinflammatory level.

2 Neuroinflammation in the most
prevalent neurodegenerative
diseases

21 AD

AD, the most prevalent neurodegenerative disease world-
wide, which affects over 44 million individuals. Its pathogen-
esis is complex and plays a pivotal role in the development
of dementia. The primary pathological processes of AD
include the deposition of amyloid-p (AB) protein, hyper-
phosphorylation of Tau protein, and the production of neu-
rofibrillary tangles (NFTs) [56-60]. The recent discovery of
AD-related inflammatory markers, as well as the finding
that some innate immune-related genes are also associated
with the pathogenesis of AD, suggests that neuroinflamma-
tion also plays an important role in the pathogenesis of AD
[61-63]. The principal immune cells in the brain are
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astrocytes and microglia. Neuroinflammation in AD is also
mainly related to these cells. Microglia play a pivotal role in
the brain, with the capacity to be activated in order to reg-
ulate homeostatic balance within the brain when stimulated
[64-66]. Some studies have indicated that microglia are
abnormally activated in the brains of patients with AD,
and this phenomenon may be related to the pathogenesis
and development of AD [67]. The development of this state is
influenced by a variety of factors, including brain injury,
infection, or other stimuli. Upon stimulation, microglia can
be divided into two main phenotypes: anti-inflammatory
and pro-inflammatory [68-72].

Some studies have indicated that in the context of aging,
microglia exhibit a proclivity toward a pro-inflammatory
phenotype [73,74]. Upon activation to the anti-inflammatory
phenotype, microglia release anti-inflammatory factors,
including IL-10, IL-13, and others to counteract the inflam-
matory response in the brain [75]. When microglia are
activated to the pro-inflammatory phenotype, their capa-
city to remove toxic substances and waste products is
diminished, resulting in the accumulation of neurotoxins
such as AP protein in the brain. Concurrently, the dis-
charge of inflammatory mediators such as TNF-q, IL-1,
and IL-6 is enhanced, which in turn facilitates the occur-
rence of neuroinflammation, accelerates neurodegenera-
tion, and inflicts damage upon neurons within the brain.
The diminished clearance capacity of pro-inflammatory
microglia results in the accumulation of AP protein and
NFTs, which are formed by hyperphosphorylated Tau pro-
tein, in the brains of AD patients [76—81]. The accumulation
of AP protein and NFTs may act as a stimulus to continue to
activate microglia, thereby creating a vicious cycle and
accelerating the development of AD [80,81].

Astrocytes and microglia exhibit analogous functions
and are capable of recognizing AP, thereby undergoing
activation and alterations in morphology and function.
Both cells are capable of regulating synapse formation,
but the interaction between astrocytes and neurons is
bidirectional. Astrocytes and oligodendrocytes are inter-
connected in the brain, forming a large syncytial glial net-
work comprising hundreds of cells. This occurs through
the formation of a tripartite synapse, which involves the
connection with neurons. After activation, astrocytes can
be classified into two distinct phenotypes, Al and A2. The
A1 type is mainly induced by TNF-a and IL-1 a, while A1l
type astrocytes lose their normal morphology and func-
tion, can secrete neurotoxins, and have components such
as C3 that mediate synaptic elimination, leading to synaptic
reduction and inducing neuronal apoptosis [82]. Synapses
are associated with memory processes, and a reduction in
synapse number or function may contribute to memory
deficits associated with AD. IL-4 and IL-10 have been
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demonstrated to induce the production of A2 type astro-
cytes, which retain their phagocytic function and capacity
to secrete neuroprotective substances such as TGF-B. This
has been shown to exert neuroprotective effects on neu-
rons. Additionally, it has been demonstrated to facilitate
cell proliferation, promote synapse formation, and inhibit
cell apoptosis. Studies have shown that estrogen can pro-
mote the transformation of A2 phenotype and reduce the
transformation of Al phenotype, thereby protecting synapses
and neurons. Both phenotypes of astrocytes show an increase
in GFAP expression, and the transformation of Al and A2 glial
cells may not be independent, but a continuous process. Their
proportion is related to pathological changes and the degree of
cognitive impairment.

2.2 PD

PD is a neurodegenerative disease that is caused by the
death of dopaminergic (DA) neurons in the substantia
nigra pars compacta (SNpc). It is the second most prevalent
neurodegenerative disease worldwide, with a prevalence
rate only surpassed by AD [83,84]. However, the precise
pathogenesis of PD remains unclear. The extant literature
and reports have demonstrated that PD is characterized by
a number of factors, including oxidative stress [85-87],
calcium homeostatic imbalance [88-90], abnormal accumu-
lation of alpha synuclein [91,92], impaired mitochondrial
function [93-95], endoplasmic reticulum stress [96-98],
intestinal flora dysbiosis [99,100], intestinal flora dysregula-
tion, and many other factors. Recent studies have demon-
strated that neuroinflammation plays a pivotal role in the
pathogenesis of PD. In the absence of neuroinflammation,
the brain is capable of removing toxins through a process
known as the glymphatic system. However, excessive levels
of neuroinflammation can lead to the sustained degenera-
tion and apoptosis of dopaminergic neurons [101,102].

