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Abstract: Liver tumor segmentation is a critical part in the
diagnosis and treatment of liver cancer. While U-shaped
convolutional neural networks (UNets) have made signifi-
cant strides in medical image segmentation, challenges
remain in accurately segmenting tumor boundaries and
detecting small tumors, resulting in low segmentation
accuracy. To improve the segmentation accuracy of liver
tumors, this work proposes space pyramid attention (SPA)-
UNet, a novel image segmentation network with an encoder-
decoder architecture. SPA-UNet consists of four modules: (1)
Spatial pyramid convolution block (SPCB), extracting multi-
scale features by fusing three sets of dilated convolutions
with different rates. (2) Spatial pyramid pooling block
(SPPB), performing downsampling to reduce image size.
(3) Upsample module, integrating dense positional and
semantic information. (4) Residual attention block (RA-
Block), enabling precise tumor localization. The encoder
incorporates 5 SPCBs and 4 SPPBs to capture contextual
information. The decoder consists of the Upsample module
and RA-Block, and finally a segmentation head outputs seg-
mented images of liver and liver tumor. Experiments using
the liver tumor segmentation dataset demonstrate that SPA-
UNet surpasses the traditional UNet model, achieving a 1.0
and 2.0% improvement in intersection over union indicators
for liver and tumors, respectively, along with increased
recall rates by 1.2 and 1.8%. These advancements provide
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a dependable foundation for liver cancer diagnosis and
treatment.
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1 Introduction

Liver is the largest organ in the human system, with many
ducts and a complex anatomical structure. It is located in
the right upper abdomen, close to the inside of the ribs.
Unlike other organs, the liver has a unique dual blood
supply system that comes from the liver’s portal veins
(about 3/4) and hepatic arteries (about 1/4). Liver cancer
is the most common and deadly tumor in the world, ser-
iously threatening people’s lives and health. According to
the National Cancer Center, the incidence of liver cancer in
China ranks fifth among all malignant tumors, and the
mortality rate ranks second [1]. As science and technology
develop, computer application technology and medical
information technology are rapidly advancing. Computed
tomography (CT) has the properties of fast scanning time
and high image resolution and is a common diagnostic
method for liver cancer. At present, the segmentation of
liver tumors in clinical practice is usually manually marked
by experienced physicians, which is not only laborious and
time-consuming, but also the tumor area of the liver CT
image of the same patient may produce different results
when marked by different physicians, which seriously
depends on the physicians’ experience and skills. Therefore,
it is of great importance to study the accurate and efficient
automatic segmentation method of liver tumor for the clin-
ical diagnosis and treatment of liver cancers.

Liver tumors in CT images usually have the character-
istics of low contrast, fuzzy boundary, and unfixed shape,
size, and number, which lead to inaccurate liver boundary
segmentation and difficulty in tumor segmentation. To
further increase the accuracy of liver tumor segmentation
(LiTS), it is possible to achieve both relatively complete
segmentation of larger tumors and detection of smaller
tumors. This study proposes a liver tumor space pyramid
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attention (SPA)-U-shaped convolutional neural network

(UNet), consisting of an encoder and a decoder. The multi-

scale modules spatial pyramid convolution lock (SPCB) and

spatial pyramid pooling block (SPPB) are designed on the
encoding path to obtain the multi-scale features of the image
by enhancing the receptive field of the segmentation net-
work feature map. Residual attention block (RA-Block) is
added to the decoding path, which enables the model to
more accurately locate and identify the lesion area. We
validate the effectiveness of the designed model on the

LiTS task using the public LiTS dataset.

In conclusion, the main work of this study is as follows:

(1) In this study, we propose a network for LiTS, SPA-UNet
embedded with SPCB and SPPB, which can extract
multi-scale features from images and increase the effi-
ciency of medical image segmentation.

(2) We propose a RA module RA-Block, which can accel-
erate the training of the network, make the model
focus on the region of interest, and suppress the redun-
dant features.

(3) We use the LiTS dataset for experimental analysis, and
the results indicate that the network can improve the
detection rate of small tumors to some extent, and
effectively address the problems of low segmentation
accuracy caused by blurred liver tumor borders and
the difficulty of tumor segmentation caused by data
category imbalance.

