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Abstract: Crohn’s disease (CD) is a recurrent, chronic
inflammatory condition of the gastrointestinal tract which
is a clinical subtype of inflammatory bowel disease for which
timely and non-invasive diagnosis in children remains a chal-
lenge. A novel predictive risk signature for pediatric CD diag-
nosis was constructed from bioinformatics analysis of six
mRNAs, adenomatosis polyposis downregulated 1 (APCDD1),
complement component 1r, mitogen-activated protein kinase
kinase kinase kinase 5 (MAP3K5), lysophosphatidylcholine
acyltransferase 1, sphingomyelin synthase 1 and transmem-
brane protein 184B, and validated using samples. Statistical
evaluation was performed by support vector machine
learning, weighted gene co-expression network analysis, dif-
ferentially expressed genes and pathological assessment.
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Hematoxylin—eosin staining and immunohistochemistry
results showed that APCDD1 was highly expressed in pedia-
tric CD tissues. Evaluation by decision curve analysis and
area under the curve indicated good predictive efficacy.
Gene Ontology, Kyoto Encyclopedia of Genes and Genomes
and gene set enrichment analysis confirmed the involvement
of immune and cytokine signaling pathways. A predictive
risk signature for pediatric CD is presented which represents
a non-invasive supplementary tool for pediatric CD diagnosis.
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1 Introduction

Crohn’s disease (CD) is a highly heterogeneous, recurrent
chronic inflammatory condition of the gastrointestinal
tract and is a clinical subtype of inflammatory bowel dis-
ease (IBD). The incidence of pediatric CD has shown a steep
increase over the last 30 years [1], particularly in China
since 2000 [2,3], and one in four patients diagnosed with
IBD was under the age of 18. Clinical manifestations of
pediatric CD tend to be more severe and active than those
of adult CD, and long-term consequences may include
growth retardation [4,5]. Early diagnosis improves treat-
ment outcomes, as cure rates and treatment tolerance
are better in younger children [6]. Thus, there is a need
for additional diagnostic tools in the form of novel biomar-
kers to assist with timely and accurate diagnosis. Diagnoses
depend on the assessment of clinical manifestations, labora-
tory tests, endoscopy, imaging and histopathology, but early
clinical manifestations of nausea, vomiting, fever, abdom-
inal pain and distention are nonspecific and atypical,
making distinction from other abdominal diseases diffi-
cult [7]. Pediatric CD also produces nonspecific labora-
tory, endoscopic, radiological and histological findings.
Therefore, diagnostic tools using novel biomarkers are
essential for the early detection of pediatric CD.
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Predictive risk signatures have been increasingly uti-
lized for disease diagnosis, and pediatric CD pathogenesis
is known to be related to individual gene profile variation
[8] and expression of risk genes, especially in younger chil-
dren [9,10]. Geographical variation is also seen in genetic
predisposition to pediatric CD, and common mutations of
nucleotide oligomerization domain (NOD2)/CARD15 pre-
sent in Caucasian patients have not been identified in
Asian Han and Zhuang populations [11,12]. Susceptibility
loci studies, including multi-ethnic, multi-center cohort
and whole-genome sequencing analysis, have identified
predictive variants for IBD [13,14]. Ethnicity appears to
influence susceptibility site outcomes, and mutations of lipo-
polysaccharide-responsive beige-like anchor protein and cyto-
toxic T lymphocyte-associated protein 4 have been indicated
as rare variants related to early-onset IBD, especially in
African American populations [14]. Some individual genetic
markers of CD and IBD have been suggested for their diag-
nostic, prognostic and therapeutic value, but single genes give
little information about the disease, and models composed of
multiple genes may constitute a superior reflection of clinical
features. However, little has been reported regarding predic-
tive models for pediatric or adult CD.

