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Abstract: This work investigated the high-throughput clas-
sification performance of microscopic images of mesench-
ymal stem cells (MSCs) using a hyperspectral imaging-
based separable convolutional neural network (CNN) (H-
SCNN) model. Human bone marrow mesenchymal stem
cells (hBMSCs) were cultured, and microscopic images
were acquired using a fully automated microscope. Flow
cytometry (FCT) was employed for functional classification.
Subsequently, the H-SCNN model was established. The
hyperspectral microscopic (HSM) images were created,
and the spatial-spectral combined distance (SSCD) was
employed to derive the spatial-spectral neighbors (SSNs)
for each pixel in the training set to determine the optimal
parameters. Then, a separable CNN (SCNN) was adopted
instead of the classic convolutional layer. Additionally, cul-
tured cells were seeded into 96-well plates, and high-func-
tioning hBMSCs were screened using both manual visual
inspection (MV group) and the H-SCNN model (H-SCNN
group), with each group consisting of 96 samples. FCT
served as the benchmark to compare the area under the
curve (AUC), F1 score, accuracy (Acc), sensitivity (Sen), spe-
cificity (Spe), positive predictive value (PPV), and negative
predictive value (NPV) between the manual and model
groups. The best classification Acc was 0.862 when using
window size of 9 and 12 SSNs. The classification Acc of the
SCNN model, ResNet model, and VGGNet model gradually
increased with the increase in sample size, reaching 89.56 +
3.09, 80.61 + 2.83, and 80.06 = 3.01%, respectively at the

* Corresponding author: MuYun Liu, National Engineering Research
Center of Foundational Technologies for CGT Industry, Shenzhen,
Guangdong, China, e-mail: muyun@ncgt.org.cn

XiangXi Du, HaiJun Wang: Shenzhen Cellauto Automation Co., Ltd.,
Shenzhen, Guangdong, China

JunYuan Hu: Shenzhen Beike Biotechnology Co., Ltd., Shenzhen,
Guangdong, China

Xiao Liang: National Engineering Research Center of Foundational
Technologies for CGT Industry, Shenzhen, Guangdong, China

sample size of 100. The corresponding training time for
the SCNN model was significantly shorter at 21.32 + 1.09
min compared to ResNet (36.09 + 3.11 min) and VGGNet
models (34.73 + 3.72 min) (P < 0.05). Furthermore, the clas-
sification AUC, F1 score, Acc, Sen, Spe, PPV, and NPV were
all higher in the H-SCNN group, with significantly less time
required (P < 0.05). Microscopic images based on the H-SCNN
model proved to be effective for the classification assessment
of hBMSCs, demonstrating excellent performance in classifi-
cation Acc and efficiency, enabling its potential to be a
powerful tool in future MSCs research.

Keywords: microscopic images, separable convolutional
neural network, human bone marrow mesenchymal stem
cells, classification accuracy

1 Introduction

In modern biomedical research, mesenchymal stem cells
(MSCs) have garnered significant attention [1]. They possess
essential characteristics such as self-renewal, immunomo-
dulation, and multi-lineage differentiation, and are widely
distributed in various sources, including bone marrow,
adipose tissue, and placenta [2,3]. Clinical studies have indi-
cated the potential of MSCs in tissue engineering, regenera-
tive medicine, and immunotherapy [4-6]. It is worth noting
that MSCs from different sources exhibit distinct character-
istics; for instance, adipose-derived MSCs primarily focus on
self-renewal and differentiation [7], umbilical cord MSCs are
mainly associated with proliferation and immunomodula-
tion [8], and bone marrow MSCs primarily emphasize multi-
lineage differentiation [9]. Quality control is of paramount
importance in working with MSCs, as poor quality can lead
to less effective treatments or adverse reactions [10,11].
Traditional methods for screening MSCs involve laboratory
techniques such as flow cytometry (FCT) or immunohistochem-
istry. However, these methods are time-consuming, labor-
intensive, and require specialized expertise, rendering them
unsuitable for high-throughput screening [12,13]. Recently,
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microscopy analysis has emerged as a highly promising
approach for evaluating MSCs’ characteristics [14]. Micro-
scopic images can provide information about cell mor-
phology, distribution, structure, quantity, and functionality,
simplifying the differentiation of various MSC types [15].
Nevertheless, manually counting and classifying MSCs through
visual inspection often suffer from low efficiency and inade-
quate classification accuracy (Acc), posing challenges in deli-
vering timely results for clinical applications.