The rest of the study is organized as follows: Section 2
introduces the relevant work in this study, Section 3
describes the proposed method, Section 4 presents the
experimental results, and Section 5 summarizes the rele-
vant conclusions.

2 Recent works

2.1 Medical image segmentation

Medical image segmentation is to separate the target region
in medical image from the background, usually tumors,
organs, and lesions. Medical image segmentation is very
challenging, because medical image data usually contains
noise, blur, low contrast and other problems, and there
are huge changes in the shape and size of the target area
in medical images, so efficient and accurate segmentation
algorithms are needed. Segmentation of medical images has
an extremely significant application value in medical field. It
can help doctors diagnose diseases more accurately, make
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treatment plans, and carry out surgical planning. For
example, in the treatment of tumors, the segmentation
of medical images can help doctors pinpoint the exact
location and extent of the tumor. This enables them to
better formulate the treatment plan and predict the effect
of the treatment.

However, because of the sheer diversity and com-
plexity of medical image data, segmentation of medical
images faces many challenges. For example, there may
be plentiful noise and artifacts in medical image data,
which has a significant impact on the accuracy of the seg-
mentation algorithm. In addition, different types of med-
ical image data, such as MRI, CT, X-ray, etc., have different
characteristics, and the segmentation algorithm needs to
be optimized for different types of data. In addition, the
shape and size of the target region in medical images
change tremendously, which also brings great challenges
to the segmentation algorithm.

Traditional methods for medical image segmentation
include thresholding [2], level set [3], region growth [4],
etc., because liver tumors in CT images usually have the
characteristics of low contrast, fuzzy boundary, and uncer-
tain size, shape, position, and quantity, the traditional seg-
mentation methods need manual intervention, which is
difficult to effectively adapt to the complexity and diversity
of liver tumors, and target segmentation accuracy is low
and performance is poor, the automatic segmentation of
tumor region cannot be realized.

In recent years, deep learning technology has been
under rapid development and is now widely used in the
field of medical image segmentation [5-12]. The full con-
volutional network (FCN) [13] uses end-to-end network to
segment medical images. The network classifies images at
the pixel level, thus solving the semantic level of image
segmentation. The UNet [14] first introduces jump connec-
tion into the convolutional network, which realizes image
semantic segmentation through encoding-decoding opera-
tion. The encoder subsamples the extracted features to
capture the image context information. The decoder per-
forms upsampling on the detected features to accurately
locate the segmented region. Li et al. [15] proposed a bottle-
neck supervised UNet. The model is a hybrid tight connec-
tion structure, which can be segmented by fully exploiting
the information between the layers of the network. Schlemper
et al. [16] integrated attention mechanism into UNet and
proposed an attention UNet model, which can automatically
learn regional features related to segmentation tasks and
suppress irrelevant features. Lei et al. [17] proposed a
deformable network for liver cancer segmentation. The
deformable convolution presented by the network solves
the problem of matching irregular liver and liver tumor
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and enhances feature extraction capability, improving the
segmentation accuracy and smoothness of the liver boundary.
Zhou et al. [18] improved the jump connection layer of UNet
and built a multi-scale UNet network (UNet++) by connecting
the jump connections of all layers. Its advantage is that it can
extract and integrate features of different scales by superposi-
tion. Yang et al. [19] applied UNet++ to liver and tumor seg-
mentation of CT images, and introduced residual structure
into the network, effectively solving the problem of gradient
dispersion or disappearance in the process of model training.
UNet and its variant network [20-24] have been proposed
continuously. Based on the above discussion, UNet and its
variant network is a high-performance deep learning network
that is widely used in medical image segmentation.

However, despite the success of these networks, the
local nature of the receptive field in the convolutional layer
still limits their learning ability to a relatively small area,
which can seriously affect the segmentation performance.
Based on this, the dilated convolution used in this work can
expand the receptive field of the network to obtain richer
local and global context information and improve the seg-
mentation accuracy of the network.