Machine learning (ML), including random forest (RF),
support vector machine (SVM), K-nearest neighborhood,
and Naive Bayes approaches, have been employed in social
sciences and medical research. ML algorithms are flexible
and scalable, making them suitable for diagnosis and risk
stratification [15], with varying predictive power depending
on the task and data type. A recent systematic review indi-
cated the superiority of RF for disease prediction [16], and
the non-invasive nature of ML makes it a promising aux-
iliary diagnostic tool for IBD.

A predictive risk signature was constructed from novel
mRNA markers identified by weighted gene co-expression
network analysis (WGCNA) and differentially expressed
genes (DEGs) for pediatric CD diagnosis and validated by
pathological assessment. The robustness of the current pre-
dictive risk signature and potential as a diagnostic tool for
pediatric CD are demonstrated.

2 Materials and methods

2.1 Biopsy samples

Pediatric CD patients were recruited through the Pediatric
Gastroenterology service of Tongji Hospital during 2021-2022.
Written informed consent was given by all participants, and
ethical approval was granted by the Tongji Hospital Ethics
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Board (TJ-IRB20220756). All patients were under 17 and
assigned to a CD group, diagnosed according to the modified
Porto criteria [17] with diagnosis confirmed by endoscopic
biopsy or a control group of patients who were not diag-
nosed with CD. Tissue biopsies were collected by gastroin-
testinal endoscopy from gastrointestinal tract lesion sites
and stained for pathological assessment. Detailed patient
information is given in Table S1.

Informed consent: Informed consent was obtained from
all individuals included in this study.

Ethical approval: The research related to human use has
been complied with all the relevant national regulations
and institutional policies and in accordance with the tenets
of the Helsinki Declaration, and has been approved by the
Tongji Hospital Ethics Board (T]-IRB20220756).

2.2 Bioinformatics data information

The gene expression profile of dataset GSE10616, including
10 ulcerative colitis (UC), 13 colon-only CD, 18 ileocolonic CD
and 11 normal samples, from the GEO online database
(https://www.ncbi.nlm.nih.gov/geo/) and annotated by the
platform Affymetrix GeneChip Human Genome U133 Plus
2.0 Array. Clinical information related to the dataset is
given in Table S2.

2.3 Data preprocessing and DEG analysis

A total of 9,989 probes in the GSE10616 dataset were nor-
malized and DEGs between CD and normal samples were
identified using “limma” R package in R.

2.4 Establishment of weighted co-expressed
gene modules

WGCNA is a well-established bioinformatics approach for
building scale-free networks and conducting module ana-
lysis using gene expression profiles and was performed
using the “WGCNA” and “pheatmap” R packages in R.
Unavailable data and clinical subtypes of the dataset
GSE10616 were eliminated to ensure that gene expression
profiles from pediatric CD and healthy control samples
only were included. A scale-free network was formed,
and the most suitable soft threshold (8 = 13) was deter-
mined according to the computed average connection. A
topological overlap matrix (TOM) and corresponding
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dissimilarity TOM (dissTOM) were computed, and hier-
archical clustering, based on dissTOM, was carried out
in the form of a systematic clustering dendrogram. mRNAs
from GSE10616 were categorized into 12 modules of 12
different colors with a minimum module size of 100. The
correlation between clinical traits and module eigengenes in
each module was calculated.

2.5 ML model development and construction
of a nomogram

Two-stage selection was performed to identify the most
relevant mRNAs for inclusion. Candidate mRNAs were
selected from the intersection of DEGs and WGCNA hub
genes and used to construct RF and SVM learning signa-
tures. Five-fold cross-validation was used to verify the pre-
dictive performance of the signatures in the training cohort,
and performance was evaluated by cumulative residual dis-
tribution analysis, boxplot distribution analysis and receiver
operating characteristic (ROC) curve.

A nomogram shows the occurrence probability of indi-
vidual clinical diagnosis through aggregating scores of
multiple predictor variables and is a frequently used tool
used in the calculation of disease diagnosis risk. A nomo-
gram to predict the risk of pediatric CD diagnosis was
constructed based on the DEGs and WGCNA analysis by
the “rms” R package. Calibration plots and area under
the curve were also calculated to assess nomogram accu-
racy in predicting risk.

