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Abstract: To further explore the pathogenic mechanism of
lumbar disc herniation (LDH) pain, this study screens
important imaging features that are significantly correlated
with the pain score of LDH. The features with significant
correlation imaging were included into a back propaga-
tion (BP) neural network model for training, including
Pfirrmann classification, Michigan State University (MSU)
regional localization (MSU protrusion size classification
and MSU protrusion location classification), sagittal dia-
meter index, sagittal diameter/transverse diameter index,
transverse diameter index, and AN angle (angle between
nerve root and protrusion). The BP neural network training
model results showed that the specificity was 95 + 2%, sen-
sitivity was 91 + 2%, and accuracy was 91 + 2% of the model.
The results show that the degree of intraspinal occupation of
the intervertebral disc herniation and the degree of inter-
vertebral disc degeneration are related to LDH pain. The
innovation of this study is that the BP neural network model
constructed in this study shows good performance in the
accuracy experiment and receiver operating characteristic
experiment, which completes the prediction task of lumbar
Magnetic Resonance Imaging features for the pain degree of
LDH for the first time, and provides a basis for subsequent
clinical diagnosis.

Keywords: lumbar disc herniation, magnetic resonance
imaging, prediction model, imaging feature, pain score

* Corresponding author: Honglai Zhang, College of Medical
Information Engineering, Guangzhou University of Chinese Medicine,
Guangzhou, China, e-mail: zhanghl@gzucm.edu.cn

Xinying Ren, Huanwen Liu, Shiji Hui, Xi Wang: College of Medical
Information Engineering, Guangzhou University of Chinese Medicine,
Guangzhou, China

1 Introduction

Lumbar disc herniation (LDH) is a disease that occurs
when the lumbar discs undergo degenerative changes,
causing the annulus to break. As a result, the nucleus pul-
posus protrudes or extrudes through the posterior long-
itudinal ligament, either below or by passing through it,
into the spinal canal. This compression of surrounding
tissue can lead to some major symptoms, including low
back pain (LBP), radiative pain in the legs, and numbness.
The most commonly affected areas are the L4-L5 and L5-S1
discs, which account for approximately 90% of all LDH
cases. The disease mainly affects people between the ages
of 20 and 40, with a higher incidence in male, with a male-to-
female ratio of about (10-15):1.

LBP is the predominant clinical symptom of LDH, fre-
quently causing movement restriction in individuals aged
below 45. This is the second leading cause of seeing a
doctor, the fifth leading cause of hospitalization, and the
third leading cause of operation [1]. The prevalence of
chronic LBP among individuals aged 24-39 is 4.2%, while
among individuals aged 20-59, it is 19.6% [2]. In 2015, the
global prevalence of LBP among adults reached 7.3% [3].
LBP has become a major cause of disability worldwide
[4,5], with approximately 1% of Americans experiencing
long-term disability due to LBP, and an additional 1%
experiencing temporary disability [1].

Intervertebral disc degeneration (IDD) increases with
age, with over 80% of individuals aged 50 and above exhi-
biting degenerative changes in their intervertebral discs.
Lumbar disc degeneration is widely recognized as a con-
tributing factor to LBP. However, the pathophysiological
mechanisms of discogenic LBP are not yet fully under-
stood. Chemical and mechanical compression of nerve
root inflammation is thought to be the source of neuro-
pathic pain [6].

In the 1970s, the emergence of Magnetic Resonance
Imaging (MRI) and Computed Tomography in the field of
medical imaging provided advantageous techniques for
diagnosing spinal disorders. Even today, MRI remains the
most recommended and suitable imaging modality for
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diagnosing nerve root-related LDH [7]. Numerous researchers
have utilized imaging techniques to reconstruct two-dimen-
sional or three-dimensional images of the lumbar spine in
LDH patients, conducting studies related to investigating the
mechanisms of LDH development, evaluating treatment effec-
tiveness, and guiding therapy through the analysis of imaging
features. Their research methods encompass clinical statis-
tical analysis as well as deep learning and machine learning
techniques [8-10]. However, there is significant variation in
the research findings, with some studies indicating a signifi-
cant positive correlation between the severity of LDH and
lower limb pain scores [11], while others have found that
certain imaging features are unrelated to disc degeneration
or pain [12].

