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Abstract: Exercise training can significantly improve ske-
letal muscle mitochondrial function and has been proven
to be highly relevant to alterations in skeletal muscle DNA
methylation. However, it remains unclear whether late-in-
life exercise has an effect on promoter methylation of PGC-
1α, a key regulator of mitochondrial biogenesis. Here we

employed two distinct exercise modalities, constant medium
intensity exercise training (CMIT) and high-intensity interval
exercise training (HIIT), to investigate their impacts on PGC-
1α expression and methylation regulation in skeletal muscle
of aged mice. The results revealed a notable decrease in PGC-
1α expression in skeletal muscle of aged mice, accompanied
by elevated methylation levels of the PGC-1α promoter, and
increased DNA methyltransferase (DNMT) protein expres-
sions. However, both forms of exercise training significantly
corrected PGC-1α epigenetic changes, increased PGC-1α
expression, and ameliorated skeletal muscle reduction.
Furthermore, exercise training led to elevated expression
of proteins related to mitochondrial biogenesis and energy
metabolism in skeletal muscle, improving mitochondrial
structure and function. In conclusion, late-in-life exercise
improved skeletal muscle function, morphology, and mito-
chondria biogenesis, which may be associated with hypo-
methylation in promoters of PGC-1α and increased content
of skeletal muscle PGC-1α. Notably, there was no clear dif-
ference between HIIT and CMIT in PGC-1α expression and
skeletal muscle function.
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1 Introduction

The morphological changes and functional decline of ske-
letal muscle in old age have a great impact on life quality of
the elderly [1]. The feasibility, safety, and effectiveness of
long-term exercise training for the elderly to improve ske-
letal muscle function have been confirmed in clinical stu-
dies [2–4]. A small number of studies have suggested that
high-intensity interval exercise training (HIIT) may be
superior to the traditional constant medium intensity exer-
cise training (CMIT), because it is a time-saving and effec-
tive strategy for improving exercise capacity [5,6].

Exercise training is intricately linked to changes in
DNA methylation patterns and subsequent alterations in
gene expression [7,8]. Recent studies indicate that HIIT,
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acute and chronic resistance exercise training, detraining,
and retraining all induce modifications in methylome of
human skeletal muscle [9,10]. Aging-related muscle loss is
primarily attributed to mitochondrial dysfunction [11]. Peroxi-
some proliferator-activated receptor-γ coactivator-1α (PGC-1α)
serves as a core regulator ofmitochondrial energymetabolism
and plays a fundamental role in maintaining a proper
mitochondrial biogenesis, thereby playing a crucial role
in ensuring normal energy metabolism in skeletal muscle [12].
Previous studies have suggested that exercise training or elec-
trical stimulation may affect transcription levels by regulating
the epigenetic modification of PGC-1α [13,14], while the effects
of acute or short-term exercise on the promoter methylation
of PGC-1α were still contradictory [14,15]. Furthermore, it
remains unclear whether long-term exercise beginning in
old age has an effect on promoter methylation of PGC-1α.

Therefore, this study aimed to explore the differences
in DNA methylation level of PGC-1a promoter between
CMIT and HIIT in aged mice, as well as its effects on ske-
letal muscle and mitochondrial function. Our findings will
help to understand the underlying mechanisms by which
exercise training affects skeletal muscle in old age and
provide possible directions for the development of alter-
native therapies.

2 Materials and methods

2.1 Experimental animals

Healthy male C57BL/6 mice, weighing 30–40 g, were obtained
from SPF Shanghai Slaughter Laboratory Animal Co. C57BL/6
mice were accommodated in the Experimental Animal
Center of Fujian Medical University under consistent con-
ditions of temperature (25°C), humidity (55 ± 5%), and 12 h
artificial light and dark cycles. Unrestricted access to food
and water was provided for 24 h. The mice were nour-
ished and hydrated by the Experimental Animal Center of
Fujian Medical University. The animal experiments were
planned and executed in accordance with the relevant
regulations of Fujian Medical University and were exam-
ined by the Experimental Animal Ethics Committee of
Fujian Medical University (No. 2021-0363).