2.2 Multi-scale feature fusion

In the task of image segmentation, feature fusion at dif-
ferent scales is an essential method to improve segmenta-
tion performance [25-29], and feature fusion can compen-
sate for the lack of pixel values. The low-level features have
high spatial resolution and contain more spatial and detailed
information, but they have less semantic information and
more background noise. The high-level features have stronger
semantic information, but they have low spatial resolution
and poor perception of detail. Zhao et al. [30] put forward
PSPNet, which achieves the prediction effect by fusing dif-
ferent feature layers through pyramid pooling module.
Chen et al. [31] proposed that deeplab and its variants use
hole convolution with different expansion rates to design
ASPP module and fuse multiple feature maps to learn
multi-scale features. ASPP aims to enhance the perception
of convolutional neural networks for different scales and
different semantic information while maintaining resolu-
tion. In this article, two multi branch modules, SPCB and
SPPB, are designed to fuse multi-scale information to extract
features, and attention mechanism is introduced to further
improve the network’s feature learning ability for edge and
whole tumors.

SPA-UNet: A liver tumor segmentation network based on fused multi-scale features
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2.3 Attention mechanism

Attention mechanism [32-34] is an improved neural net-
work technique proposed in recent years, which has obtained
excellent results in the field of image segmentation. The role
of the attention mechanism is to make the model focus on
more useful semantic information and ignore useless infor-
mation in order to obtain more global context information,
which greatly enriches the representational ability of the
neural network. By learning a set of weights, the features
of different scales are weighted to improve the response of
important features. Dual attention network (DANet) is an
attention mechanism proposed by Nanjing University in
2019. It aims to use the attention mechanisms to enhance
the perception of feature maps for different locations and
different semantic information, and to further improve the
performance of semantic segmentation. DANet uses two par-
allel attention mechanisms to process the feature map, one of
which focuses on the correlation between channels, and the
other on the correlation between spatial positions. Global
context network (GCNet) is a global context attention
mechanism proposed by Huawei Noah’s Ark laboratory
in 2019, which aims to use global information to enhance
the expression ability of local feature maps. GCNet uses
the multi-layer global context attention mechanism to
process the feature map, respectively, and finally carry
out weighted fusion to improve the performance of the
model in various computer vision tasks. The advantage of
GCNet is that it can take full advantage of global informa-
tion and does not require additional computation. In addi-
tion, GCNet has achieved good performance in many
computer vision tasks. For example, GCNet has achieved
better results in ImageNet classification tasks. Based on the
powerful function of attention mechanism, this study intro-
duces the channel attention mechanism GCT-BO [35] and
coordinate attention (CA) mechanism [28] to improve the net-
work’s segmentation ability for medical images.

3 Methods

3.1 SPA-UNet architecture

SPA-UNet is a high-precision liver tumor segmentation net-
work designed based on the UNet model, which is struc-
tured as shown in Figure 1. The network is made up of an
encoder and a decoder, and the encoder is composed of
five SPCBs and four SPPBs, where SPCB captures the image
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Figure 1: SPA-UNet architecture.

context information by three parallel 3 x 3 dilated convolu-
tions. SPPB downsamples the image by switching the 3 x 3
convolution and pooling, which is described in detail in
Section 3.3. The number next to each module in Figure 1
indicates the number of channels of the current feature
map, so the number of channels of the five feature maps
after SPCB are 64, 128, 256, 512, and 1,024, and the amount of
channels of the 4 feature maps after SPPB are 128, 256, 512,
and 1,024 in order, and the amount of channels of the
feature map of the input network after the first SPCB rises
from 3 to 64.

The decoder consists of four upsampling structures,
Upsample, and four RA mechanism modules, RA-Block.
Upsample, while using bilinear interpolation to expand
the feature map size to recover the image resolution, is
spliced with the corresponding feature maps on the coding
path to achieve better feature reconstruction results, com-
bining semantic information with different depths and dif-
ferent fineness in different network layers. RA-Block is a
residual structure for accurate tumor localization, and this
module is introduced in detail in Section 3.4. As can be seen
in Figure 1, the amount of channels of the four feature
maps that have gone through Upsample are 1,536, 768,
384, and 192, and the amount of channels of the four fea-
ture maps that have gone through RA-Block are 512, 256,
128, and 64 in order, and finally the results of liver and
liver tumor segmentations are output by 1 x 1 convolution.