2.6 Pathway enrichment analysis

The mRNAs in GSE10616 were analyzed by gene set enrich-
ment analysis (GSEA) 4.2.1 software Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis performed
and visualized by “clusterProfiler,” the “pathview” and the
“ggplot2” R package to identify pathways enriched in DEGs
between control and CD samples. DEGs were assigned to
pathways by gene ontology (GO) analysis, visualized by
“clusterProfiler,” the “topGO” and the “ggplot2” R package.

2.7 Hematoxylin-eosin staining (H&E) and
immunohistochemistry (IHC) assay

Biopsy tissues were fixed with 4% paraformaldehyde for
48h and covered with paraffin for sectioning into 4 um
sections and H&E staining (Servicebio, G1003, China) for
histological analysis.
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IHC of colon sections from lesion sites was performed
to investigate the expression of adenomatosis polyposis
downregulated 1 (APCDD1). Colon tissues were immersed
in 4% paraformaldehyde for 24 h, embedded in paraffin,
and sectioned and antigen retrieval was performed by
boiling slides for 20 min in ethylene diamine tetraacetic
acid citrate buffer (pH = 6.0). Sections were incubated
with anti-APCDD1 antibody (Signalway antibody, 43286,
China, 1:50) at 4°C overnight, washed with PBS/Tween20
buffer (pH = 7.4) and anti-rabbit secondary antibody added
for 50 min at room temperature. The 3,3-diaminobenzidine
chromogenic reagent kit was used to visualize staining
under the microscope (SOPTOP, CX40, China), and samples
were analyzed by Image] software (NIH, bundled with 64-
bit Java 1.8.0_172).

2.8 Statistical analysis

All data are expressed as mean + SEM with Student’s t-test
performed to determine statistical differences between
groups. A value of p < 0.05 was considered statistically
significant.

3 Results

3.1 Identification of differentially expressed
mRNAs in pediatric CD and normal colon
tissues

A total of 561 DEGs with p < 0.05 and |log Fold Change|
(|log FC|) > 0.5 were identified from GSE10616, including
376 upregulated and 185 downregulated, and are shown in
the volcano plot (Figure 1a).

3.2 Weighted co-expression network
construction and clinically significant
module analysis

The weighted co-expression network was constructed uti-
lizing the gene expression matrix and clinical information
in dataset GSE10616 through the R package of “WGCNA.”
Data scrubbing of the expression profile was performed to
exclude unavailable data and clinical subtypes, including
“Internal control” and “Ulcerative colitis,” to ensure the
inclusion of only suitable samples and genes. One outlier
sample (GSM267529) was screened out by Pearson correla-
tion analysis with a height threshold of 400 (Figure 1b) to
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Figure 1: DEGs and WGCNA analysis of pediatric CD and control groups (a) Volcano plot for mRNAs based on p-value < 0.05 and |log FC| > 0.5. (b) An
outlier was detected when the critical value was 400. (c) Sample tree and corresponding clinical traits. Clustering was visualized by Pearson correlation
coefficient calculation. (d) Identification of the best soft threshold for WGCNA. The mean connectivity was the best with a soft threshold of 13. (e)
Construction of connection distribution histogram and checking of range-free topology (8 = 13). (f) Dendrogram of all genes clustered utilizing a
dissimilarity measure (1-TOM). (g) Identification of 12 modules related to the clinical traits of pediatric CD.

ensure the stability of the co-expression network. Sample
clustering with clinical traits was established (Figure 1c),
and the power of B = 13 was selected to be the soft-thresh-
olding parameter to guarantee a scale-free network (Figure
1d and e). A hierarchical clustering tree was constructed to
complete the recognition of the co-expression network
(Figure 1f). Twelve gene modules were identified with a
minimum module size of 100, and the correlation between
clinical traits and modules was assessed by analyzing the
eigengene of each module. The midnight blue module had
the strongest correlation (r = 0.5, p = 7 x 107*) with clinical
traits (Figure 1g) and was selected for bioinformatics ana-
lysis of genes and DEGs.