Ethical approval: The research related to animal use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals,
and has been approved by the Experimental Animal Ethics
Committee of Fujian Medical University (No. 2021-0363).

2.2 Grouping and exercise protocol

In this experiment, a total of 120 male C57BL/6 mice were
used, with 30 being 3-month-old SPF-grade healthy males
and 90 being 18-month-old SPF-grade healthy males. These
mice were divided into four groups, each consisting of 30
mice (n = 30). The groups were named as follows: young
group (Young group): normal feeding, 60 min per day on a
stationary animal running platform; elderly stationary
control group (Con group): normal feeding, 60min per
day on a stationary animal running platform; elderly con-
tinuous moderate intensity exercise training group (CMIT
group): based on normal feeding, 8 weeks of a moderate
intensity running platform training, each time the speed
was set to 12 m/min and each training time was 46 min; and
HIIT group: on the basis of normal feeding, 8 weeks of HIIT,
at a speed of 17 m/min for 4 min and followed by intervals
at a speed of 8 m/min for 3 min, repeated for six cycles,
with a total distance of exercise which was equal to that
of the CMIT group. All of the above lasted for 8 weeks.

2.3 Rotarod and grip strength tests

Mice were tested before and after the experiment for
rotarod and forelimb grip strength. The animals were
placed on the Panlab rotarod LE8505, and the trial started
with the spindle rotating at 5 revolutions per minute (rpm)
and gradually increased to 40 rpm over a period of 5 min.
The time when the animal fell off the rotarod was recorded
as the score. Each animal was tested three times, and the
average score was used for analysis. The BIOSEB-BIO-GS3
grip strength meter measures the maximum forelimb grip
strength in mice. The subjects were lifted from their cage
by their tail base and hung above the grid until they firmly
held onto the grid with their forepaws. The grid was slowly
moved horizontally away from the mouse’s grip by pulling
its tail. The maximal force was recorded. Every animal
underwent six tests, with a 2 min break between each
one. The average of the five tests was utilized for analysis.

2.4 Histological and immunohistochemical
(IHC) staining

Fresh skeletal muscle tissue sections were stained with HE,
Masson, and IHC. For IHC staining, the presence of brownish-
yellow granules in the interstitium of skeletal muscle cells
was observed under light microscopy as positive expression.
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The expression of PGC-1α in skeletal muscle tissues was
assessed by measuring the area of positively stained area
out of the total area using Image J software. The average
percentage of the positively stained area (positively stained
area/total area) was then calculated.

2.5 Average cross-sectional area (CSA) of
gastrocnemius muscle fibers

Fresh skeletal muscle tissue was preserved with 4% paraf-
ormaldehyde and sliced into 5 µm sections. The tissue sec-
tions were deparaffinized, rehydrated, and HE stained to
examine the morphological changes and damage to the
gastrocnemius muscle. The images were observed using a
light microscope with a 400× magnification. Image J soft-
ware was utilized to determine the total area (µm2) of the
skeletal muscle fibers in the gastrocnemius muscle. The
average CSA of gastrocnemius fibers was determined by
dividing the total muscle fiber area (µm2) by the number of
muscle fibers.

2.6 Transmission electron microscopy

Samples of gastrocnemius muscle with a volume of 1 mm3

were obtained, fixed, washed, cut to 60–80 nm, and stained.
Under an electron microscope, the ultrastructure of the
mouse gastrocnemius muscle was examined.

2.7 Reverse transcription polymerase chain
reaction (RT-PCR)

Mouse skeletal muscle total RNA was isolated and reverse
transcribed into cDNA for RT-PCR analysis. RT-PCR was
carried out using the 2−ΔΔCt method to measure gene
expression. The primer sequences were as follows:

PGC-1α-F: CGCTGCTCTTGAGAATGGATAT;
PGC-1α-R: GTCATACTTGCTCTCTTGGTGGAA;
ACTB-F: TGTCCACCTTCCAGCAGATGT;
ACTB-R: AGCTCAGTAACAGTCCGCCTAG.