3.2 SPCB

To effectively extract multi-scale features from images, we
designed the SPCB in the encoder pathway, as shown in
Figure 2. In the SPCB component, three parallel dilated con-
volution sets [36] are utilized with dilation rates of 1, 2, and 4

resulting in respective receptive fields of 3, 5, and 7, which
surpasses what can be achieved by standard convolutions.
To capture cross-channel information more effectively, the
results of the three sets of parallel dilated convolutions are
element-wise summed, followed by the Channel Attention
Mechanism (GCT-B0). Batch normalization [36] and PReLU
activation function [37] are employed to enhance the training
process of the network. Furthermore, the SPCB module inte-
grates multiple feature maps instructing the convolutional
neural networks to learn multi-scale features capable of
enhancing the perception of varying scales and semantic
information, while maintaining constant resolution. As a
result, the network’s segmentation performance is improved.

1x1 Conv
A
3x3 Conv 3x3 Conv 3x3 Conv
Dilation=1 Dilation=2 Dilation=4

GCT_BO

PRELU

Figure 2: SPCB structure.
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Assume that the input of SPCB is x(i), where i denotes
the pixel points in the feature map, and the outputs are
y1(D), y2(i), y3(i) after three parallel null convolutions, and
the expressions are as follows:

K

Y1) = Y x(i + n x k)w(k), €]
k=1
K

Y200 = Y x(i + 1 x k)w(k), )
k=1
K

y3(0) = ) x(i + 13 x Kw(k), ()
k=1

where ris the dilation rate of the dilated convolution. Since
too large a dilation rate for the dilated convolution will lose
the image local information and too small a dilation rate
will limit the perceptual field size, we set the dilation rates
of the three cavity convolutions tor; =1, r, =2, and r3 = 4.
The three feature maps are then feature added to obtain
the output feature map y', with the following expression:

3
y = Add[ U yk(i)]. @
k=1

Finally, the feature map y' is batch normalized and
PReLU is activated to obtain the output feature map y,
where the PReLU activation function is given by the fol-
lowing equation:

X if x=20
=1 5
PReLU(x) 0.25x, otherwise. ©)
__________ |
v
3x3 Conv 2x2
Stride=2 Maxpooling
[

—_—_———————a

SPPB

Figure 3: SPPB structure.
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3.3 SPPB

The SPPB is used for downsampling the feature maps in the
encoder pathway to reduce resolution, as shown in Figure 3.
It consists of two branches. The first branch uses standard
convolution with a stride of two to reduce the size of the
feature maps, while the second branch performs max pooling
within non-overlapping 2 x 2 windows. Suppose that the input
feature maps have Ci, channels, accordingly, the resultant
output feature maps will likewise have C,, channels. If
Cin < Coyt, the max pooling branch will generate feature
maps with G, channels, and the standard convolution branch
will generate feature maps with the remaining Coy — Cin
channels. Otherwise, the pooling branch will be ignored,
and only the standard convolution branch will be used to
generate feature maps with C,y; channels.

3.4 RA-block

In this study, a RA module (RA-Block) is designed in the
decoding path [38], the structure of which is shown in
Figure 4. The RA-Block mainly contains two 3 x 3 convolu-
tional layers and a 1 x 1 convolutional and CA layer and
performs a feature summation operation. It contains two
branches, and for the feature map input to RA-Block, two 3
x 3 ordinary convolution operations are performed on the
first branch, and 1 x 1 convolution operations are

y A 4
3x3 Conv 1x1 Conv
Dilation=1 Dilation=1
y y
3x3 Conv
Dilation=1 s

RA-Block

Figure 4: RA-Block structure.



6 —— Weikun Lietal

performed first on the second branch, and the resulting
feature map is then passed through the CA layer to make
the model focus on the region of interest and suppress
redundant features, and finally the feature maps of the
two branches are feature summed to form a new feature
map as output. This residual module accelerates the con-
vergence of the training network and reduces the model
degradation, thus effectively avoiding the gradient disap-
pearance problem.