The brain contains a considerable number of glial
cells, which have an immune effect and can produce oxi-
dative stress and inflammation. In normal conditions, oxi-
dative stress and inflammation have a protective effect on
brain tissue. Nevertheless, aberrant activation of glial cells
can result in the generation of a considerable number of
free radicals and inflammatory factors, which in turn can
cause severe inflammation and oxidative stress, ultimately
leading to damage of brain tissue [103-111]. The high
concentration of microglia in the substantia nigra region
renders the substantia nigra region more susceptible to
inflammation. Microglia initiate the neuroinflammatory
response following the recognition of lipopolysaccharide
(LPS), heat shock protein, and other stimuli, releasing
inflammatory factors that initially affect DAergic neurons,
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resulting in neuronal stress and oxidative damage. Concur-
rently, the activation of astrocytes through TLR2 receptors
intensifies the inflammatory response, thereby exacerbating
neuroinflammation in PD [112,113]. It has recently been demon-
strated that neuroinflammation, defined as the activation of
microglia and astrocytes in the brain, can result in the induc-
tion of a pro-inflammatory programmed cell death pathway.
This pathway is induced by caspase family proteins and is
termed necroptosis. It is a necrotic and inflammatory pro-
grammed apoptotic cell death pathway [114,115]. This pathway
is closely associated with neuroinflammation, a process
whereby glial cells in the brain respond to inflammatory
factors secreted by immune cells. When glial cells detect these
factors, they regulate the inflammatory response in the CNS,
secrete proinflammatory factors, increase the expression of
Iba-1 and GFAP in the brain, exacerbate oxidative damage,
and induce necrotic apoptosis in DAergic neurons [116-118].
The pathological features of PD are primarily character-
ized by the formation of Lewy bodies, which are intracel-
lular inclusions resulting from the aberrant aggregation of
a-synuclein [119]. In addition, there may be a loss of dopa-
minergic neurons and neurotransmitters in the SNpc and
striatum of the midbrain. The substantia nigra of the mid-
brain is the core area of pathological changes in PD, and the
degeneration and loss of dopaminergic neurons are key to
the occurrence of PD [120]. The striatum is a crucial region
that receives projections from dopaminergic neurons in the
substantia nigra, and a decrease in dopamine directly affects
the function of the striatum, leading to symptoms such as
motor disorders. Moreover, the basal ganglia are the part of
the brain responsible for coordinating body movements and
controlling muscles. PD can cause dysfunction of the basal
ganglia, which in turn affects the patient’s motor abilities.

2.3 HD

HD is an autosomal dominant, progressive neurodegenera-
tive disorder with a distinctive phenotype. The primary
pathological feature of HD is the production of mutant
Huntington proteins, which result from the mis-expression
of polynucleotide repeat sequences on the Huntingtin (Htt)
gene on the patient’s chromosome 4 [121,122]. It has been
demonstrated that the normal Htt protein performs mul-
tiple functions in neurons, including the maintenance of
primitive neural stem cell lineage potential. In contrast,
studies have demonstrated that Htt protein variants are
responsible for the observed dysfunctions [123-125]. The
high expression of Htt protects cells of other CNS origins
from lethal injury. However, if overexpressed Htt accumu-
lates in nerve cells to form aberrant Huntington proteins, it
can lead to the development of HD, affecting the ability of
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nerve cells to function properly. In patients, mutant pro-
teins typically result in damage to predominantly striatal
neurons [126-132].

The pathogenesis of HD is closely related to neuroin-
flammation. Impairment of Htt clearance in the brain
results in the accumulation of abnormalities, which in
turn leads to overactivation of microglia. This leads to
the clearance of the abnormal accumulation of proteins
by microglia, which in turn causes neuroinflammation
and dysfunction of the ubiquitin protease system and
autophagy system in the brain [133,134]. Additionally, the
overactivation of microglia can also result in neuroinflam-
mation by activating NLRP3 inflammatory vesicles and
secreting substantial quantities of inflammatory factors,
which can cause damage to mHTT nerve cells and neuro-
degeneration. Furthermore, the overactivation of micro-
glia results in the dysfunction of the ubiquitin-proteasome
and autophagy systems, which in turn accelerates the pro-
gression of HD [135,136].

3 Neuroinflammation pathways

3.1 NF-kB signaling pathway

The NF-xB signaling pathway represents a prototypical
inflammatory signaling pathway. The NF«B family com-
prises five members: p65 (RelA), RelB, c-Rel, p50 (NFkB1),
and p52 (NFkB2) [137]. The NF-xB signaling pathway is regu-
lated by a homology domain, RHD, which binds to form
a dimer and is involved in the regulation of the NF-xB
signaling pathway [138,139]. The activation of the NF-kB
pathway has been demonstrated to play a role in a number
of biological processes, including inflammatory responses
[140], cell proliferation [141], cell differentiation [142], and
immune response [143]. The activation of this pathway can
be classified into two categories: classical and non-classical.
The classical activation pathway is associated with functions
related to inflammation [144]. From a physiological perspec-
tive, NF-kB is repressed by IkB binding and is predominantly
localized to the cytoplasm. Upon stimulation by bacteria,
inflammation, or other stimuli, the protein kinase TAK1 is
activated by pathogen-associated molecular pattern (PAMP)
or damage-associated molecular pattern (DAMP) occurring in
PRR-expressing immune cells. Activation of TAK1 results in
phosphorylation of IKK, which subsequently releases the inhi-
bitory effect of IkB on NF-kB, thereby promoting its activa-
tion. Activated NF-xB then transfers to the nucleus and binds
to specific DNA bhinding sites, regulating the inflammation,
apoptosis, and other responses [145,146]. The overexpression
of inflammatory factors can also result in the loss of synaptic
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connections between neurons, impairing neuronal signal
transduction and synaptic plasticity, ultimately leading to a
decline in cognitive function. This process is especially evi-
dent in neurodegenerative diseases such as AD.

Some studies have demonstrated that microglia pre-
treated with IL-10 and subsequently stimulated with LPS
exhibit a reduction in IL-6 levels. This evidence suggests
that IL-10 may prevent the nuclear translocation of NF-kB,
thereby reducing the transcriptional initiation of IL-6 by
NF-xB. Consequently, the quantity of IL-6 is diminished,
thereby attenuating the inflammatory response [147,148].
peroxisome proliferator-activated receptor alpha (PPAR)
ligands have also been demonstrated to inhibit radiation-
induced inflammatory responses in microglia by nega-
tively regulating the NF-kB and AP-1 pathways [149]. These
findings suggest that the interference with the nuclear
translocation of NF-xB plays an important role in the
attenuation of microglia inflammatory responses in neuro-
degenerative diseases.