2.8 Western blot

Western blot was performed on mouse gastrocnemius
muscle samples. Primary antibodies used included PGC-
1α, DNA methyltransferase (DNMT1), DNMT3A, DNMT3B,
β-Tubulin, ERR, NRF1, CPT1B, GLUT4 (Abclonal, Wuhan,
China), TFAM (Proteintech, Wuhan, China), and AMPK

(Immunoway, Suzhou, China). Exposure was evaluated
using a chemiluminescence imager and the grayscale values
of each protein band were quantitatively analyzed using
ImageJ software; the relative ratios were calculated by the
optical density values of the bands of the target proteins in
each group against the optical density values of the internal
reference proteins.

2.9 Methylation-specific PCR (MSP)

The CpG islands in the mouse PGC-1α promoter region were
retrieved using the Online MetPrimer software (http://www.
urogene.org/methprimer/). Mouse skeletal muscle genomic
DNA was extracted and used for bisulfite conversion in the
MSP assay. The MSP primers designed by Methprimer were
as follows:

methylated-F: TGGAATGGTTGAGAAGGTAGTTATC;
methylated-R: ACGTCTATTTAAAAAACTCACCGAA;
unmethylated-F: GGAATGGTTGAGAAGGTAGTTATTG;
unmethylated-R: ACATCTATTTAAAAAACTCACCAAA.
Afterward, the MSP product were examined on a 2%

agarose gel, exposed for development on the chemilumi-
nescence imager, and densitometric analysis was per-
formed using ImageJ software.

2.10 Mitochondrial DNA (mt DNA) content
assay

Mouse skeletal muscle genomic DNA was extracted for mt
DNA assay. The copy number of mt DNA was quantified by
measuring NADH dehydrogenase subunit 1(ND1) and nor-
malized to the nuclear DNA lipoprotein lipase (LPL) gene
using RT-PCR. The primer sequences were as follows:

ND1-F: CACTATTCGGAGCTTTACG;
ND1-R: TGTTCTGCTAGGGTTGA;
LPL-F: GAAAGGGCTGCCTGAGTT;
LPL-R: TAGGGCATCTGAGAGAGCGAGT.

2.11 Statistical analysis

The following results were analyzed for the surviving mice
and calculated using SPSS24.0 statistical software. The mean
± standard deviation was used for the measurement data
conforming to normal distribution and the paired t-test was
used for the before–after comparison between the same
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groups, the group t-test was used for the comparison between
two groups and the one-way ANOVA was used for the com-
parison between multiple groups. p < 0.05 was considered
statistically significant.

3 Results

3.1 Late-in-life exercise enhances skeletal
muscle function and improves its
morphology

The test for forelimb grip strength directly reflects the
muscular strength of mice, while the rotarod test assesses
their motor coordination and fatigue endurance. After 8
weeks, mice in the Con group showed a decline in both
maximum grip strength and rotarod performance, while
those in the CMIT and HIIT groups exhibited increases in
both measures. Interestingly, mice in the HIIT group dis-
played no significant difference compared to the CMIT
group in terms of grip strength and rotarod performance
(Figure 1a and b).