4 Experimental and results analysis

4.1 Dataset and preprocessing

In this study, the LiTS dataset was used to train and eval-
uate the proposed model. The LiTS dataset contains 131
abdominal contrast CT scans with a total of 58,638 CT slices,
with the approximate number of CT slices varying from 42
to 1,026, the size of each slice being 512 x 512, and the slice
thickness varying from 0.45 to 6 mm. The liver and tumor
regions were manually labeled by specialized physicians as
the gold standard for segmentation.
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Due to the small proportion of liver tumors visible in
CT images, inadequate contrast, and indistinct borders,
pre-processing the original CT slice is necessary to enhance
tumor segmentation accuracy and image clarity. First, in
order to increase the contrast of liver tissue and exclude
the interference of other organs, the window width and
window position of CT images are set to 200 and 60 Hu,
respectively, in this study. Then, the CT slices without liver
labels are removed because the dataset contains images of
multiple organs of the abdomen, but only the liver and
liver tumors are segmented in this study. After the dataset
was preprocessed, the count of CT image slices per patient
varied from 28 to 312, as a result, there exists an aggregate
of 19,211 CT slices each measuring 512 x 512 in size, and
randomly divided into 15,367 slices for the training set and
1,922 slices each for the validation and test sets. Some
sample examples are shown in Figure 5.

4.2 Evaluation metrics

To validate the effectiveness of the proposed model in this
study, commonly used medical image evaluation metrics
including Intersection over Union (IoU), Precision, and

(b)

Figure 5: Example of experimental dataset. (a) Abdominal CT image and (b) ground truth for liver tumor segmentation.
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Recall were employed. The formulas for these metrics are
as follows:

TP
oU=——— 6
U= b EN+FP ©)
TP
TP 7
Precision P+ V)
TP
Recall = ——. 8
eca P+ N )

The term True positive “TP” corresponds to accurately
predicted positive samples. These positive samples corre-
spond to areas where the predicted output overlaps with
manually annotated ground truth data. False positive (FP)
represents the incorrectly predicted positive samples, which
are the regions predicted as positive but not present in the
ground truth; False negative (FN) represents the incorrectly
predicted negative samples, which are the regions present
in the ground truth but not predicted as positive. The values
of these three metrics range from 0 to 1, where a value
closer to 1 indicates a better segmentation performance, as
it indicates a closer resemblance between the predicted
results and the ground truth.

4.3 Experimental setup

The experimental configuration comprises a single Tesla
V100 GPU loaded with 32 gigabytes of dedicated video
memory. Additionally, it features a high-performance Gold
Intel processor consisting of 24 cores. The software environ-
ment used was Ubuntu 16.04, Python 3.7.4, and the deep
learning framework used was PaddlePaddle 2.4.0 with GCC
version 7.3.0. The experimental parameters are listed in the
table. Data augmentation techniques, including random
scaling, random horizontal flipping, random padding and
cropping, and random distortion, were applied during the
network training process to enhance the model’s robustness.
(Table 1)

Table 1: Experimental parameters

Parameter name Parameter selection

Optimizer SGD

Learning rate 0.01

Weight delay 4x107°
Momentum 0.9

Batch size 4

Epoch 50

Loss Cross-entropy

SPA-UNet: A liver tumor segmentation network based on fused multi-scale features
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4.4 Comparative experiments
4.4.1 Liver image segmentation

To demonstrate the segmentation performance of the pro-
posed SPA-UNet model, we compared it with several state-
of-the-art models, including UNet, TopFormer [39], SegFor-
mer_BO0 [40], BiSeNet V2 [41], FCN, OCRNet [42], Deeplabv3,
UNet++, Attention UNet, ESPNet [43], PSPNet, etc. The per-
formance of these different networks in liver segmentation
based on the three evaluation metrics is shown in Table 2.

According to the results shown in Table 2, it can be seen
that the proposed SPA-UNet model exhibits superior per-
formance compared to the original UNet model in terms
of evaluation metrics. Specifically, SPA-UNet achieves an
improvement of 1.0, 1.3, and 1.2% for IoU, Precision, and
Recall, respectively, when compared to the original UNet
model. Furthermore, compared to OCRNet, SPA-UNet shows
improvements of 7.9, 5.3, and 3.4% in IoU, Precision, and
Recall, respectively. However, FCN, Deeplabv3, and PSPNet
slightly outperform SPA-UNet in certain metrics, as these
three models have been pretrained with pretrained weights,
while SPA-UNet is trained from scratch. Overall, the proposed
SPA-UNet method demonstrates superior performance com-
pared to other networks in liver segmentation task, achieving
higher accuracy.

4.4.2 Liver tumor segmentation
Table 3 displays the performance results of various neural

network architectures for liver tumor segmentation, assessed
using the three evaluation metrics.