Previous studies on the relationship between imaging
features and symptoms of degenerative spinal diseases
have predominantly used traditional statistical methods.
Sasaki et al. employed multivariate logistic regression ana-
lysis to evaluate the association between paraspinal muscle
fat infiltration and the incidence of LBP [13]. Dunsmuir et al.
employed Pearson correlation analysis to investigate the
direct correlation between patients’ pain scores, disability
scores, and the size of disc herniation [14]. Ranger et al.
utilized t-tests and Chi-square tests to assess the morpholo-
gical characteristics of paraspinal muscles in individuals
with unilateral LDH, by comparing the differences in para-
spinal muscle morphology between the back pain group
(VAS score >4) and the control group (VAS score <4) [15].

In recent years, owing to the ongoing advancements
in artificial intelligence, researchers have also begun to
explore the integration of machine learning with degen-
erative spinal diseases. Compared to traditional statistical
methods, machine learning offers the advantage of higher
model accuracy, especially when dealing with variables
that exhibit complex interactions [16]. Eriksson et al. pre-
dicted pain scores in patients with LBP using a logistic
regression model based on image features. The sensi-
tivity/specificity values were 0.90/0.36, 0.88/0.4, and 0.93/
0.33, with Area Under the Curve (AUC) values of 0.69,
0.75, and 0.73, respectively [17]. Su et al. developed a
multi-task classification network based on ResNet50 for
the automatic assessment and grading of LDH, central
canal stenosis, and compressed lumbar nerve roots in
lumbar axial MRI. The overall accuracies for the three
tasks were 84.17% (74.16%), 86.99% (79.65%), and 81.21%
(74.16%), respectively [18]. Abdollah et al. extracted gray-
level co-occurrence matrix features from MRI images in
the intervertebral disc and upper and lower endplate
regions of 14 patients with chronic LBP and 14 healthy
volunteers. They established a classification model using
the random forest algorithm to distinguish between the
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pain group and the pain-free group [19]. Hopkins et al.
analyzed cervical spine magnetic resonance images of 14
patients with myelopathic cervical spondylosis and 14 con-
trol subjects using machine learning, by training an artifi-
cial neural network model to predict the modified Japanese
Orthopaedic Association scores for myelopathic cervical spon-
dylosis [20]. Currently, artificial intelligence has been widely
applied to symptom prediction in degenerative spinal dis-
eases. However, we found that many of these studies relied
on imaging omics features as inputs for the models. Nonethe-
less, imaging omics features cannot fully explain underlying
biological mechanisms, and the specific clinical and patholo-
gical changes they correspond to are not yet known. This
limitation will significantly impede subsequent research on
the pathological mechanisms.

The aim of this study is to further explore the patho-
genesis of pain in patients with LDH. It analyzes the imaging
features of the surrounding tissues of the lumbar interver-
tebral disc and their correlation with the Oswestry disability
index (ODI) scores in LDH patients. Significant correlated
structural features will be selected to train a back propaga-
tion (BP) neural network model. The model will utilize the
MRI imaging features of the lumbar spine to predict the
degree of pain in LDH, and identify important imaging bio-
markers for the assessment of LDH symptoms and guidance
of treatment.

This study is organized as follows: Section 2 provides
detailed information on the case sources, inclusion and
exclusion criteria, collection of imaging features, collection
of questionnaires, statistical analysis methods, and con-
struction methods of the BP neural network. Section 3
presents the statistical analysis results of the basic charac-
teristics of the cases, the statistical analysis results of
imaging characteristics, the correlation analysis results
between imaging characteristics and symptom scores, as
well as the results of the BP neural network model. Section
4 primarily focuses on the analysis and discussion of ima-
ging features that are strongly correlated with symptom
scores, as well as the analysis and discussion of the experi-
mental results of the neural network.

2 Materials and method

2.1 Research method

The aim of this study is to describe and analyze the demo-
graphic and imaging features of LDH. The goal is to statis-
tically analyze the correlation between imaging features of
the surrounding tissues of the lumbar disc and the severity
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of pain. Significant correlated structural features will be
selected and used to train a BP neural network model to
predict the degree of pain in LDH using lumbar spine MRI
imaging features. The aim of this study is to identify impor-
tant imaging biomarkers for assessing LDH symptoms and
guiding treatment. The research method chosen is a case
series analysis, which involves the description, analysis,
and summary of a series of demographic, clinical, and
epidemiological features of a group of individuals with
the same disease. This analysis method is used to analyze
the clinical manifestations of a specific disease, evaluate the
effectiveness of prevention and treatment measures, and con-
tribute to the accumulation of clinical information, summar-
ization of clinical experience, and improvement of disease
diagnosis and technological research.