The rapid evolution of artificial intelligence technolo-
gies has led to the widespread use of deep learning algo-
rithms for image classification and processing. Within this
landscape, the rapid development of convolutional neural
networks (CNN) has opened up possibilities for the classi-
fication of cells in microscopic images [16]. Experts have
already applied CNN for classifying microscopic images,
such as using CNN models for microalgae microscopic
image classification or using Faster R-CNN and deep CNN
for the classification of multi-stage mitotic cell classifica-
tion and detection [17,18]. CNN has become an essential tool
in the field of biomedical image analysis. CNN not only
enhances feature extraction and classification capabilities
but also possesses the ability to automatically learn [19,20].
As aresult, CNN can automatically learn the morphological
features of images, facilitating the efficient processing of
large-scale image data, thus avoiding the inefficiencies
associated with manual feature extraction. This positions
CNN as an ideal tool for processing microscopic images
[21,22]. Kim et al. [23] confirmed that deep learning models
represent a convenient high-throughput method for evaluating
the classification efficacy of MSCs and can be used as an effec-
tive quality control method in future clinical bio-manufac-
turing processes. However, traditional CNN methods in the
classification of microscopic images only capture information
related to cell colors, lacking insight into their underlying bio-
chemical characteristics. As a solution, experts have proposed
combining the “all-in-one” characteristic of microscopic images
with CNN for cell microscopy image classification. Research
has demonstrated that a CNN model incorporating the
“spectrum-all-in-one” feature of hyperspectral imaging can
not only comprehensively capture information in micro-
scopic cell images but also rapidly and accurately analyze
a large number of cell images. Furthermore, it possesses
automatic learning capabilities, reducing manual intervention
and simplifying the processing, thus positively impacting the
advancement of clinical biomanufacturing and cell research [24].

In summary, this work represented the inaugural
application of the hyperspectral imaging-based separable
CNN (H-SCNN) model combined with hyperspectral ima-
ging technology for the analysis of microscopic images of
MSCs, assessing the model’s classification performance on
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MSCs. The aim of this work is to develop an effective
screening method that can automatically learn and extract
morphological features from images, thereby mitigating
the inefficiencies of manual feature extraction, by harnes-
sing the biological characteristics of MSCs and the compu-
tational capabilities of H-SCNN. This empowers clinicians to
rapidly and accurately identify MSCs with specific charac-
teristics, promoting further progress in stem cell research
and providing robust support for the clinical applications,
drug discovery, and fundamental research related to MSCs.

2 Research methods

2.1 Cell culture

In this work, Human bone marrow mesenchymal stem cell
(hBMSCs) were sourced from Guangzhou GeniBio Biotechnology
Co., Ltd, and were cultivated in vitro for subsequent inves-
tigations. The in vitro cultivation of hBMSCs typically neces-
sitates specialized culture media and conditions to maintain
their growth and functionality [25]. The specific cultivation
method was as follows:

First, the culture medium was prepared, which involved
using Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 (DF12),
obtained from Guangdong EnviroBio Technology Co., Ltd, as
the basal culture medium. In addition, 10-20% fetal bovine
serum from Thermo Fisher Scientific, China was incorporated
into the medium, followed by the addition of 1% 1-glutamine
(Jiangsu Pules Biological Technology Co., Ltd) and antibiotics,
typically 100 IU/mL of penicillin and 100 pug/mL of strepto-
mycin (Beijing Soleibao Technology Co., Ltd). Subsequently,
cell cultivation was initiated: hBMSCs were placed into cul-
ture dishes (Thermo Fisher Scientific, China), covered with
sterile coverslips from the same source, and incubated in an
environment maintained at 37°C with 5% CO, gas for 2 weeks.
During this period, the culture medium was refreshed every
2-3 days. Growth of hBMSCs was periodically observed to
ensure they exhibited their typical fibroblast-like mor-
phology. When the cell density reached a certain level,
typically at 80-90% confluence, cell passaging was per-
formed to separate and redistribute hBMSCs into new
culture dishes to increase the cell population.