Table 2: Performance comparison of quantitative metrics for liver seg-
mentation with different networks

Model IoU Precision Recall
UNet 0.943 0.961 0.966
TopFormer 0.903 0.943 0.956
SegFormer_BO 0.943 0.969 0.973
BiSeNetV2 0.932 0.963 0.967
FCN 0.955 0.978 0.972
OCRNet 0.874 0.921 0.944
Deeplabv3 0.955 0.977 0.977
UNet++ 0.942 0.966 0.97
Attention UNet 0.952 0.97 0.977
ESPNet 0.925 0.961 0.961
PSPNet 0.955 0.979 0.975
Ours 0.953 0.974 0.978
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Table 3: Performance comparison of quantitative metrics for liver tumor
segmentation with different networks

Model IoU Precision Recall
UNet 0.806 0.885 0.889
TopFormer 0.662 0.805 0.787
SegFormer_B0O 0.792 0.884 0.883
BiSeNetV2 0.751 0.875 0.841
FCN 0.818 0.896 0.903
OCRNet 0.732 0.859 0.832
Deeplabv3 0.832 0.910 0.906
UNet++ 0.796 0.883 0.890
Attention UNet 0.821 0.908 0.896
ESPNet 0.774 0.874 0.820
PSPNet 0.827 0.903 0.907
Ours 0.826 0.902 0.907

From Table 3, we can see that the model proposed in
this work improves 2.0, 1.7, and 1.8% in IoU, Precision, and
Recall indexes, respectively, relative to the original UNet,
and 14.4, 8.0, and 10.2%, respectively, relative to Top-
Former. This result proves the effectiveness of the pro-
posed module, indicating that fusing multi-scale features
and increasing the perceptual field of the network is ben-
eficial to the extraction of fine details of boundaries and
deeper small structure features. This improves the model’s
ability to learn features, while the attention mechanism
used in this study allows the model to focus on more effec-
tive features and to suppress irrelevant features, resulting
in overall better performance on the LiTS task than other
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networks, and the segmentation of tumors is more accu-
rate, which is an essential reference for the diagnosis of
liver cancer.

4.5 Results visualization

To compare the segmentation power of the proposed
model with that of other networks such as UNet, UNet++,
and SegFormer_BO, Figure 6 illustrates visualized segmen-
tation results for liver tumor segmentation tasks. The first
column displays preprocessed abdominal CT slice images,
the second column presents corresponding liver tumor
segmentation ground truth labels, and the subsequent
four columns illustrate the predicted segmentation out-
comes by utilizing UNet, UNet++, SegFormer_B0, and our
proposed model, respectively. In these images, red regions
denote liver segments while yellow regions indicate tumor
segments.

Figure 6 indicates that our proposed method generates
segmentation results that are more similar to the ground
truth compared to other networks such as UNet and UNet++.
Compared to these models, our method delivers smoother
liver edge segmentation, and for tumor segmentation, it can
accurately identify both large and small tumors, effectively
addressing issues of under-segmentation and over-segmenta-
tion. This improved performance can be attributed to the
introduction of residual modules in SPA-UNet, which helps

UNet

Ground
truth

Input

UNet++ Segformer Ours

BO

Figure 6: Visual comparison of liver tumor segmentation results with different networks.
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to capture fine details at the edges during the segmentation
process. The adoption of dilated convolutions in the network
also enables the extraction of rich features, including
high-resolution liver edges and complete tumor informa-
tion. Additionally, the channel attention mechanism and
CA mechanism capture important feature information in
both spatial and channel dimensions, resulting in more
accurate segmentation of liver tumors.

4.6 Ablation experiments
4.6.1 Impact of different dilation rates in SPCB

As observed from Tables 4 and 5, using three different
dilation rates of 1, 2, and 4 in the atrous convolutions in
the SPCB improves the segmentation performance of the
model. Lower or higher dilation rates result in decreased
segmentation accuracy. A smaller dilation rate may cause
the network to overly focus on local details while neglecting
contextual information at larger scales, whereas a larger
dilation rate may lead to the loss of regional information.
Therefore, in this study, we designed the SPCB with three
different dilation rates of 1, 2, and 4.