2.2 Study subjects
2.2.1 Source of study subjects

Ninety cases of LDH patients who underwent lumbar spine
MRI examinations at Guangdong Provincial Hospital of
Traditional Chinese Medicine from February 2022 to April
2022 were collected as study subjects. The hospital had a
total outpatient volume of 7.22 million visits in 2021, ranking
second in China in terms of outpatient volume. LDH
accounted for 25-40% of orthopedic inpatients with lower
back and leg pain. The imaging department was equipped
with GE Signa 3.0T and Siemens Verio 3.0T superconductive
MRI machines, a dedicated medical imaging and image pro-
cessing laboratory, a picture archiving and communication
system (PACS) for medical image storage and communica-
tion, and high-performance image workstations capable of
offline processing and comprehensive analysis software. All
patients underwent lumbar spine MRI scans using Siemens
Verio 3.0T superconductive MRI. The lumbar spine MRI
images were stored in the form of digital imaging and com-
munications in medicine files.

Informed consent: Informed consent has been obtained
from all individuals included in this study.

Ethical approval: The research related to human use has
been complied with all the relevant national regulations, insti-
tutional policies and in accordance with the tenets of the
Helsinki Declaration, and has been approved by the Ethics
Committee of Guangdong Provincial Hospital of Traditional
Chinese Medicine (approval number: YE2022-037-01).
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2.2.2 Inclusion criteria

(1) Age of 18-80 years old;

(2) All patients were diagnosed as LDH by medical history,
physical examination, and imaging examination;

(3) Patients who had lumbar MRI in the past (within 1
month) were checked by PACS system of Guangdong
Provincial Hospital of Traditional Chinese Medicine;

(4) Informed consent was obtained from the patients.

2.2.3 Exclusion criteria

(1) Those who had a history of lumbar surgery, which
affected the judgment of the results;

(2) Patients with lumbar compression fracture;

(3) LDH caused by acute violent injury;

(4) Combined with other spinal diseases (including lumbar
anterior spondylolisthesis, tumor, tuberculosis, infec-
tion, scoliosis or kyphosis, metabolic bone disease, etc.).

2.3 Collection of basic information

By accessing the medical record system of Guangdong
Provincial Hospital of Traditional Chinese Medicine, basic
information of LDH patients was collected, including dis-
ease name, hospitalization number/outpatient number, gender,
age, height, weight, duration of illness, chief complaint, present
medical history, past medical history, and Western medicine
diagnostic basis.

2.4 Acquisition of imaging features

All patients underwent lumbar MRI scans with a Magnetom
Trio 3.0T MRI scanner (Siemens, Germany). All patients
were in the supine position. Scan parameters were pulse
repetition time of 575ms, echo time of 18.5ms, field of
view of 160 mm x 160 mm, voxel size of 0.4 mm x 0.4 mm
x 4,0 mm, and layer spacing of 0.3 mm.

The imaging data were exported from the hospital’s
PACS system, and the patients’ lumbar MRI images (including
sagittal T1, T2 sequences, and transverse T2 scans) were col-
lected. The imaging features data were collected by observing
the image pictures to highlight the most severe segments
and the ITK-SNAP software [21] was used to measure the
highlighted segments in the image pictures.
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2.4.1 Pfirrmann classification

Pfirrmann classification is the grade describing the degen-
eration of lumbar intervertebral disc, and the higher the
grade, the more serious the degeneration. In this study, the
modified Pfirrmann classification was selected, with a total
of 8 grades [22,23] (Figure 1).

The position of the red frame is the diseased interver-
tebral disc. The degree of lumbar disc degeneration is
described using the modified Pfirrmann grading system,
which consists of 8 levels.

Level 1: The signal of nucleus pulposus and medial annulus
fibrosus was uniform high signal, which was significantly dif-
ferent from that of cerebrospinal fluid and posterior annulus
fibrosus, and the height of intervertebral disc was normal.

Level 2: The signal of nucleus pulposus and medial
annulus fibrosus was high (stronger than presacral fat,
less than cerebrospinal fluid) or there was horizontal fissure
in nucleus pulposus. The signal difference between the
inner and outer fibers of the posterior ring was obvious,
and the height of the intervertebral disc was normal.

Level 3: The signals of the nucleus pulposus and the
medial annulus fibrosus were high (lower than that of the
anterior sacral fat), and the signals of the fibers inside and
outside the posterior annulus were different, and the inter-
vertebral disc height was normal.
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Level 4: The signal of nucleus pulposus and medial
annulus fibrosus was moderately high (slightly stronger
than that of lateral annulus fibrosus), the difference of
posterior annulus fibrosus signal was not obvious, and
the height of intervertebral disc was normal.