A total of 283 mRNAs with the highest connectivity
(gene significance >0.2 and module eigengene-based con-
nectivity [datKME] >0.8) were defined as hub mRNAs,

considered to have the greatest degree of association with
pediatric CD onset, and were recruited into the hub mRNAs
of the midnight blue module (Table S3).

3.3 Construction of predictive risk signature

The intersection of midnight blue hub mRNAs and DEGs,
containing 155 gene symbols (Figure 2a). The intersection of
the genes with p < 0.05 and |logFC| > 0.1 and the midnight
blue hub mRNAs contained 199 mRNAs. By using these 199
mRNAs, a quantitative predictive signature assessment of
pediatric CD risk. Six independent predictors were included
APCDD1, complement component 1r (C1R), mitogen-activated
protein kinase kinase kinase 5 (MAP3K5), lysophosphatidyl-
choline acyltransferase 1 (LPCAT1), sphingomyelin synthase 1
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(SGMS1) and transmembrane protein 184B (TMEM184B). RF
was shown to have the best performance through cumula-
tive residual distribution analysis, boxplot distribution ana-
lysis (Figure 2b) and ROC curve (Figure 2c). Risk signature
discrimination was calculated using a bootstrap-corrected C
statistic, and the area under the ROC curve was 0.991. The
top 30 candidate mRNAs were identified from the RF model
and gene significance plot (Figure 2d and e) and a nomo-
gram for quantitative predictive signature assessment of
pediatric CD risk constructed from the six independent pre-
dictors by RF (Figure 2f). The p values, logFC and average
gene expression rates are shown in Table S4, and risk esti-
mates are generated by aggregation of scores of each pre-
dictor in the nomogram. The closeness of the solid and
dotted lines indicates the accuracy of the prediction, and
the predicted risk was shown to match the incidence by
the calibration curve (Figure 2g). A decision curve analysis
(DCA) diagram was plotted to refine the predictive signa-
ture, and the predictive signature showed good net benefit
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across the threshold probability range: 0.2-0.9 (Figure 2h).
The clinical impact curve was plotted using the signature
(Figure 2i), and good potential facilitation of clinical practice
shown.

CIR, MAP3K5, LPCAT1 and SGMS1 have previously
been linked to IBD, but any association of APCDD1 and
TMEM184B with IBD has not been reported [18-21]. Differ-
ential expression of the six predictor mRNAsS between
pediatric CD and healthy intestinal tissue from dataset
GSE10616 was visualized in the volcano plot (Figure 1a).

3.4 Pathway enrichment analysis

Pathway enrichment analysis was performed on the 199
intersecting mRNAs to associate affected pathways with
pediatric CD. GO enrichment analysis indicated biological
processes (BP) to include T-cell activation, leukocyte cell-cell
adhesion, positive regulation of cytokine production and
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Figure 2: Establishment of a nomogram for risk prediction using the intersection between DEGs and the most clinically associated module in the
WGCNA. (a) Intersection of hub mRNAs with DEGs, containing 155 mRNA symbols. (b) Cumulative residual distribution analysis and boxplot
distribution analysis of RF and SVM. (c) ROC curve of RF and SVM. (d) Construction of RF model. (e) Gene significance of the top 30 candidate
mRNAs. (f) Nomogram combining signatures with clinical traits. (g) Calibration curves comparing nomogram-predicted survival probabilities and
measured survival probabilities of training and validation cohorts. y-axis: measured survival probabilities; x-axis: nomogram-predicted survival
probabilities; dotted line: ideal prediction by an optimal signature; solid line: nomogram performance. (h) DCA of predicted nomogram signature.