2.2 Acquisition and processing of
microscopic images

Under the controlled conditions of 37°C with 5% CO,, the
microscopic imaging of hBMSCs cells was observed using
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an automated microscope provided by Meigu Molecular
Instruments (Shanghai) Co., Ltd. Microscopic images were
captured using phase objectives (40x and 100x). A total of
3,200 8-bit grayscale images were collected and were sub-
jected to adjustment based on the hue (H), saturation (S),
and value (V) of the image to minimize their impact on the
experiments. Images with an average V value exceeding
240 were excluded because excessively high brightness
could cause cell boundaries to merge with the background,
making differentiation challenging. The average V value of
the remaining images was adjusted to approximately 130.
Subsequently, the image size was resized to 220 x 300 pixels
using interpolation techniques available in the Python OpenCV
Toolbox. Ultimately, 1,400 microscopic images were obtained
and utilized for subsequent research.

2.3 FCT

Following the acquisition of microscopic images, the research
collected corresponding cells for FCT to assess the expression
levels of the surface antigens CD73 and CD90. First, hBMSCs
were carefully gathered and rinsed with phosphate-buffered
saline from Sigma-Aldrich to eliminate culture media and impu-
rities. The cell count was determined using the Countstar, fully
automated cell counter from Shanghai Ruiyu Biotech Co., Ltd,
and a cell suspension was prepared, maintaining a concentra-
tion ranging from 1-5 x 10° cells/mL. Next the required number
of cells was taken and placed in Nunc 1.5 mL centrifuge tubes
from Thermo Fisher Scientific, China. Subsequently, the cell
suspension was combined with fluorescein isothiocyanate
(FITC)-labeled CD73 antibody and phycoerythrin (PE)-
labeled CD90 antibody from Shanghai Ruiyu Biotech Co.,
Ltd, both at a concentration of 10 ug/mL. The cells and anti-
bodies were mixed and incubated at 4°C for 30 min. To
eliminate unbound antibodies, samples were washed with
fluorescence-activated cell sorting (FACS) buffer from
Thermo Fisher Scientific, China and then subjected to a
5-min centrifugation at 1,500 rpm for discharging the super-
natant. FACS buffer was added to the cell pellet, and the cells
were suspended. Flow cytometric analysis of the cell sam-
ples was performed using the CytoFLEX S flow cytometer
from Beckman Coulter International Trading (Shanghai) Co.,
Ltd. The instrument was configured to excite and detect
FITC and PE fluorescence signals. By detecting the fluores-
cence signal of each cell, the FCT could determine whether
CD73 and CD90 were expressed on the cell surface. The data
obtained were subsequently analyzed using DIVA software
to gauge the expression levels of CD73 and CD90, providing
valuable insights into the cellular properties of hBMSCs.
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High functionality was defined as CD73 and CD90 positive
expression levels exceeding 95%, while lower levels were
categorized as indicating reduced functionality.

2.4 Model establishment

2.4.1 Construction of hyperspectral microscopic (HSM)
images

The construction of HSM imaging involved leveraging spa-
tial-spectral feature (SSF) information from hyperspectral
images to enhance the classification efficacy of microscopic
images. Constructing SSF-based microscopic images is an
image processing technique that combines spectral and
spatial data, typically employed in fields such as materials
science and biology. This technology aids in the identifica-
tion and analysis of the composition, distribution, and
properties of different materials or substances. The general
steps for constructing SSF-based microscopic images are
illustrated in Figure 1. First, the data were acquired. In
this work, the hBMSCs properties were assessed using
FCT to distinguish between high-performance and low-per-
formance hBMSCs within the microscopic images. Spectral
and spatial information for both types of cells were then
collected to facilitate the classification. Subsequently, data
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Figure 1: Construction of HSM images.
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were preprocessed, including correcting and denoising
spectral information and aligning and correcting spatial
information to correspond with spectral information. After
that, spectral data were merged with spatial information.
Finally, microscopic images were constructed. The fused
data were adopted to construct microscopic images, with
the aid of interpolation techniques available in the Python
OpenCV Toolbox for image reconstruction. Furthermore,
additional steps such as denoising, enhancement, and con-
trast adjustment were also carried out.

Image denoising: (a) the median filtering denoising
algorithm was selected to mitigate noise in the image; (b)
denoising parameters were fine-tuned to balance denoising
effectiveness and the preservation of image details; (c)
image denoising tools were employed to apply the selected
denoising method for noise reduction.

Image enhancement: (a) image contrast was enhanced
initially to highlight target features and reduce background
interference; (b) brightness and saturation were adjusted to
improve the visual quality of the image; (c) histogram equal-
ization or other enhancement techniques were utilized to
optimize the image’s histogram distribution.