Level 5: The signal of nucleus pulposus and medial
annulus fibrosus was low and high signal (equal to lateral
annulus fibrosus), and the signal difference between the
medial and lateral fibers of the posterior annulus fibrosus
was not obvious, and the height of intervertebral disc was
normal.

Level 6: The signal of nucleus pulposus and medial
annulus fibrosus was low signal, and the signal difference
between the medial and lateral fibers of the posterior
annulus fibrosus was not obvious, and the height of the
intervertebral disc was reduced by <30%;

Level 7: The signal of nucleus pulposus and medial
annulus fibrosus was low signal, and the signal difference
between the medial and lateral fibers of the posterior
annulus fibrosus was not obvious. The height of the inter-
vertebral disc was reduced by 30%-60%.

Level 8: The signal of nucleus pulposus and medial
annulus fibrosus was low signal, and the signal difference
between the medial and lateral fibers of the posterior
annulus fibrosus was not obvious, and the height of the
intervertebral disc was reduced by >60%.

Figure 1: Pfirrmann classification.
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Modic I

Figure 2: Modic classification.

2.4.2 Modic classification

Modic classification [24-26] (Figure 2) describes the degree
of vertebral endplate degeneration.

The position of the red frame is the diseased endplate.
Type I changes (T1 low signal, T2 high signal) correspond to
vertebral marrow edema. Type II changes (T1 high signal,
T2 high signal or iso-signal) represent fatty replacement of
the marrow. Type III changes (T1 low signal, T2 low signal)
are observed in vertebral osteosclerosis.

2.4.3 Michigan State University (MSU) regional
localization

The upper column is a schematic of the measurement
method, and the lower column is the corresponding T2W
TSE image. The anatomical level with the most prominent
nucleus pulposus was selected from the T2 sequence. It is
the evaluation criteria for the size and location of lumbar
disc protrusions inside and outside the spinal canal. The
specific location and degree of protrusion of the herniated
nucleus pulposus within the spinal canal are defined by
different region grades, with a total of ten region grades.
The anatomical plane with the most prominent herniated
nucleus pulposus is selected from the T2 sequence. Two
lines are drawn on both sides of the superior and inferior
articular processes, and if the protrusion does not exceed
the line connecting the superior articular processes, it is
classified as grade 1. If it does not exceed the line con-
necting the inferior articular processes but exceeds the
line connecting the superior articular processes, it is clas-
sified as grade 2. If it exceeds the line connecting the
inferior articular processes, it is classified as grade 3.
According to the location of the protrusion, it is divided
into four regions: central region (A region), adjacent region
(AB region), outer region (B region), and far outer region (C
region) [27] (Figure 3).

Modic O

Modic II

2.4.4 Sagittal diameter index (SI)

SI [28] (Figure 4) is calculated as the ratio of the maximum
sagittal diameter (AB) of the disc protrusion to the maximum
sagittal diameter (CD) of the spinal canal. It provides a mea-
surement of the position of the protrusion apex within the
spinal canal. A higher SI ratio indicates a more severe disc
protrusion that occupies a larger portion of the spinal canal.

2.4.5 Sagittal diameter/transverse diameter index (STI)
[28] (Figure 5)

STI [28] (Figure 5) is calculated as the ratio of the product of
the maximum sagittal diameter (AB) and transverse dia-
meter (EF) of the disc protrusion to the product of the
maximum sagittal diameter (CD) and transverse diameter
(GH) of the spinal canal. It provides a measurement of the
extent to which the disc protrusion occupies the spinal
canal. A higher STI ratio indicates a more severe disc pro-
trusion with greater occupation of the spinal canal.

2.4.6 Transverse diameter index (TI)

TI is calculated as the ratio between the length of a parallel
line (a) at the apex of the disc protrusion and the length of
the posterior line (b) of the corresponding vertebra (Figure 6).
This index provides a measure of the extent to which the disc
protrusion occupies the spinal canal. A smaller TI ratio indi-
cates a more severe disc protrusion with greater occupation
of the spinal canal.

2.4.7 Angle between nerve root and protrusion

The AN angle is determined by the connection between the
lateral edge of the herniated nucleus pulposus and the
lateral edge of the vertebra, along with the extension line
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Figure 3: MSU regional localization.

of the inner wall of the spinal canal [29,30] (Figure 7). A
smaller angle correlates with a greater degree of nerve
root compression, indicating more severe compression.

2.4.8 Thickness of ligamentum flavum

The ligamentum flavum is a ligament that connects the
superior lamina to the superior and lateral edges of the
inferior lamina, originating from the inferior and medial
edges of the superior lamina [31] (Figure 8). In cases where
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the measurements of bilateral ligamentum flavum differ,
the larger value is chosen as the measurement result.