(i) Clinical impact curve.
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extracellular matrix organization; cellular components (CC),
signaling pathways, such as collagen-containing extracellular
matrix and azurophil granule (Figure 3a) and molecular
functions (MF), cytokine binding, immune receptor activity,
growth factor activity, integrin binding and extracellular
matrix constituent (Figure 3a). These findings are consistent
with the immune and autoimmune implications of IBD.
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Immune cell infiltration analysis of dataset GSE10616 revealed
increased infiltration of plasma cells and M1 macrophages
(Figure S1). Increased collagen secretion and remodeling are
pathophysiological components of the intestinal strictures and
fistulas associated with CD, especially at the chronic stage [22].
KEGG analysis of the pediatric CD group indicated enrichment
of cytokines and associated pathways (Figure 3b and c).
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Figure 3: GO and KEGG pathway enrichment analysis of the intersected genes in pediatric CD and control groups. (a) GO analysis of the intersected
genes by BP, CC and MF. y-axis: GO terms; x-axis: gene ratio of each GO term. (b) KEGG pathway enrichment analysis of the intersected genes. y-axis:
KEGG terms; x-axis: gene ratio of each KEGG term. (c) KEGG pathway enrichment analysis of the intersected genes. y-axis: KEGG terms; x-axis: gene

counts of each KEGG term.
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GSEA showed pediatric CD samples to be enriched for
pathways, such as cytokine-cytokine receptor interaction,
chemokine signaling pathways, the intestinal immune net-
work for IgA production and toll-like receptor signaling
pathway (Figure 4a—d), indicating the possibility that myco-
biota orchestrate gut fungal commensalism by inducing IgA
antibodies [23]. Control samples were enriched for pathways
related to fatty acid metabolism and steroid hormone bio-
synthesis (Figure 4e and f). Small intestinal epithelial cells
from CD patients have previously shown evidence of impaired
lipid peroxidation metabolism, and the abundant polyunsatu-
rated fatty acid content of the Westernized diet may lead to
enteritis [24]. The top 20 enriched pathways and genes are
shown in Table S5.

3.5 H&E staining, endoscopic evaluation and
IHC validation of APCDD1 overexpression
in pediatric CD lesion sites

H&E staining of CD gastrointestinal biopsies showed damage,
including shortening of the intestinal villi, inflammatory cell
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infiltration and lymphoid follicular formation, compared with
controls (Figure 5a). Multiple ulcer lesion sites could be seen
during endoscopic examination of pediatric CD patients com-
pared with normal mucosa in controls (Figure 5b).

IHC staining showed significant overexpression of APCDD1
in CD lesion tissues compared with controls, consistent with the
results of bioinformatics analyses (Figure 5c¢ and d).

4 Discussion

The pediatric CD is an increasing global health problem
with rising rates in China over the last 20 years due to
risk factors, such as the adoption of a Westernized diet
and industrial environments. Early diagnosis of pediatric
CD is likely to shorten the course of therapy and improve
prognosis, but existing diagnostic methods rely on judg-
ment of symptoms, laboratory findings and imaging
features. Patients have often entered the chronic and
recurring inflammation stage prior to diagnosis to the
detriment of treatment [25], illustrating the need for com-
plementary diagnostic tools and early screening tools.
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Figure 4: GSEA analysis of genes in pediatric CD and healthy controls from the GSE10616 dataset. CD group genes were enriched in pathways
including (a) cytokine-cytokine receptor interaction, (b) chemokine signaling pathways, (c) intestinal immune network for IgA production and (d) toll-
like receptor signaling pathway. Healthy control group genes were enriched in pathways related to (e) fatty acid metabolism and (f) steroid hormone

biosynthesis.
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Figure 5: H&E staining, endoscopic views and IHC validation of APCDD1 overexpression in pediatric CD lesion sites (a) H&E staining of control and CD
samples (magnification x400, scale bar = 25 pm). (b) Endoscopic views of control and CD groups. (c) Expression of APCDD1 in control and CD samples
(n = 5, magnification x400, scale bar = 25 pm). (d) Quantification of APCDD1 expression in healthy control and CD samples. Casel: terminal ileum;
Case2: duodenal bulb; Case3: terminal ileum; Case4: descending colon; Case5: terminal ileum; Case6: descending colon. ***, p < 0.001.