3.2 TOLL-like receptor (TLR) signaling
pathway

The MyD88 and TRIF pathways are the two pathways pre-
sent in TLRs. All TLRs except TLR3 can use the MyD88
pathway, and TLR3 and TLR4 can use the TRIF pathway
[150]. Activation of the TLR4 can result in the recruitment
of TIR-TIRAP-MyD88 complexes, which in turn can interact
with the death domain of MyD88 (Figure 1). This interaction
can then lead to the recruitment of IL-1 receptor-associated
kinase 4 (IRAK4) [151]. Notably, the two proteins can interact
with IRAK4 also acting as an agonist to activate other pro-
teins of the IRAK family, such as IRAK-1 [152]. This leads to
the activation of TRAF6, which is activated in conjunction
with E2 ubiquitin-protein ligase to activate a complex con-
sisting of TGF-B-activated kinase 1 (TAK1), TAK1 assembly
protein 1 (TAB1), TAB2, and TAB3. Ultimately the mitogen-
activated protein kinase (MAPK) and NF-kB pathways are
initiated by the activation of the TAK1/TAB complex [153].
The extracellular portion of TLR3 contains a horseshoe-
shaped structure that facilitates the recognition of dsRNA
and plays an essential role in antiviral immunity [154].
This structure then recruits the junction protein TRIF to
the dsRNA. Further activation of TBK1 and RIP1 kinase forms
a complex that mediates the phosphorylation process of
IRF3. This translocates from the cytoplasm to the nucleus
and regulates the synthesis process of type I interferon.
Additionally, the activation of RIP1 also leads to ubiquitina-
tion and activation of TAK1, which in turn leads to NF-xB
transcription [155]. In addition, TLR7 and TLR9 also induce
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Figure 1: Using the String database to analyze protein interactions. TLR4 can regulate apoptosis-related proteins such as Bcl-2 and Bax through
MYD88. Additionally, the P53 gene can directly requlate the TLR4 signaling pathway, as well as regulate Bcl-2 and Bax.

type I interferon production, but rely on MyD88 activation
rather than IRF3 [156]. In AD, AB as an endogenous messenger
can activate TLR4 and other receptors, causing neuroinflam-
mation and neuronal damage [157]. Neuroinflammation pro-
motes the deposition of Ap and further neuronal damage,
creating a vicious cycle that exacerbates the pathological
changes of AD [158]. In PD, a-synuclein aggregation and oxi-
dative stress may also activate the TLR signaling pathway,
induce microglial activation and neuroinflammation, and
then exacerbate the damage and death of dopaminergic neu-
rons in PD [159]. In MS, the TLR signaling pathway plays a key
role in autoimmune inflammation. The TLR pathway can
activate the infiltration and activation of immune cells such
as T cells and B cells, which can lead to neuroinflammation
and demyelinating lesions, thus exacerbating the pathological
changes of MS [160].

3.3 MAPK signaling pathway

MAPK plays a prominent role as a major signaling mechanism
that responds rapidly to a wide range of environmental
changes and influences a variety of physiological mechanisms.
The MAPK family comprises four major members: p38,
extracellular signal-regulated protein kinase (ERK), c-
Jun N-terminal kinase (JNK), and ERK5 [161]. The MAPK
signaling pathway plays a variety of roles in various bio-
logical processes, including growth and development,

oxidative stress, anti-inflammatory responses, and endo-
plasmic reticulum stress [162]. MAPK signaling pathways
play a multitude of roles in diverse biological processes,
including growth and development, oxidative stress, anti-
inflammatory responses, and endoplasmic reticulum stress.
The JNK-p38MAPK signaling pathway is primarily implicated
in apoptosis and stress response, whereas the ERK-MAPK
signaling pathway is associated with cell proliferation and
differentiation. It is also inextricably linked to the cellular
signaling network [163].

In vivo, oxidative stress stimulates the generation of
ROS, which can induce the activation of ASK1, an upstream
regulator of MAPK. Activated ASK1 then activates MEK4/
MEK?7 and MEK3/MEKS6, which in turn induce the activation
of JUN and P38. This activates the MAPK signaling pathway,
which regulates the production of inflammatory factors
and the inflammatory response in vivo. The activated
MAPK signaling pathway is capable of regulating the pro-
duction of inflammatory factors and the inflammatory
response in the body. Additionally, it exerts anti-inflammatory
and antioxidant effects on TLR receptors and macrophages
[164]. The MAPK signaling pathway has been demonstrated
to regulate the production of inflammatory factors in the
body. In addition, in neurodegenerative diseases such as AD,
the activated MAPK signaling pathway can also act on the
NF-xB signaling pathway, promoting the release of TNF-a
and IL-1B inflammatory factors to regulate the inflammatory
response and further exacerbate neuronal damage in
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neurodegenerative diseases [165]. JNK is a critical compo-
nent of the MAPK pathway, which can suppress the expres-
sion of c-Jun transcription factors and influence the genetic
balance between c-Jun and AP-1. This makes it an important
player in the pathway. The P38 pathway is considered to be
the foundation of MAPK signaling, which is capable of
responding to a multitude of environmental stimuli, and
thus plays a pivotal role in the diverse functions and beha-
viors of the cell. ERK5 can be stimulated by a variety of
external stimuli. Research has shown that ERK5 is effective
in increasing insulin levels in neurons, thereby improving
cell viability. It may therefore be an effective means of
treating chronic degenerative brain diseases [166]. Some
studies have demonstrated that ERKS is an effective means
of increasing insulin levels in neurons, thereby improving
cell viability. This may have implications for the treatment
of chronic degenerative brain diseases.