2.5 ODI score collection

For eligible patients who met the research criteria, the
research plan, objectives, significance, etc., were explained
in detail, and their consent was obtained. After obtaining
their willingness to participate, an online questionnaire
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Figure 4: Sagittal diameter index (SI).

Figure 5: Sagittal diameter/transverse diameter index.
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Figure 6: Transverse diameter index.

(using the Wenjuanxing platform, https://www.wjx.cn) was
used for questionnaire collection. The link to the online
questionnaire, which combined the informed consent
form and the ODI scoring form, was sent to the patients.
Patients were required to read the informed consent
form, provide an electronic signature, and click “Agree”

Forecast of pain degree of lumbar disc herniation based on BP neural network

to proceed to the formal answering interface. For older
patients who were not proficient in operating the system,
family members could assist them in completing the
questionnaire.

The ODI scoring form [32] is used to assess the severity
of pain in patients. It consists of 10 items and is rated on a
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Figure 7: Angle between nerve root and protrusion.

Figure 8: Thickness of ligamentum flavum.

6-point scale, with scores ranging from 0 to 5. The scores
for each item are summed to obtain a total score, calculated
as (score obtained/5 x number of questions answered) x
100%. Scores below 15 indicate mild pain, scores between
15 and 30 indicate moderate pain, and scores above 30 indi-
cate severe pain.

2.6 Statistical analysis

This study used SPSS Statistics 25.0 for data statistical ana-
lysis. The normality of quantitative variables was assessed
using the Shapiro-Wilk test. If the data adheres to a
normal distribution, it is presented as X + s standard devia-
tion. Pearson correlation analysis was employed for exam-
ining correlations. In cases where the data satisfy the
assumption of homogeneity of variance, one-way analysis
of variance was conducted on multiple independent sam-
ples, followed by paired comparisons using the Bonferroni
method. Conversely, if the data do not conform to a normal
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distribution, it is presented as the median (quartile range)
[M(P25, P75)], and subsequent correlation analysis is car-
ried out using the Spearman rank correlation analysis.
When the assumption of homogeneity of variance is
violated, the Kruskal-Wallis H test is employed to com-
pare multiple independent samples, followed by pairwise
comparisons using Bonferroni correction. The adjusted
significance level for all tests was set at P < 0.05. For
qualitative variables deemed statistically significant, the
count (percentage; %) was used for representation. Group
comparisons were performed using the chi-square test
or Fisher’s exact test, with Bonferroni correction applied
for pairwise comparisons. The significance level of pair-
wise comparisons was adjusted using the a distribution
method. Correlation analysis was utilized to examine
the relationship between statistically significant image
features identified from inter-group comparisons. Sub-
sequently, various artificial neural network models were
trained and employed for prediction using these noteworthy
features.
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2.7 Pain degree prediction model of LDH
based on BP neural network model

The BP neural network model learns certain patterns from
existing data and is used to predict subsequent classifica-
tion tasks. Specifically, we perform ADASYN oversampling
on the existing data to obtain augmented data. Then, in
each round, we repeatedly train our neural network model
through k-fold cross-validation (Figure 9).

2.7.1 Data pre-processing

After statistical analysis, Pfirrmann classification, MSU
protrusion size grading, MSU protrusion location classifica-
tion, SI, STI, TI, and AN angle were selected as the data
parameters, and these data were subjected to certain pro-
cessing. All data were individually standardized using the
z-score normalization formula.

_Xu

Xp= )

2.7.2 Data oversampling

Due to the limited sample size of only 90 cases, there is a
need to employ oversampling techniques to increase the
sample size and balance the frequency of different categories.
Oversampling techniques typically involve two approaches.
The first approach is random sampling, which involves ran-
domly sampling within the data space. The second approach
involves data synthesis, where new data are generated based
on the relationships within the existing data. In this model,
the ADASYN oversampling algorithm is used. ADASYN is an
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Figure 9: Neural network training.
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adaptive synthetic oversampling method and represents one
approach to data synthesis.

2.7.3 k-fold cross validation

To tackle the challenge of limited data size, the model
adopts the k-fold cross-validation method to train the arti-
ficial neural network (Figure 10). The value of k is set to 10.
In each iteration, we divide all samples into 9/10 (81 cases)
for training the neural network, while the remaining 1/10
(9 cases) is used as the test set.