HE staining showed minor myocyte lysis and fragmen-
tation at the periphery of skeletal muscle tissues in the Con
group, accompanied by a slight infiltration of inflamma-
tory cells in the interstitium (black arrowhead). Both the
CMIT and HIIT groups exhibited marked improvement in
skeletal muscle organization, myocyte lysis, and inflamma-
tion infiltration (Figure 1c). The CSA of gastrocnemius
muscle fibers is a critical determinant of muscle strength
[16]. Compared to the Young group, mice in the Con group
exhibited a decrease in the average CSA of gastrocnemius
fibers. However, both exercisemodes significantly increased
the average CSA of gastrocnemius fibers compared to the
Con group, with the CMIT group showing a notably higher
average CSA than the HIIT group (Figure 1c and d). Masson
staining revealed that fibrosis in the skeletal muscle of the
aged mice was increased markedly relative to that of its
younger counterparts. However, both the CMIT and HIIT
groups showed a significant reduction in skeletal muscle
fibrosis compared to the Con group. Although the degree
of fibrosis was lower in the HIIT group than in the CMIT
group, the disparity did not reach statistical significance
(Figure 1c and e). The transmission electron microscopy
(TEM) analysis of Con group showed swollen mitochondria
with disrupted crista and decreased electron density, as well
as increased lipid droplets around mitochondria. In con-
trast, the mitochondrial structure of CMIT and HIIT groups
displayed significantly improved mitochondrial structure,

with noticeable mitochondrial aggregation compared to
the Con group (Figure 1c).

3.2 Impact of late-in-life exercise on
expression of PGC-1a via DNA
methylation regulation

The mRNA and protein levels of PGC-1α in skeletal muscle
of mice from the Con group were significantly lower than
those in the Young group. Conversely, both the CMIT and
HIIT groups exhibited a notable increase of the mRNA and
protein levels of PGC-1α in the skeletal muscle compared to
the Con group. Although the PGC-1α mRNA expression in
the skeletal muscle of mice in the HIIT group surpassed
that of the CMIT group significantly, there was no signifi-
cant variance in PGC-1α protein expression between the
two groups (Figure 2a and b). IHC analysis of the mouse
skeletal muscle confirmed the heightened protein levels of
PGC-1α in the CMIT and HIIT groups (Figure 2c).

CpG islands situated in the promoter region are prone
to methylation alterations, which diminish transcription factor
binding and consequently affect gene expression [17]. To investi-
gate the reason for high PGC-1α expression in the CMIT and HIIT
groups, we determined the presence of CpG islands within the
PGC-1α promoter sequence using the MethPrimer software.
Three CpG islands (CpG1-3) were found in the promoter region
of the mouse PGC-1α gene, and the current MSP primers were
designed targeting CpG1-2 (−1,377−1,835 bp) (Figure 2d). The MSP
method was applied to assess the methylation status of spe-
cific position in the PGC-1α promoter. The results revealed
an elevation in PGC-1α promoter methylation in skeletal
muscle tissues of mice in the Con group relative to the Young
group. The methylation level of the PGC-1α promoter in
skeletal muscle tissues of mice in both CMIT and HIIT groups
exhibited a noteworthy decline compared to the Con group,
with no statistically significant disparity between the CMIT
and HIIT groups (Figure 2e).

Given that DNAmethylation is mediated by its key enzyme
DNMT, we subsequently detected the protein expressions of
DNMT family, including DNMT1, DNMT3A, and DNMT3B in
skeletal muscle tissues. The research observed increased
expression of DNMT1, DNMT3A, and DNMT3B proteins in
the skeletal muscle tissues of mice in the Con group in com-
parison to the Young group. However, these protein altera-
tions were reversed in both groups of aged mice following
different exercise training interventions, and there were no
statistically significant differences in the expression levels
of DNMT proteins between the CMIT and HIIT groups
(Figure 2f and g).
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Figure 1: Late-in-life exercise enhances skeletal muscle function and morphology. (a) Change of forelimb grip strength after intervention. (b) Change
of the Rotarod test time after intervention. (c) Representative images of H&E, average CSA, Masson staining, and TEM analysis of mouse gastro-
cnemius muscle tissue. Scale bar = 100 μm for H&E and Masson; scale bar = 20 μm for CSA; scale bar = 1 μm for TEM. (d) Relative quantification of
average CSA of mouse gastrocnemius muscle. (e) Relative quantification of the degree of fibrosis of mouse skeletal muscle tissue (collagen fiber
staining area/total area). *P < 0.05, **P < 0.01, ns represents no significant difference. CSA: cross-sectional area; TEM: transmission electron
microscopy.
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3.3 Impact of late-in-life exercise on
mitochondrial biogenesis and energy
metabolism