In neurodegenerative diseases, extracellular stimuli (such
as inflammatory factors, oxidative stress products, etc.) can
activate the MAPK pathway. For example, in AD, abnormal
metabolism of amyloid precursor protein (APP) leads to the
formation and accumulation of AP, which in turn triggers
inflammatory responses and oxidative stress, leading to
abnormal activation of the MAPK pathway [167]. The activated
MAPK pathway further activates its downstream substrates,
such as transcription factors and protein kinases, through
phosphorylation, and then regulates the expression of inflam-
mation-related genes [168]. In addition, the MAPK pathway can
also regulate the expression of inflammation-related factors
such as cyclooxygenase-2 (COX-2), inducible nitric oxide
synthase (iNOS), and TNF [168]. In neurodegenerative diseases,
activated MAPK signaling may participate in the pathological
process of the disease by promoting neuronal apoptosis or
necrosis. Abnormal activation of the MAPK pathway can lead
to apoptosis and necrosis of dopaminergic neurons, thereby
accelerating the progression of the PD [169]. Given the impor-
tant role of the MAPK pathway in neuroinflammation and
neurodegenerative diseases, intervention strategies targeting
this pathway provide new ideas for disease treatment.

3.4 PPAR signaling pathway

PPAR is a group of nuclear receptors in the nuclear
receptor family in vivo, including PPARa, PPARP/a, and
PPARy. PPAR is a transcription factor that plays a pivotal
role in the inflammatory response and immune regulation
by regulating the metabolic and anti-inflammatory effects
of transcription factors. It functions by inhibiting the
release of inflammatory cytokines, adhesion molecules,
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and extracellular matrix proteins. Additionally, it exerts
a protective effect on nerves by releasing anti-inflamma-
tory factors that are neuroprotective. It is therefore of great
importance for the recovery of cognitive function in neurode-
generative diseases. It has been demonstrated that the admin-
istration of the PPARa receptor agonist GW7647 prior to the
induction of an inflammatory response in microglia results in
a reduction in the phosphorylation of the AP-1C-JUN subunit,
which subsequently leads to a decline in nuclear NF-kB
activity [170,171]. This process slows down the inflammatory
response of microglia and consequently reduces neuronal
damage. PPAR-y receptor agonists have been demonstrated
to inhibit the expression of surface antigens, enhance the
synthesis of NO, and decrease the secretion of prostaglandins,
inflammatory factors, chemokines, and ROS. Consequently,
the inhibition of PPARs expression exerts an inhibitory effect
on both oxidative stress and inflammatory responses in micro-
glia [172]. In addition, in neurodegenerative diseases such as
AD, abnormal accumulation of proteins (such as AP) is the
main cause of neuronal damage. The activation of PPARSs sig-
naling pathway may help to regulate the metabolism and
clearance of these proteins to alleviate disease progression.

3.5 Notch signaling pathway

The Notch signaling pathway plays a pivotal role in the growth
and development of astrocytes, oligodendrocytes, and dopa-
minergic neural precursors. Notch receptors bind to a variety
of ligands and regulate the differentiation and development of
cells, tissues, and organs. Activation of the Notch signaling
receptor induces an inflammatory response in microglia,
which is mediated by binding to the ligand Jagged1. This pro-
cess ultimately leads to the production of pro-inflammatory
factors by microglia, which can cause neuronal damage [173].
The activated Notch signaling pathway has been demon-
strated to increase macrophage sensitivity to y-interferon,
promote inflammatory responses, and promote nuclear trans-
location of NF-kB, thereby exacerbating inflammatory
responses. The inflammatory mediators produced can
also activate the Notch signaling pathway. The activation
of the Notch signaling pathway and the subsequent
response involves a variety of aspects, and thus may be a
potential protocol for studying early-onset neuroinflammation
in neurodegenerative diseases [174]. It has been demonstrated
that in neurodegenerative diseases such as AD, abnormalities
in the Notch signaling pathway may contribute to pathological
changes in neurons, including the formation of NFTs and
plaques [175]. These changes may subsequently influence neu-
ronal proliferation, differentiation, and apoptosis, thereby
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affecting neuronal survival and number. Furthermore, the
Notch signaling pathway plays a role in neurodegenerative
diseases, where pathological changes are exacerbated by
reduced synaptic plasticity and disruption of neuronal net-
works [175]. This, in turn, leads to cognitive dysfunction and
behavioral abnormalities.

3.6 PI3K/Akt signaling pathway

PI3K is a critical anti-apoptotic regulator that has been
classified into three distinct types (I-1II) based on its struc-
tural and regulatory characteristics. Among these, type I
has been the subject of the most extensive research, and it
is present in all cells, where it participates in the transduc-
tion of various signaling pathways. After the activation of
PI3K, it can bind to the PH domain of downstream Akt,
thereby exerting anti-apoptotic and regulatory functions
on cell growth [176]. Akt is a serine/threonine protein
kinase that mediates the anti-apoptotic effects of growth
factor regulation and inactivates downstream apoptotic
factors. Previous studies have demonstrated that neuroin-
flammation in the brain induces microglia to secrete inflam-
matory factors. Furthermore, the activation of the PI3K/Akt
pathway can promote the expression of anti-inflammatory
factors, such as IL-4 and IL-10, and inhibit the expression of
pro-inflammatory factors, such as IL-6 and IL-1B. This is
achieved by inhibiting the nuclear translocation of NF-kB,
thus exerting its anti-inflammatory function [177,178].