Contrast adjustment: (a) image editing tools or dedicated
image processing software (such as Adobe Photoshop) were
employed to adjust the image’s contrast to ensure that target
features were more clearly visible; (b) linear or nonlinear
contrast adjustment methods can be employed based on spe-
cific requirements; (c) whether the adjusted image meets the
analysis or visualization needs was evaluated, making itera-
tive adjustments as per the specific application.

HSM images exhibited a noticeable spatial correlation
among pixel distributions, with pixels in close spatial proxi-
mity tending to share the same characteristics [26,27]. In this
work, spatial-spectral neighbors (SSNs) were selected based
on the similarity of joint spatial-spectral information in the
neighborhood. This approach can help increase the training
samples, as depicted in Figure 2. It was assumed that the
dataset of HSM images was represented as X = [x, X, ... ,X;],
where X constituted the data matrix and x; referred to the
spectral vector of the ith pixel. Taking the example of pixels
X; and x; in HSM images of MSCs, their neighboring spatial
regions were represented as S(x;) and S(x;), respectively,
and the spatial-spectral combined distance SSCD could be
expressed as follows:

D(xi, x;) = D(S(xi) + S(x7)). @
In the above equation, D(S(x;) + S(x;)) referred to the

distance from the pixels x; to x; in the neighboring spatial
regions S(x;) and S(x;), respectively.
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2.4.2 SCNN

SCNN, commonly abbreviated as depthwise separable
convolution or depthwise separable ConvNet, is a CNN
architecture frequently used for image processing and
computer vision tasks [28]. The SCNN structure maintains
model performance while reducing the number of para-
meters, thereby lowering computational costs and memory
consumption [29].

SCNN is composed of two principal components: depth-
wise convolution (DC) and pointwise convolution (PC) [30].

DC: In traditional convolutional operations, each input
channel undergoes convolution with a convolutional kernel,
yielding a single output channel. However, DC is the first
step in separable convolution, enabling each input channel
to be convolved independently with its respective convolu-
tional kernel, generating output channels equal in number
to the input channels, without mixing information between
channels. In this work, it was considered that the input
feature map possessed C channels and the size of the con-
volutional kernel is K x K . In this case, DC can be calculated
as follows:

For each channel c:

Input of the feature map: I, with the size of H x W (H
denotes the height and W denotes the weight);

Convolution kernel: K., K X K ;

Output of the feature map: O, (H-K+1)x
(W-K+1)

DC can be calculated with following equation:

Oi,j] = sum(I[i: i+ K,j:j+ K]*K.)for
i=0toH-K,j=0to W - K.

)

PC: It is the second step in separable convolution and
involves traditional 1 x 1 convolution. It was employed to
condense the quantity of output channels from the DC to
the desired number. PC convolved the output of DC using a
1 x 1 convolutional kernel to generate the final output. The
specific calculation method for PC is as follows:

It was assumed that there were E output channels for DC:

Input of the feature map: the output O, of DC, with the
size of H-K+1)x (W-K+1);

Convolution kernel: there were E convolution kernels
with a size of 1 x 1, representing as K1, K2,..., KD;

Output of the feature map: the final output feature
map, H-K+1) x (W-K+1)

Calculation expression of PC is given in equation (3).

Eli, j] = sum(Oi[i, j]+K;) for
i=0toH-K,j=0toW-K.

©)]
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Figure 2: Calculation process of SSCD.

In the above expression, E[i, j] refers to each channel
of the output feature map and O, denotes the ith output
channel of the DC.

Difference between CNN and SCNN is illustrated in
Figure 3.

2.4.3 Evaluation methods

This work aimed to assess the effectiveness of the methods
employed for classifying HSM images. To achieve this, an
initial training dataset comprising of 1,400 microscopic images
was applied to obtain the optimal parameter samples for the
H-SCNN model. Subsequently, sample sets of sizes 20, 30, 40, 50,
60, 70, 80, 90, and 100 were each selected for analysis to eval-
uate the classification Acc of SCNN and other CNN models
(using FCT detection results as the reference standard). These
additional CNN models primarily included well-known ResNet
and VGGNet models. Concurrently, the training times required
for various CNN models were compared.