To further investigate the impact of increased PGC-1α
expression on mitochondrial function during late-in-life
exercise, the research measured the expression levels of
protein related to mitochondrial biogenesis (NRF1, TFAM, and
ERR) and energy metabolism (AMPK, GLUT4, and CPT1B) in
skeletal muscle tissues of mice. It was found that the protein
levels of NRF1, TFAM, ERR, AMPK, GLUT4, and CPT1B in ske-
letal muscle tissues of mice in the Con group were lower in
comparison to those in the Young group. Conversely, CMIT
and HIIT groups showed elevated expression levels of these
proteins compared to the Con group. The levels of mitochon-
drial biogenesis and energy metabolism-related proteins
were not statistically different between the CMIT and HIIT
groups (Figure 3a, b, d, and e). Subsequently, mt DNA was
detected. The skeletal muscle mt DNA content of mice in the

Con group decreased compared to the Young group; conver-
sely, it increased in both the CMIT and HIIT groups com-
pared to the Con group. Remarkably, the skeletal muscle mt
DNA content of mice in the HIIT group surpassed that of the
CMIT group significantly (Figure 3c).

4 Discussion

In this research, we observed that late-in-life exercise can
ameliorate aging-related morphological changes in skeletal
muscle and enhance skeletal muscle function, which may
be associated with its effect on PGC-1α expression via PGC-
1α promoter methylation regulation. In addition, exercise-
training intervention reversed the mitochondria structural
abnormalities of skeletal muscle in aged mice and signifi-
cantly increased the expression levels of proteins related to
mitochondrial biogenesis and energy metabolism. There

Figure 2: Impact of late-in-life exercise on expression of PGC-1α via DNA methylation regulation. (a) Western blot for protein levels of PGC-1α in mouse
skeletal muscle. Representative images are shown on the left; quantitative data for the PGC-1α protein level are shown on the right. (b) PGC-1αmRNA
relative expression. (c) IHC staining of PGC-1α in mouse skeletal muscle tissue. Representative images (red arrow is PGC-1α-positive staining area) are
shown on the left; quantitative data are shown on the right. Scale bars = 100 μm. (d) Prediction of CpG islands of PGC-1α promoter (−2,000–0) in
mouse skeletal muscle. (e) The MSP method was applied to examine the methylation status of PGC-1α promoter in mouse skeletal muscle.
Representative agarose gel analyses of MSP products are shown on the left; quantitative data are shown on the right. (f) Western blot for protein
levels of DNMT family (DNMT1, DNMT3A, and DNMT3B) in mouse skeletal muscle. (g) Relative quantitative expression of DNMT proteins. *P < 0.05,
**P < 0.01, ns represents no significant difference. DNMT: DNA methyltransferase.
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seemed no clear difference between HIIT and CMIT in PGC-
1α expression and skeletal muscle function.

PGC-1α has attracted considerable attention as a pivotal
regulator of mitochondrial function, playing a central role in
maintaining normal energy metabolism and mitochondria
homeostasis in skeletal muscle. Previous studies have shown
age-related decreases in PGC-1α protein content along with
decreased numbers and impaired function of mitochondria
in skeletal muscle in rats, mice, and humans [18–20], which
were also observed in our study.