Activation of the PI3K/Akt pathway has been demon-
strated to inhibit the pro-apoptotic effect of BAD and other
pro-apoptotic proteins by phosphorylating them, thereby pro-
tecting neurons from damage and death [179]. Meanwhile, the
PI3K/Akt pathway can provide neurons with the necessary
energy and nutrients by regulating metabolic pathways,
including glycogen synthesis and fatty acid synthesis, thereby
promoting the recovery of neuronal function in neurodegen-
erative diseases [179,180]. Reduced activity of the PI3K/Akt
signaling pathway has been observed to result in pathological
changes, including reduced neuronal viability, impaired
synaptic plasticity, and metabolic abnormalities in AD [181].
Conversely, activation of the PI3K/Akt signaling pathway has
been demonstrated to protect neurons from damage and
death, thereby slowing the progression of AD [181]. Abnorm-
alities in the PI3K/Akt signaling pathway have been linked to
the death of dopaminergic neurons in PD [182]. The PI3K/Akt
pathway plays a critical role in regulating neuronal apoptosis
and protecting dopaminergic neurons from injury and death
[182]. Therefore, it can be proposed that the PI3K/Akt signaling
pathway may be a potential therapeutic target for neurode-
generative diseases.
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A thorough examination of the inflammation-related
pathway factors revealed that numerous inflammation-
related pathways interact with p53 and apoptosis-related
proteins, including Bax, BID, BIK, Bak, and Bcl-2 (Figure 1).
These interactions are exemplified by the well-studied
iNOS or TLR family of receptors (Figure 2), which can reg-
ulate apoptosis-related proteins expression by regulating
the interaction of downstream MyD88 with P53 or by
directly interacting with p53 (Figure 1). In addition to the
interactions between PI3K/Akt and p53, other pathways,
such as NF-kB, can also influence the expression of Bax
and other proteins. This is consistent with the fact that
inflammation has been shown to promote neuronal apoptosis
in the pathological process of neurodegenerative diseases, a
phenomenon that has been the subject of increasing research
in recent years.

3.7 Autophagy and inflammation in nervous
system diseases

Autophagy represents a pivotal mechanism for cells to
maintain intracellular stability and respond to diverse
stress stimuli [183], with a particularly pronounced impact
on nerve cells. This mechanism not only facilitates the
clearance of damaged organelles and misfolded proteins,
but also the removal of pathological protein aggregation
[184], thereby ensuring the optimal functioning of neurons.

In neurodegenerative diseases, a defect in autophagy
function is frequently a significant contributor to the accu-
mulation of pathological proteins and the subsequent decline
in neuronal function. For example, in AD and PD, the
abnormal accumulation of AB and a-syn is closely associated
with the deficiency of autophagy function [185-187]. The
aggregation of these proteins not only directly damages neu-
ronal cells, but also may trigger an inflammatory response,
thereby exacerbating the damage to neurons.

In the context of neuroinflammation, activated micro-
glia can impede the autophagy of neurons by releasing pro-
inflammatory cytokines such as TNF-a and IL-1 [188]. This
inhibition not only exacerbates the accumulation of patho-
logical proteins but may also play a pivotal role in the
pathogenesis of neurodegenerative diseases. Concurrently,
autophagy exerts a certain anti-inflammatory effect, which
can mitigate the neuroinflammatory response by elimi-
nating inflammatory mediators in glial cells. It has been
demonstrated that a deficiency in autophagy may result in
the excessive activation of microglia, thereby forming a
vicious circle [189]. This is to say that the inflammation
that occurs in response to the initial insult exacerbates
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Figure 2: Using the String database to analyze protein interactions. The NF-kB pathway is regulated by NOS2 (iNOS), which in turn regulates TNF, Bax,
and the Bcl family. It is also possible that p53 may play a role in the NF-kB pathway.

the inhibition of autophagy, which in turn further pro-
motes inflammation.

In addition to its role in nervous system diseases,
autophagy also plays an important part in the etiology of
other chronic diseases. In cardiovascular diseases, autop-
hagy is of particular importance for the survival of myo-
cardial cells and endothelial cells [190]. This is especially
the case in myocardial ischemia-reperfusion injury, where
autophagy can remove damaged organelles and deal with
metabolic pressure, thus protecting cardiac function. How-
ever, in contrast to its role in the nervous system, autop-
hagy’s involvement in cardiovascular disease is more
narrowly focused on cell protection and repair, with a rela-
tively limited influence at the local cellular level [191].

In respiratory diseases, autophagy is also involved in
the clearance of harmful substances, antiviral agents, and
the maintenance of cellular homeostasis. Although autop-
hagy plays an important role in lung health, the respira-
tory system is less dependent on autophagy than the ner-
vous system [192,193]. In chronic lung inflammation,
autophagy dysfunction may contribute to an inflammatory
response and apoptosis. However, this does not directly
result in neuronal degeneration, which differs from the
effects observed in neurodegenerative diseases [194,195].

In conclusion, autophagy plays a complex and pivotal
role in neuroinflammation and degenerative diseases. A com-
prehensive investigation into the regulatory mechanisms of
autophagy and its specific role in various diseases is antici-
pated to yield novel insights and strategies for the treatment
of neurodegenerative diseases and other chronic illnesses.

3.8 Mitosis and inflammatory in nervous
system diseases

As the core mechanism of cell division, mitosis is of great
importance in maintaining the homeostasis of various tissue
functions. In the nervous system, this mechanism is
observed to exhibit a distinctive degree of complexity.
Neurons, as highly specialized cells, typically lack the capa-
city for division. However, glial cells, particularly astrocytes,
demonstrate substantial proliferation in response to nerve
injury and disease. This aberrant hyperplasia may not only
exacerbate neuroinflammation but also accelerate the
pathological process of neurodegenerative diseases [196].
Neuroinflammation is a pivotal mechanism in the
pathogenesis of neurodegenerative diseases, whereby
microglia and astrocytes are activated. Among these,
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regeneration in neurodegenerative diseases is also signifi-
cantly influenced by the mitotic mechanism [199]. It has
been demonstrated that neuritis can impede the prolifera-
tion of neural stem cells, constrain nerve regeneration, and
accelerate the progression of the disease [200]. In parti-
cular, following a brain injury, this limitation of regenera-
tive capacity is of significant consequence [201].

The proliferation of glial cells in AD and PD exhibits
distinct pathological characteristics, contingent on the spe-
cific disease process. In AD, the excessive activation of
microglia promotes the release of inflammatory factors,
which in turn exacerbates the accumulation of A, thereby
forming a vicious cycle [202]. In PD, the proliferation
of astrocytes may exacerbate the inflammatory response
and impact the survival of neurons [25].