2.5 Cell grouping

In Section 2.1, this work involved seeding cultured cells
into a 96-well culture plate. Subsequently, an automated

microscope was utilized to observe the hBMSCs present in
each well. Following this, high-functioning hBMSCs were
screened through two distinct approaches: manual visual
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Figure 3: Comparison between standard CNN and SCNN.
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inspection (MV group) and the H-SCNN model. These two
screening methods were designated as the MV group and
the H-SCNN group, respectively, each consisting of 96 sam-
ples. The evaluation of both screening methods was per-
formed, with FCT detection results serving as the reference
standard.

2.6 Observation parameters

Furthermore, the analysis effectiveness of classification
methods for hBMSCs in different groups was compared
using distinct metrics, including area under the curve
(AUQ), F1 score, Acc, sensitivity (Sen), specificity (Spe), posi-
tive predictive value (PPV), and negative predictive value
(NPV). Additionally, the time differences between distinct
classification methods were observed to identify an effi-
cient and effective screening method with strong classifica-
tion efficacy.

TP + TN
Acc = , @)
cc TP
TP
= 5
Sen P+ N’ (5)
TN
= 6
Spe N+ D’ (6)
TP
PPV = R )
TP + FP
N
= — 8
NPV TN + FN ®)

where TP represents the number of samples that are actu-
ally positive and correctly predicted as positive by the
classifier; TN refers to the number of samples that are
actually negative and correctly predicted as negative by
the classifier; FP signifies the number of samples that are
actually negative but incorrectly predicted as positive by
the classifier; and FN indicates the number of samples that
are actually positive but incorrectly predicted as negative
by the classifier.

2.7 Methods for statistical analysis

Data were processed using SPSS 26.0. Continuous data were
displayed as mean value + standard deviation and were
compared using the t-test. Categorical data were presented
as frequencies or percentages (%) and were compared
using the x* test. P < 0.05 was considered statistically
significant.
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3 Results

3.1 Construction of HSM images and
classification efficacy

Based on the FCT results, the different functional levels of
hBMSCs were labeled in the corresponding microscopic
images. White represented the background, red indicated
high functionality, and yellow represented low function-
ality. Simultaneously, the distribution of hBMSCs in the cor-
responding hyperspectral microscopy ground truth images
was observed, where blue signified the background, orange
indicated high functionality, and white represented low func-
tionality. Through comparative observations, the distribution
of hBMSCs in both scenarios was found to be quite consistent,
as displayed in Figure 4a—c. To obtain the optimal algorithm
parameters, this work further compared the classification Acc
under different Window size (WS) and SSNs numbers. WS
was selected from 1, 3, 5, 7, 9, 11, and 13, while SSN numbers
were chosen sequentially from 2, 4, 6, 8, 10, 12, 14, and 16. The
classification Acc is shown in Figure 4d. It was found that
when WS was set to 5-11, Acc was higher, and when the
number of SSNs was 8-12, Acc was higher. When WS was
set to 9 and the number of SSNs was 12, the classification Acc
was 0.862, reaching the highest, indicating that it was the best
result. In addition, these parameters were also the basis for
subsequent research.
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Figure 4: Distribution of hBMSCs and classification Acc: (a) original image;
(b) FCT results; (c) hyperspectral hBMSCs microscopic truth map; and (d)
results with WS of WS 1, 3, 5,7, 9, 11, and 13, respectively.
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3.2 Classification performance of various
CNN models

Sample sizes of 20, 30, 40, 50, 60, 70, 80, 90, and 100 micro-
scopic images were employed for training to compare the
classification Acc of the hyperspectral hBMSCs microscopic
images among the SCNN, ResNet, and VGGNet models.
Additionally, the classification efficiencies of the three
models were evaluated. As the sample size increased, the
classification Acc of all three models gradually increased
(Figure 5a). When the sample size reached 100, each model
obtained the highest classification Acc. The classification
Acc of SCNN, ResNet, and VGGNet models were 89.56 + 3.09,
80.61 + 2.83, and 80.06 + 3.01%, respectively. The classification
efficiency of the SCNN model was much higher than that of
the ResNet and VGGNet models (P < 0.05) (Figure 5b). Figure 5¢
shows that the training time of SCNN, ResNet, and VGGNet
models was 21.32 + 1.09, 36.09 + 3.11, and 34.73 + 3.72 min,
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respectively. Compared to ResNet and VGGNet models, SCNN
models had a shorter training time (P < 0.05). Figures 5d—g
represent the classification power diagram, indicating that
the SCNN model exhibited significantly superior classification
performance and was more similar to ground real images.