4.6.2 Impact of channel attention mechanism in SPCB.
As per Tables 6 and 7, it is evident that SPCB with GCT-BO

demonstrated higher performance metrics compared to
the model without GCT-BO. Specifically, the IoU metric

Table 4: Impact of different dilated rates on liver segmentation

SPA-UNet: A liver tumor segmentation network based on fused multi-scale features
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Table 6: Impact of channel attention mechanism on liver segmentation

Attention IoU Precision Recall
NULL 0.951 0.973 0.977
GCT-BO 0.953 0.974 0.978
Table 7: Impact of channel attention mechanism on tumor
segmentation

Attention IoU Precision Recall
NULL 0.823 0.910 0.895
GCT-BO 0.826 0.902 0.907

showed improvements of 0.2 and 0.3%, and the Recall
metric showed improvements of 0.1 and 1.2%, respectively.
However, the Precision metric showed a decrease when
using SPCB with GCT-BO0. This is because Recall and Preci-
sion are mutually influenced, and a higher Recall rate can
result in lower Precision. Therefore, this study embeds
GCT-BO in the SPCB to better improve the regulation of
the feature channels in the encoder part of the model.

4.6.3 Impact of each branch in SPPB

The SPPB has two branches, and since the pooling opera-
tion cannot change the number of channels, this part of the
ablation experiment uses a convolution with a stride of
two for the downsampling operation. According to the
experimental results, it can be seen that the downsampling
effect of the spliced convolutional and pooling layers is better
and can reduce the loss caused by downsampling. Because the
convolution with a step size of two expands the receptive field
while performing downsampling, better feature reconstruction
results are achieved. (Tables 8 and 9)

Dilation IoU Precision Recall

(1,2,2) 0.952 0.975 0.976

(2,2,4) 0.952 0.975 0.976 Table 8: Impact of each branch on liver segmentation

(2,4,4) 0.952 0.974 0.976

(1,24) 0.953 0.974 0.978 Branch IoU Precision Recall
Conv 0.831 0.904 0.9M
Conv+pool 0.953 0.974 0.978

Table 5: Impact of different dilated rates on tumor segmentation

Dilation IoU Precision Recall Table 9: Impact of each branch on tumor segmentation

(1,2.2) 0.823 0.900 0.906 Branch IoU Precision Recall

(2,2,4) 0.824 0.908 0.899

(2,4,4) 0.824 0.907 0.899 Conv 0.473 0.791 0.540

(1,2,4) 0.826 0.902 0.907 Conv+pool 0.826 0.902 0.907
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Table 10: Impact of CA mechanism on liver segmentation

Attention IoU Precision Recall
NULL 0.951 0.974 0.976
CA 0.953 0.974 0.978
Table 11: Impact of CA mechanism on tumor segmentation

Attention IoU Precision Recall
NULL 0.820 0.908 0.895
CA 0.826 0.902 0.907

4.6.4 Impact of CA mechanism in RA-block.

After adding the CA mechanism after the 1 x 1 convolu-
tional layer of the original residual structure, the segmen-
tation performance is improved, highlighting the edge fea-
tures of large targets and the global features of small
targets, solving the original UNet information redundancy
transfer problem, and improving the IoU index by 0.2 and
0.6% on the liver and the tumor segmentation tasks,
respectively, thus adding the CA mechanism to SPA-UNet.
(Tables 10 and 11)

5 Conclusion

This work proposes a liver tumor segmentation network
based on the fusion of attention mechanism and multi-
scale features. SPCB and SPPB are designed on the coding
path to extract the multi-scale features of the image, cap-
ture the context information, and introduce the channel
attention mechanism GCT into SPCB_BO to enable the
model to capture the important characteristic information
of spatial dimension and channel dimension. The RA module
is introduced into the decoding path to speed up the net-
work’s convergence speed, focus the model on the region of
interest, and suppress redundant features. The experimental
results show that, compared with UNet and other advanced
medical image segmentation networks, the overall perfor-
mance of this method is better than other networks, and it
has achieved good results in the task of liver tumor segmen-
tation, and has strong robustness. However, in practical
application, there are problems such as large workload of
labeling samples, high cost of network calculation, and dif-
ficult training. In the next work, we will develop a lighter
network model and maintain the accuracy of the segmenta-
tion, so that it can be better exploited for the adjunctive liver
cancer diagnosis or in other clinical scenarios.
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