In contrast, cell proliferation in cardiovascular diseases
(such as smooth muscle cells) and airway smooth muscle
and fibroblast proliferation in respiratory diseases (such as
COPD) are also involved in the process of cell proliferation.
However, their primary role is tissue repair and remodeling,
which does not directly result in the loss of neural function
[203]. For example, in atherosclerosis, the proliferation of
smooth muscle cells is essential for vascular repair; how-
ever, excessive proliferation may result in the thickening of
the vascular wall, further obstructing blood flow, and ulti-
mately leading to vascular sclerosis [204]. In COPD, the pro-
liferation of airway smooth muscle and fibroblasts may
result in airway remodeling and an increase in lung injury.
However, these proliferation reactions are more closely
associated with tissue repair [205,206].

The neuroinflammation and functional loss caused
by glial cell proliferation in neurodegenerative diseases

Promotes autophagy and removal of damaged Rapamycin

proteins by inhibiting the mTOR signaling

Inhibits Notch signaling pathway to regulate
pathway

Pharmacological intervention strategies
the course of neurodegenerative diseases
Inhibit NF-kB signaling pathway to reduce

neuroinflammatory response
neuroprotection and anti-stress ability

Inhibit JAK/STAT pathway to reduce

neuroinflammation

Influences neuronal survival and stress response by  Activate PI3K/Akt pathway to enhance

regulating processes such as cell survival,

Involved in neuronal metabolism and clearance by
proliferation, and metabolism

controlling processes such as protein synthesis, cell

growth, and survival
responses that may exacerbate neurodegenerative

Involved in neuronal differentiation and neural stem
pathologies

cell renewal, regulating neural development and

synaptic function
Modulation of inflammatory response, involved in

Involved in immune and neuroinflammatory
neuroinflammation and apoptosis

Primary mechanism of action

Related neurodegenerative

Table 2: Summary of pharmacology related to inflammatory signaling pathways in neurodegenerative diseases
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4 Immune cells, receptors, and
factors related to
neuroinflammation

Neuroinflammation is an important pathological process in
neurodegenerative diseases, with various factors, including
immune cells, cytokines, chemokines, and receptor factors,
playing a pivotal role in its mediation. These inflammatory
mediators interact with each other to jointly promote neu-
ronal cell damage, functional disorders, and even apoptosis,
thereby driving the occurrence and development of neuro-
degenerative diseases.

4.1 Immune cells

Microglia are resident immune cells in the CNS, consti-
tuting approximately 10% of CNS cells and 20% of glial cells
in the brain [232,233]. In their resting state, microglia assist
in the detection of subtle alterations in pathogens and the
microenvironments, acting as sentinels to recognize a mul-
titude of molecular patterns through surface receptors.
Upon the perception of damage or PAMPs and DAMPs,
microglia undergo a rapid activation process, transitioning
from a quiescent state to an activated state and subse-
quently releasing a variety of inflammatory mediators
[234,235]. Astrocytes also play a significant role in neuroin-
flammation, as they are capable of releasing inflammatory
mediators and participating in the regulation of neuroin-
flammation by altering cell morphology and function [236].
Furthermore, activated astrocytes can form glial scars, which
to some extent limit the spread of inflammation [236]. How-
ever, excessive glial scar formation may also hinder nerve
regeneration. Macrophages have the capacity to migrate
from the peripheral blood to the nervous system, participate
in inflammatory responses, release inflammatory mediators,
and engulf pathogens or damaged cells [237]. In certain neu-
roinflammatory diseases, such as MS, T cells and B cells
contribute to the occurrence and development of neuroin-
flammation by recognizing self-antigens or foreign antigens,
thereby activating immune responses [238].

4.2 Cytokines

As crucial signaling molecules in the neuroinflammatory
system, cytokines include a variety of types, the most
representative of which include TNF-q, IL-1B, and IL-6
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[239]. These cytokines play a pivotal role in the complex
immune network, mainly released by activated immune
cells such as microglia, macrophages, and certain T cells
and B cells [240,241]. In the pathophysiology of neuroin-
flammation, they are not only the key mediators of early
responses, but also profoundly affect the subsequent devel-
opmental trajectory of inflammation. Specifically, TNF-q, as
a potent pro-inflammatory cytokine, can trigger a series
of cascade reactions, promote the activation of vascular
endothelial cells, increase vascular permeability, and allow
more immune cells and inflammatory mediators to enter the
site of inflammation [242]. At the same time, TNF-a can also
activate the expression of other cytokines and chemokines,
further aggravating the neuroinflammatory response [243].
IL-1p mainly activates transcription factors such as NF-«B,
upregulates the expression of adhesion molecules and pro-
inflammatory mediators, and promotes the adhesion and
migration of inflammatory cells [244]. It plays a particularly
significant role in neuroinflammation, inducing the activa-
tion of neurons and glial cells, triggering excitotoxicity in
neurons, and even leading to neuronal death [244]. IL-6 exhi-
bits more complex functions. On the one hand, it can serve as
an acute-phase protein and participate in the body’s defense
response; on the other hand, in persistent or excessive
inflammatory responses, the overproduction of IL-6 may
be closely related to the pathogenesis of various autoimmune
diseases and neurodegenerative diseases [245]. It can finely
regulate the immune response by regulating the prolifera-
tion and differentiation of T cells and B cells, as well as
promoting the synthesis of acute-phase proteins by liver cells
[245]. These cytokines play a key role in the initiation and
maintenance of neuroinflammation by promoting the activa-
tion and recruitment of inflammatory cells and enhancing
the immune response.