3.3 Comparison on screening efficacy in the
H-SCNN and MV groups

In this work, several metrics, including AUC, F1 score, Acc,
Sen, Spe, PPV, and NPV, were selected to analyze the clas-
sification efficacy of hBMSCs in both the MV group and H-
SCNN group. Figure 6a displays the ROC curve. According
to the ROC analysis, the AUC, F1 score, Acc, Sen, Spe, PPV, and
NPV for hBMSCs classification in the MV group were 0.908,
0.826, 0.817, 0.819, 0.816, 0.853, and 0.822, respectively. For the

+—VGGNet

(a)
——SCNN

90
85 |

S

2 80

E

=

S

<75 i <} <} ‘}
70 : . .

60 70 80 90

Samples sizes

(b)
95 [ .
—~ 90 i
N -
‘5’, 85
£ 8 1 [
g -
<

~
n

2
=]

H-SCNN ResNet VGGNet

\

©

i)

g 30 %
20 L
"ol B

H-SCNN ResNet VGGNet

Figure 5: Comparison of classification performance of SCNN, ResNet, and VGGNet models. (a) Acc of SCNN, ResNet, and VGGNet models, respectively;
(b) Acc when the sample size was 100; (c) training time; (d) ground truth image; (e) SCNN model; (f) ResNet model; (g) VGGNet model; “*” indicated a

statistical significance (P < 0.05) compared to ResNet and VGGNet models.
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H-SCNN group, the corresponding values were 0.968, 0.918,
0.908, 0.951, 0.928, 0.955, and 0.912, respectively. Compara-
tively, the classification AUC, F1 score, Acc, Sen, Spe, PPV,
and NPV for the H-SCNN group were all higher than those
for the MV group, exhibiting obvious differences (P < 0.05), as
explicated in Figure 6d. Furthermore, it was observed that the
MV group required 60.28 + 4.16 min to classify 96 microscopic
images, whereas the H-SCNN group completed the task in
only 20.11 + 2.17 min, which was obviously faster (P < 0.05),
as depicted in Figure 6e.

4 Discussion

In this work, FCT was utilized to assess the levels of CD73
and CD90 in hBMSCs. CD73, also known as 5-nucleotidase,
is a surface molecule typically expressed in BMSCs. Its
primary role involves the conversion of adenosine mono-
phosphate into adenosine on the cell surface, thereby
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regulating immune responses and cell signal transduction
[31]. CDY0, also known as Thy-1 or THY1, is a common
marker for BMSCs and serves as a surface antigen. It is
often utilized for identifying and isolating BMSC popula-
tions [32]. Based on the evaluation of functional levels of
hBMSCs from the test results, the corresponding hBMSCs in
the microscopic images were classified as high-functioning
or low-functioning. Once the data were collected, the HSM
images were constructed, and the optimal algorithm para-
meters were determined by comparing the classification
Acc under various WS and SSN values. The results sug-
gested that the best parameter combination was WS = 9
and SSN = 12, which achieved a classification Acc of 0.862,
making it the best parameter combination for this study.
This finding underscores the importance of parameter
selection for accurate classification and provides a strong
benchmark for subsequent research.

Based on the results, this work further compared the
performance of the SCNN, ResNet, and VGGNet models in
classifying high-spectral hBMSCs microscopic images.
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Figure 6: Classification efficacy for hBMSCs in MV and H-SCNN groups. (a) ROC curve; (b) AUG; (c) F1 score; (d) Acc, Sen, Spe, PPV, and NPV; (e) time.
Note: * suggested a substantial difference with P < 0.05 in contrast to the MV group.
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These three models are all commonly utilized in deep
learning, are variants of CNN, and are constructed with
components like convolutional layers, pooling layers, and
fully connected layers for tasks such as image classification
and feature extraction. However, they differ in network
depth, the number of parameters, and their suitability
for various tasks [33-35]. VGGNet is relatively shallow, fea-
turing either 16 or 19 convolutional layers and a large
number of parameters. ResNet, on the other hand, is very
deep, typically having 50, 101, or even more convolutional
layers, but fewer parameters compared to VGGNet. In con-
trast, SCNN is a specialized CNN designed for semantic
segmentation, typically consisting of convolutional and decon-
volutional layers for pixellevel labeling. It usually falls
between VGGNet and ResNet in terms of the number of para-
meters. While the first two are often used for image classifica-
tion tasks, SCNN excels in assigning each pixel in an image to a
specific category and is typically used for image segmentation
tasks. All three have found applications in cell classification
studies [36], but this work represented the first comparison of
their classification performance. SCNN is a neural network
architecture specifically designed for image segmentation
tasks, often used to segment different cell structures or nuclei
in cell images [37]. In cell classification, SCNN can be used to
locate and segment cell nuclei and other cellular components,
providing valuable data for subsequent classification tasks to
achieve more accurate cell classification and identification
[38]. Given that hyperspectral images often contain a substan-
tial number of parameters, efficient training is a key chal-
lenge. SCNN excels in handling high-dimensional, large-scale
hyperspectral data. Its architectural design effectively
reduces the number of model parameters, enhances feature
extraction, mitigates overfitting, and improves computational
efficiency [39,40]. This work revealed that the SCNN model
achieved the highest classification Acc, significantly outper-
forming the performance of the ResNet and VGGNet models.
Furthermore, the training time required for the SCNN model
was notably lower in contrast to the other two models. These
findings indicate the advantages of the H-SCNN model in
terms of classification Acc and efficiency.