2.7.4 BP neural network construction

The single hidden layer BP neural network is used (Figure 11).
Each layer represents a collection of nodes, where the input
layer represents the features and the output layer represents
the target variable. In multi-classification tasks, the output layer
has the same number of nodes as the predicted categories, and
the value assigned to each node represents the corresponding
class probability. The adjacent layers are connected by a para-
meterized edge, which transmits information. The parameters
are denoted as the first dimension, which denotes the number
of neurons in the previous layer, while the second dimension
indicates the number of neurons in the next layer.

The input layer consists of seven neurons: Pfirrmann
classification, MSU regional positioning (MSU protrusion
size classification and MSU protrusion location classifica-
tion), SI, STI, TI, AN angle, the hidden layer contains 16
neurons, and the output layer consists of 3 neurons (mild
group, moderate group, and severe group) for classifica-
tion output.
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Figure 10: Schematic representation of k-fold cross validation.

Hidden layer

Input layer Output layer

Figure 11: Schematic representation of a single hidden layer artificial
neural network.

The activation function chosen is the Rectified Linear
Unit (ReLU) activation function. The ReLU sets the output
of some neurons to zero, resulting in network sparsity.
It also reduces the interdependence of parameters, alle-
viating the occurrence of overfitting problems.

ReLu(x) = max(0, x). V)

In the output layer, the outputs are passed through the
softmax function to obtain the confidence scores for each
class, and the class with the highest confidence score is
considered as the classification result.

Zi

e
Softmax(z;) = ———.
l Zf=1e %

(©)

The initial neural network is not stable, and its predic-
tion efficiency is low. To improve the prediction accuracy
of the neural network, we use the crossentropy loss
function.
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3 Results

This study included a total of 90 patients with LDH, including
46 males (51.1%) and 44 females (48.9%). The distribution of
the herniated discs was as follows: L2/3: 1 case (1%), L3/4: 2
cases (2%), L4/5: 31 cases (34.4%), and L5/S1: 56 cases (62.2%).
Based on the ODJ, the patients were divided into the following
groups: mild group with 40 cases (44.4%); moderate group
with 29 cases (32.2%); and severe group with 21 cases (23.3%).
A comprehensive statistical analysis was conducted on the
gender, age, height, weight, and duration of illness among
the three groups of enrolled cases (Table 1), and no statisti-
cally significant differences were observed (P > 0.05), allowing
for intergroup comparisons.

Among the mild group, moderate group, and severe
group, there were significant difference in the overall
mean value of Modic classification, Pfirrmann classifica-
tion, MSU protrusion size classification, MSU protrusion
location classification, SI, STI, T, and AN angle. But there
was no significant difference in ligamentum flavum thick-
ness among the three groups (F = 1.499, P = 0.229 > 0.05),
which was excluded as shown in Table 2.

The Modic classification, Pfirrmann classification, MSU
protrusion size classification, and MSU protrusion location
classification are subsequently pairwise multiple compar-
isons, which were conducted using the a division method.
The SI, STI, T, and AN angle underwent pairwise multiple
comparisons utilizing the Bonferroni method. The results
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Table 1: Gender, age, height, weight, and course of disease were compared among the groups

Gender Age (years) Height (cm) Weight (kg) Course of disease (month)
Male Female
Mild group 16 (40.00) 24 (60.00) 39.65 + 11.84 164.94 + 8.68 61.00 (50.50, 70.00) 6.00 (3.25, 35.50)
Moderate group 17 (58.60) 12 (41.40) 3734 +£11.28 166.83 + 8.16 65.00 (57.00, 71.00) 7.00 (3.00, 36.00)
Severe group 13 (61.90) 8 (38.10) 40.05 + 11.84 166.81 £ 10.61 70.00 (55.00, 74.50) 7.00 (3.00, 42.00)
X%/F/H 3.610 0.439 0.486 2.074 0.638
P 0.164 0.646 0.617 0.355 0.727

Gender distribution among the groups was analyzed using frequency counts, represented as (number [%]) and tested with a chi-square test (X* =
3.610, P = 0.164), showing no statistically significant differences. Shapiro-Wilk tests were conducted to assess normal distribution and tests for

homogeneity of variances among the groups.

showed that there were statistically significant differences
(adjusted P < 0.05) in pairwise comparisons of the Pfirrmann
classification, MSU protrusion size classification, MSU protru-
sion location classification, SI, STI, T, and AN angle between

Table 2: Overall statistical analysis of imaging features

the mild, moderate, and severe groups. These variables were
included in the correlation analysis. However, there was no
statistically significant difference (adjusted P = 0.243 > 0.05)
in the Modic classification between the moderate and severe