4.3 Chemokines

As a class of cytokines that can specifically guide immune
cells (such as leukocytes, monocytes, macrophages, etc.) to
migrate to the site of inflammation, chemokines play an
indispensable role in the process of neuroinflammation.
They bind to CCRs on the surface of cells, triggering intra-
cellular signaling pathways, thereby guiding the direc-
tional movement of cells. Monocyte chemoattractant pro-
tein-1 (MCP-1), as an important member of the chemokine
family, is particularly noteworthy [246]. During the onset
of neuroinflammation, the expression of MCP-1 is signifi-
cantly upregulated, attracting monocytes to cross the
blood-brain barrier and enter the CNS, further promoting
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the exacerbation of inflammatory reactions [221]. The
receptor factors associated with neuroinflammation mainly
include PRRs and CCRs [246]. Among them, PRRs mainly
include TLRs, purinergic receptors, etc., which can recognize
PAMPs or DAMPs to trigger immune responses [247]. CCRs
such as CCR2 can bind to chemokines and direct immune
cells to the site of inflammation [248].

4.4 Oxidative stress and other factors

ROS, as a product of oxidative stress, also play a critical
regulatory role in neuroinflammation. The excessive pro-
duction of ROS can disrupt the redox balance within cells,
leading to oxidative damage to neurons and glial cells,
which in turn can cause cellular dysfunction and even
death [249]. This oxidative stress state not only directly
exacerbates the severity of neuroinflammation, but also
may indirectly promote the expression of chemokines
and the migration of immune cells by activating related
signaling pathways. On the other hand, NO and prostaglan-
dins, as important signaling molecules in the body, also
participate in the regulation of neuroinflammation [250].
NO, through its free radical properties, can affect various
physiological and pathological processes such as vascular
permeability, cell proliferation, and apoptosis, thereby
influencing the occurrence and development of neuroin-
flammation [250]. Prostaglandins are a class of lipid media-
tors with a wide range of biological activities [250]. They have
a profound effect on the neuroinflammatory process by reg-
ulating vascular relaxation, pain perception, and recruitment
of inflammatory cells in inflammatory responses.

5 Neuroinflammation-induced
apoptosis

Neuroinflammation in neurodegenerative diseases leads to
apoptosis of neurons by producing inflammatory media-
tors, exacerbating oxidative stress, increasing the concen-
tration of glutamate in the intercellular space, regulating
the cell death mode, the direct effect of immune cells, and
destroying the blood-brain barrier. Apoptosis is a geneti-
cally controlled process of programmed cell death. It is a
process of cell death carried out by the organism to maintain
the stability of the internal environment. Morphologically, the
principal manifestations are the crumpling of the nucleus, as
well as the degradation of the chromosomal DNA of the cell,
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the rupture of the nucleolus, the formation of vesicles in the
cytosolic membrane, and the gradual division of the cell into
several apoptotic vesicles, which are ultimately absorbed by
phagocytes [251,252]. These different pathways of neuroin-
flammation interact to form a complex network that leads
to the neuronal apoptosis and then promotes the onset and
development of neurodegenerative diseases (Figure 3 and
Table 3).

5.1 Mitochondrial pathway apoptosis

The mitochondrial pathway is one of the important path-
ways of neuronal apoptosis induced by neuroinflammation.
The regulation of mitochondrial apoptosis is primarily
attributed to the Bcl-2 family, which is divided into two
major classes based on its function. These classes include
anti-apoptotic and pro-apoptotic proteins, which work in
concert to maintain the stability of mitochondria [253].
The pro-apoptotic proteins contain the BH3 domain and
are categorized as Bak, Bax, Bok, Bim, Bad, Bid, Bik, and
Bmf. Antiapoptotic proteins include Bcl-2, Bcl-xl, Bcl-W,
and others, which contain the BH4 domain [254]. These
anti-apoptotic proteins mainly distributed in the mito-
chondrial membrane, and can stabilize the mitochondrial
membrane potential, inhibit the activity of pro-apoptotic
proteins, and maintain the normal functions of mitochondria
[255,256].

In neuroinflammatory cells associated with neurode-
generative diseases, upon receiving apoptotic signals,
apoptotic proteins, such as Bak and Bax, undergo a transi-
tion from inhibition to activation, translocation, and loca-
lization to the mitochondrial membrane. They bind to
apoptotic proteins such as Bcl-2 and inhibit its function.
This results in the formation of transmembrane pores on
the surface of the mitochondrial membrane, a reduction in
the mitochondrial membrane potential, and the destruc-
tion of mitochondrial stability [257,258]. A reduction in
the mitochondrial membrane potential and an imbalance
in stability results in the release of mitochondrial contents,
such as Cytc, ROS, and other mitochondrial contents, into
the cytoplasm, activating intracytoplasmic caspase-3 to
initiate the apoptotic process of neurons in an inflamma-
tory state in neurodegenerative diseases such as PD (Figure 4)
[259,260]. P53, which is highly related to mitochondrial meta-
bolism, can be transferred to the surface of mitochondria and
bind to Bcl-2, inhibiting its anti-apoptotic activity (Figure 5). It
can also interact with Bax protein, resulting in increased
expression of both, and promoting the apoptotic response
[261,262].
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Figure 3: Occurrence and development of neurodegenerative diseases induced by neuroinflammation. Due to the influence of environmental stimuli,
aging or genetic factors, neuroinflammation in the brain is induced, and further immune cells release excessive inflammatory factors, which stimulate
the changes in the levels of various degenerative markers of neuron cells, abnormal mitochondrial metabolism, and htt gene mutation, leading to the

occurrence of PD, AD, HD, and other neurodegenerative diseases.