Causes of pediatric CD are multifactorial, including gene
mutation, immunity and environmental factors, with the
first two being considered more significant [26]. Indeed,
gene mutations and positive family history often lead to
diagnosis at a younger age and a higher incidence of
extra-intestinal manifestations.

Previous studies of predictive risk signatures for pedia-
tric IBD have focused on complications and drug reactions,
and some have shown correlations with pathways or mole-
cules. There are a few studies on risk loci for pediatric IBD,
but none has previously established a predictive risk signa-
ture for the diagnosis of pediatric CD.
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The current study identified biomarkers from the gene
expression profiles of dataset GSE10616 in the GEO data-
base to establish a predictive risk signature. The midnight
blue module from WGCNA analysis had the lowest p-value,
and intersection with DEGs allowed a nomogram based on
six mRNAs, four of which have been previously linked to
IBD, to be constructed. APCDD1 had the highest gene sig-
nificance in the risk signature and is an inhibitor of the
Wnt/B-catenin signaling pathway and the target of the B-
catenin/T-cell factor 4 complex with probable involvement
in colorectal carcinogenesis [10]. The locus is a known var-
iant in familial colorectal cancer patients [27] but has not
previously been associated with IBD. CIR encodes a pro-
teolytic subunit in the complement system C1 complex of
the innate immune response and is involved in CD progres-
sion. The CIR is bound by glucocorticoid receptors and is a
potential serum biomarker of response to glucocorticoid
treatment in pediatric IBD [18]. LPCAT1 encodes an enzyme
that converts lysophosphatidylcholine to phosphatidylcho-
line to regulate the number and size of lipid droplets and
has been suggested as an indicator of UC remission [28].
SGMS1 was a predicted target of baicalin in a study of the
baicalin sphingolipid-linked treatment of colitis [29].
TMEM184B encodes transmembrane protein 184B, a puta-
tive mitogen-activated protein kinase (MAPK)-activating
protein, and was upregulated in antineutrophil cytoplasmic
antibody-associated glomerulonephritis [30]. MAP3K5 or
ASK1 was shown to induce c-Jun N-terminal kinase 1 (JNK/
MAPKS/SAPK1) phosphorylation, leading to Bcl-2 activation
of cell autophagy, and was associated with endoplasmic
reticulum stress, making it a promising therapeutic target
for IBD [20]. MAP3KS is associated with autophagy-induced
ER stress in IBD patients, allowing bacterial colonization of
intestinal mucosa [31]. The current study showed that these
six predictor mRNAs were upregulated in CD samples and
were associated with pediatric CD progression.

A bioinformatics approach was used to intersect DEGs
and genes with the highest clinical significance and module
eigengene-based connectivity to determine a risk signa-
ture. The current novel bioinformatics study combined
WGCNA, DEGs and risk signature, taking into account
gene interaction network and expression profiles.

We acknowledge some deficiencies in the present
study. Publicly available gene profile data were used, and
the sample size of the external clinical cohort was small.
Only APCDD1 was verified in our predictive risk signature,
and other predictor mRNAs require validation. In vivo and
in vitro experiments are also required to supplement the
IHC analysis, such as Western blotting and qPCR to assess
protein expression and transcription rate of the other five
predictors in HCT116 and HT29 cell lines.

Prediction of pediatric Crohn’s disease diagnosis by predictive signature
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5 Conclusion

A predictive risk signature for the pediatric CD was con-
structed by bioinformatics methods based on six mRNAs to
assist with the stratification and diagnosis of pediatric CD.
Further investigation is required to combat pediatric CD.
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