Mild group Moderate group Severe group F/H/X? P

Modic classification None 34 (85.0) 18 (62.1) 8 (38.1) 18.631 0.001

| 2 (5.0) 1(3.4) 1(4.8)

1] 3(7.5) 10 (34.5) 11 (52.4)

1] 1(2.5) 0 (0) 1(4.8)
Pfirrmann classification 1 2 (5.0 0 (0) 0 (0) 56.868 0.000

2 2 (5.0) 0(0) 0(0)

3 7 (17.5) 2 (6.9) 0 (0)

4 15 (37.5) 7 (24.1) 0 (0)

5 11 (27.5) 8 (27.6) 6 (28.6)

6 3(7.5) 12 (41.4) 2 (9.5)

7 0 (0) 0 (0) 9 (42.9)

8 0 (0) 0 (0) 4 (19.0)
MSU protrusion size classification 1 37 (92.5) 17 (58.6) 3(14.3) 43.454 0.000

2 3(7.5) 12 (41.4) 12 (57.1)

3 0 (0) 0 (0) 6 (28.6)
MSU protrusion location classification 1a 32 (80.0) 12 (41.4) 1(4.8) 55.406 0.000

1b 4 (10.0) 5(17.2) 2 (9.5)

1c 1(2.5) 6 (20.7) 0 (0)

2a 3(7.5) 5(17.2) 3(14.3)

2b 0 (0) 1(3.4) 3(14.3)

2ab 0 (0) 0 (0) 4 (19.0)

2c 0 (0) 0 (0) 2 (9.5)

3a 0 (0) 0 (0) 2 (9.5)

3b 0 (0) 0 (0) 1(4.8)

3ab 0 (0) 0 (0) 3(14.3)
Thickness of ligamentum flavum (cm) 0.31+0.09 0.32 £ 0.10 0.35+ 0.1 1.499 0.229
SI 0.23 + 0.05 0.36 + 0.04 0.53 + 0.06 263.190 0.000
STI 0.15 + 0.05 0.25 + 0.06 0.42 £+ 0.12 61.056 0.000
TI 0.78 + 0.05 0.66 + 0.05 0.48 + 0.07 195.220 0.000
AN angle (°) 26.33 + 4.27 14.87 + 5.59 4.20 + 3.86 162.481 0.000

The frequency statistics of Modic classification, Pfirrmann classification, MSU protrusion size classification, and MSU protrusion location classification
between groups were expressed as (number [%]). Chi-square test was used.
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Table 3: Multiple comparison of imaging features and statistical analysis of P value
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Mild group vs moderate group  Mild group vs severe group Moderate group vs severe group

Modic classification 0.015 0.000 0.243
Pfirrmann classification 0.01 0.000 0.000
MSU protrusion size classification 0.001 0.000 0.000
MSU protrusion location classification  0.002 0.000 0.002
SI 0.000 0.000 0.000
STI 0.000 0.000 0.004
TI 0.000 0.000 0.000
AN angle (°) 0.000 0.000 0.000

groups, and it was excluded. Please refer to Table 3 for
details.

Since the ODI index did not follow a normal distribu-
tion (P > 0.05), the correlation analysis between statistically
significant imaging features in pairwise comparisons and
the ODI index was conducted using Spearman’s correla-
tion. The results of the correlation analysis showed the
following: the Pfirrmann classification correlation coeffi-
cient (r; = 0.674, P = 0.000) (Figure 12), MSU protrusion
size classification correlation coefficient (; = 0.688, P =
0.000) (Figure 13), MSU protrusion location classification
correlation coefficient (r; = 0.744, P = 0.000) (Figure 14), SI

correlation coefficient (r; = 0.885, P = 0.000) (Figure 15), and STI
correlation coefficient (; = 0.796, P = 0.000) (Figure 16) were
positively correlated with the degree of pain. TI correlation
coefficient (;=-0.839, P = 0.000) (Figure 17) and AN Angle
correlation coefficient (; = —0.848, P = 0.000) (Figure 18)
were negatively correlated with the degree of pain. All imaging
features showed significant correlations with the degree of
pain, as shown in Table 4.

After training, the value of loss function decreased
significantly (Figure 19). In addition, after 1,000 rounds of
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Figure 12: Correlation analysis between Pfirrmann classification
and ODL
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Figure 13: Correlation analysis between MSU protrusion size classifica-
tion and ODIL

Figure 14: Correlation analysis between MSU protrusion location clas-
sification and ODI.