In conclusion, the H-SCNN model and MV group methods
were adopted to classify high and low functional hBMSCs. The
results demonstrated the superiority of the H-SCNN group
over the MV group in terms of classification AUC, F1 score,
Acc, Sen, Spe, PPV, and NPV. Additionally, the H-SCNN group
required significantly less time compared to the MV group.
This further emphasizes the clear advantages of the H-SCNN
model in both classification performance and efficiency.
Manual cell classification often relies on the subjective judg-
ment and expertise of trained biologists or medical profes-
sionals. Acc can be influenced by subjective factors, leading to
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potential errors. Moreover, manual classification is labor-
intensive and can significantly impact processing speed
when dealing with large datasets [41]. In contrast, machine
learning algorithms can be trained on extensive and well-
labeled datasets, enabling rapid and highly accurate classifi-
cation [42]. Therefore, the H-SCNN model offers distinct
advantages over manual methods. Lyu et al. [43] and Hon-
rado et al. [44] have also proposed through their research that
machine learning methods offer greater speed, efficiency,
and consistency in cell classification. Lien et al. [45] proposed
a multi-layer tensor model, which is an improved CNN that
can classify cells derived from induced pluripotent stem
cells and evaluate their differentiation efficiency. This model
demonstrated the ability to classify MSCs, retinal ganglion
cells, and retinal pigment epithelial cells with an Acc of
97.8%. Additionally, it demonstrated the potential to identify
candidate cells with ideal characteristics while excluding cells
with immature/abnormal phenotypes. Wang et al. [46] pro-
posed an analysis method based on cell physical character-
istics and a deep learning method for identifying cell types. By
analyzing the processed image using an optimized CNN, two
sets of cells (HL-7702 and SMMC-7721, SGC-7901 and GES-1) can
be identified. The results showed that using deep learning
technology to recognize the physical characteristics of cells
can be a universal and effective automatic analysis method
for cell information. It is evident that machine learning-based
cell classification is typically faster, more consistent, and
adaptable, making it particularly well-suited for large-scale
cell classification tasks.

5 Conclusion

In conclusion, the results and discussions presented above
clearly demonstrated the effectiveness of utilizing HSM
images and machine learning models for the classification
of hBMSCs. In particular, the H-SCNN model exhibited out-
standing performance in terms of classification Acc and
efficiency, positioning it as a powerful tool for future
MSCs research. This work yielded strong support and
methods for further exploration of the biological charac-
teristics and clinical applications of MSCs. However, it is
essential to acknowledge that the success of these machine
learning models hinges on the availability of a substantial
amount of labeled data and the fine-tuning of algorithms.
Manual cell classification, though time-consuming and sub-
jective, remained useful in certain cases, particularly in sce-
narios where there was insufficient training data available
for machine learning or when complex cell classification
situations require the expertise of human professionals.
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Therefore, in the field of machine learning-based cell classi-
fication, researchers should direct their efforts toward refining
deep learning algorithms to reduce the reliance on a large
amount of labeled data. Techniques such as transfer learning,
weakly supervised learning, and self-supervised learning can
help enhance algorithm generalization, thus reducing the need
for labeled data. This avenue of research holds the potential to
further advance the field of automated cell classification while
maintaining the flexibility and expertise of human judgment
when needed.
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