5.2 Pyroptosis pathway

In this article, apoptosis-related proteins such as Bax, Bcl-2,
and P53 were found to be closely related to the caspase protein
family associated with cellular pyroptosis by searching the
STRING protein interactions website (Figure 6). Pyroptosis is
a caspase-1-dependent programmed cell death pathway that
results in the rupture of cell membranes and the subsequent

release of large amounts of inflammatory factors. In 2005,
Prof. Shao Feng’s team was the first to identify the cellular
pyroptosis pathway. The main mechanism is that caspase-1/4/
51 induces cellular pyroptosis by cleaving GSDMs [263].
GSDMs are a family of proteins with perforation effects, con-
sisting of six types of genes. Of these, GSDMD and GSDME are
the key molecules in the development of cellular pyroptosis
[264-267]. The current study identified two distinct pathways
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Figure 4: Schematic diagram of the signaling pathway of LPS-induced apoptosis. LPS, as well as inflammatory factors, activate MYD88 by acting on the
membrane receptor TLR4, thus mediating the activation of the NF-kB signaling pathway. Activated NF-kB moves to the nucleus and exerts the role of a
transcription factor to regulate the expression of genes. It is also involved in regulating the expression of genes such as Bax, Bcl-2, etc., and up-
regulating the expression of apoptosis-associated proteins such as Bax and down-regulating the expression level of anti-apoptotic proteins such as
Bcl-2. Bax and Bak form a pore-like structure at the mitochondrial surface, which leads to the loss of structural integrity of the mitochondrial
membrane and the release of contents. This results in the activation of the intracellular caspase family and the apoptosis of the cellular mitochondrial

pathway.
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Figure 5: Using the String database to analyze protein interactions. A search of the String website revealed that P53 has robust interactions with

apoptosis-related proteins, including Bax, Bcl-2, and Bak.

for the activation of the cellular pyroptosis process: the clas-
sical and non-classical pathways.

The classical activation pathway is initiated by a class of
protein complexes, designated as inflammatory vesicles, which
are composed of PRRs, ASCs, and caspase-1. Activation of cas-
pase-1 results in the maturation of pro-IL-1B and pro-IL-18, as
well as cleavage of GSDMD into the small molecule proteins NT
and CT. NT can bind to lipid molecules on the surface of the cell
membrane, forming pores in the membrane, which results in
the release of IL-1B. TNF-a and HMGB1 are released from the

cell through the pores, and at the same time, water molecules
enter the cell through the pore, leading to cell rupture. This
further increases the release of inflammatory factors and
exacerbates apoptosis and inflammatory responses [268,269].
The nonclassical pathway, also known as noncaspase-1-
dependent nonclassical activation, involves direct stimulation
of caspase-4/5/11 by LPS, which promotes the cleavage of
GSDMD and the maturation and release of inflammatory
factors [270,271]. Alternatively, the non-inflammatory apop-
tosis of cells can be converted to cellular pyroptosis by the
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Figure 6: Using the String database to analyze protein interactions. P53 interacts with a number of proteins involved in apoptosis, including Bax and
Bcl-2. In addition, caspase-6, caspase-7, and caspase-9, among others in the caspase family, interact with proteins involved in apoptosis, including Bax

and Bcl-2.

activation of caspase-3, which cleaves GSDME. Furthermore,
the activation of caspase-8 cleaves GSDMD, thereby switching
cells from the apoptotic pathway to pyroptosis [272,273].

In the process of neuroinflammation, the pro-inflam-
matory factors released by activated immune cells can
trigger the process of cell death. Pyrosis further exacer-
bates the inflammatory response, creating a vicious cycle
that continuously damages neurons in neurodegenerative
diseases [274]. On the other hand, cell death leads directly
to the death of neurons through the rupture of the cell
membrane and the release of cell contents [274]. This is
an important mechanism of neuronal loss in neurodegenera-
tive diseases. The onset and development of neurodegenera-
tive diseases are often accompanied by neuroinflammation
and cell death. For example, in AD, the abnormal accu-
mulation of B-amyloid protein can cause an inflammatory
response and then trigger cell death, leading to neuronal
death. Similar inflammatory responses and cell death
may occur in PD, ALS, and other neurodegenerative
diseases.

Recent studies on neuronal apoptosis have provided
additional insights beyond the two pathways mentioned
above. For example, it has been demonstrated that this pro-
cess can influence the occurrence of neuronal apoptosis by

triggering the activation of NLRP3 inflammatory vesicles.
Moreover, several studies have demonstrated that GSDMD
and GSDME are also involved in the process of necrotic
apoptosis [275,276]. In addition to apoptosis, the ubiquitin
metabolism system within neurons, the autophagy system,
epitope modification of DNA, and abnormal levels of intra-
cellular lactate have been proposed as potential contri-
butors to the development of neurodegenerative diseases
[277,278]. The current comprehensive investigation of neu-
ronal damage and apoptotic pathways offers a substantial
theoretical foundation for the pursuit of neuronal apop-
tosis-associated neurodegenerative disease mechanisms.
This will facilitate the identification of the most pivotal
pathways or biomarkers influencing neurodegenerative
disease progression and the development of therapeutic
strategies for neurodegenerative diseases.

6 Perspective

As life expectancy continues to increase, aging-related neu-
rodegenerative diseases such as PD and AD will become
one of the most significant threats to the quality of healthy
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life in old age. Therefore, there is an urgent need to inves-
tigate the pathogenesis of such diseases and their potential
possible pathogenic factors, and to explore drugs and med-
ical treatments that can effectively treat or delay the devel-
opment of the disease, so as to help patients improve their
quality of life. This study reviews the characteristics and
specific pathways of neuroinflammation in the early stages
of neurodegenerative diseases. Nevertheless, the relation-
ship between long-term inflammatory infiltration and neu-
ronal cell activity, as well as the association between
neuronal damage and loss and long-term neuroinflammation,
remains poorly understood. These areas warrant further
investigation by neuroscientists. It remains unclear whether
the cellular pyroptosis pathway, which has been identified
in recent years, is also involved in the pathogenesis of neu-
rodegenerative diseases. Consequently, the relationship
between long-term inflammation and neuronal damage
and loss, as well as the potential role of cellular pyroptosis
in neuronal loss, will likely be a significant area of inves-
tigation in the field of neurodegenerative diseases and
neuroinflammation.
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