Barrès et al. [21] provided a systematic study about
methylation of PGC-1α in skeletal muscle from patients
with diabetes. They used whole-genome promoter methy-
lation to identify hypermethylation of PGC-1α. They also
reported DNMT3B rather than DNMT1 or DNMT3A related
to fatty-acid-induced methylation of PGC-1α promoter. Our

results were generally consistent with previous findings in
human being that both acute [15] and chronic [22] exercise
altered the promoter methylation of PGC-1α. When exploring
the potential cause, we found a global decrease of DNMT
family, which was different with Romain’s finding. However,
the current result was partly in line with other studies
where exercise has been shown to repress DNMT expression
levels in human plasma and in human and mouse femurs
[23–26]. Although our finding led to a hypothesis that exer-
cise training could ameliorate aging-related muscle loss by
reducing PGC-1α promoter methylation and enhancing PGC-
1α expression, the expression of DNMTs were still far from
to conclude the causality of methylation. And we also had to
consider enzymatic activity and other regulators’ expres-
sion, such as ten-eleven translocation enzymes, when inter-
preting the mechanism.

Figure 3: Impact of late-in-life exercise on mitochondrial biogenesis and energy metabolism. (a) Western blot for protein levels of NRF1, TFAM, and
ERR in mouse skeletal muscle. (b) Western blot for protein levels of AMPK, GLUT4, and CPT1B in mouse skeletal muscle. (c) mt DNA content of mouse
skeletal muscle. (d) Relative quantification of mitochondrial biogenesis-related proteins. (e) Relative quantification of energy metabolism-related
proteins. *P < 0.05, **P < 0.01, ns represents no significant difference.
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Numerous studies have demonstrated that PGC-1α in
skeletal muscle enhances skeletal muscle mitochondrial
biogenesis and energy metabolism as well as improves
mitochondrial structure and function [27–30]. In this study,
we detected the expression levels of proteins related to
these processes, alongside assessing mitochondrial struc-
ture in all groups of mice. The current findings suggested
that late-in-life exercise upregulated expression of protein
crucial for mitochondrial biogenesis and energy metabo-
lism, improved mitochondrial ultrastructure and increased
mt DNA content in aged mouse skeletal muscle, potentially
linked to increased PGC-1α expression. This is consistent
with existing study results [18,31], indicating that exercise-
induced improvement of skeletal muscle mitochondria in
aged mice is partially reliant on increased content of ske-
letal muscle PGC-1α.

Herein, we employed two common exercise modal-
ities, CMIT and HIIT, to investigate their effects on PGC-
1α expression and methylation levels in skeletal muscle
of aged mice. Although some studies have indicated the
potential superiority of HIIT over CMIT in improving ske-
letal muscle mitochondrial quantity, mitochondrial adapt-
ability, and oxidative capacity [32–34], our study merely
observed significant differences in skeletal muscle average
CSA andmt DNA content between CMIT and HIIT. Moreover,
we found no notable distinctions between the two exercise
modalities in terms of PGC-1α expression, mitochondria
mobilization, and improvement of skeletal muscle mor-
phology and function in old age. Thus, currently we did
not recommend specific exercise type over another in older
adults.

The present study has several limitations. It was a
preliminary exploration of the role of PGC-1α methylation
in mitigating muscle loss in aged mice through exercise, yet
it does not directly elucidate the causal relationship and
exact mechanism of altered PGC-1α methylation on exer-
cise-driven skeletal muscular alterations in old age. In
addition, the study did not explore the possible effects of
other epigenetic modifications on PGC-1α transcription,
such as histone modification and non-coding RNA, nor
did it explore the effects of exercise on fat content, or on
other organ function. Therefore, it cannot be concluded
that HIIT and CMIT have similar effects in all aspects in
old age.

5 Conclusion

Late-in-life exercise improves skeletal muscle function and mor-
phology, reverses the mitochondria structural abnormalities of

skeletal muscle in aged mice, and affects the expression
levels of proteins related to mitochondrial biogenesis and
energy metabolism, which may be linked to its effect on
hypomethylation in promoters of PGC-1a and elevated pro-
tein and mRNA expression of PGC-1α. Notably, there was no
clear difference between HIIT and CMIT in PGC-1α expres-
sion and skeletal muscle function.
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