Speraman rg=0.885"*
0.6_| P=0.000 P

0.0 I \ I I \
0 10 20 30 40 50

ODI score

Figure 15: Correlation analysis between SI and ODL
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Figure 16: Correlation analysis between STI and ODL

Speraman rg=-0.839**

.09 p-g.000

0.2 T T I T

0 10 20 30 40
ODI score

Figure 17: Correlation analysis between TI and ODI.
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Figure 18: Correlation analysis between AN angle and ODI.

Table 4: Spearman rank correlation analysis

testing, the visualization results of model specificity (95 +
2%, mean value 95.63%), sensitivity (91 + 2%, mean value
91.08%), and accuracy (91 + 2%, mean value 91.03%) are
shown in Figure 20.

The loss function of BP neural network model decreased,
the model converged, gradually tended to be stable, and the
recognition accuracy increased.

The higher the specificity, sensitivity, and accuracy,
the better the performance of the model.

Under the condition of multi-classification, we evalu-
ated the performance of the model, drew the receiver oper-
ating characteristic (ROC) curve of the model, and solved
the area AUC under the ROC curve, as shown in Figure 21.
The area of ROC curve of class 0 for predicting mild
symptom group was 0.98 (P = 0.03). The area of ROC curve
of class 1 for predicting moderate symptom group was 0.96
(P = 0.05). The area of ROC curve of class 2 for predicting
severe symptom group was 1.00 (P = 0.01). The AUC under
the ROC curve was ideal, which proved the success of the
model training. The processing efficiency of the model net-
work in this study showed that the average reasoning time
of a single case was 50 ms.

ROC curve of class 1 was the ROC curve drawn with the
first class as the positive class. Macro-average ROC curve
and micro-average ROC curve were the ROC curves of
macro average and micro average, respectively.

4 Discussion

In this study, the following imaging features were selected
to evaluate the correlation between degenerative LDH and
pain: Pfirrmann classification for assessing disc degenera-
tion level, Modic classification for evaluating cartilage end-
plate signal changes, ligamentum flavum hypertrophy degree,
and intraspinal occupation indicators (MSU regional localiza-
tion, SI, STL, TI, and AN angle). These imaging features were
chosen to eliminate the adverse influence of intervertebral
canal variations among different patients.

In this study, the improved Pfirrmann grading system
was used for IDD. The higher the grade, the more serious
the degree of intervertebral disc degeneration. The results

Pfirrmann MsU
classification protrusion size
classification

MSU protrusion SI STI TI AN angle (°)
location
classification

Correlation coefficient 0.674** 0.688**
P 0.000 0.000

0.744** 0.885** 0.796** -0.839** -0.848**
0.000 0.000 0.000 0.000 0.000

** At the 0.01 level (two-way), correlation is significant.
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Figure 19: BP neural network training loss function value drop plot.

of this study demonstrated a significant correlation between
disc degeneration and LDH pain symptoms, suggesting that
the degree of disc degeneration generally reflects the distri-
bution of LDH severity. The conclusion drawn is that the
more severe the lumbar disc degeneration, the more signif-
icant the LDH pain symptoms. This finding is consistent with
the study conducted by Faur et al. [33] on the correlation
between lumbar disc degeneration and multifidus muscle
(LMM) fat atrophy in patients with lower back pain, which
found a higher rate of LMM atrophy in the L5/S1 segment
and its correlation with disc degeneration. It is also in line
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Figure 21: Multi-class ROC curve.

with the research conducted by Foizer et al. [34], who dis-
covered that chronic idiopathic lower back pain patients
often have moderate to severe lumbar disc degeneration.
If the pressure on the endplate exceeds its limit, micro-
fractures can occur in the subchondral bone trabeculae,
leading to local changes in the spine and resulting in
Modic changes. In 1987, de Roos et al. first reported changes
in vertebral bone marrow signal near the endplate region in
MRI images of patients with lumbar disc degeneration [35].
In 1988, Modic systematically proposed the classification of
degenerative lesions in the vertebral endplate and

Model Performance
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Figure 20: Specificity, sensitivity, and accuracy of BP neural network model.



DE GRUYTER

subchondral bone signal changes on MRI, along with histo-
logical changes [24-26]. These changes include bone marrow
edema, fatty degeneration, or sclerosis [36]. Modic changes
can reflect the severity of clinical lumbar disc degeneration
[37], and Kokkonen et al. also confirmed the association
between endplate degeneration and lumbar disc degenera-
tion, suggesting that endplate degeneration may be a result
rather than a cause of disc degeneration [38]. In our study,
out of the 90 cases, endplate changes were not observed in
60 cases. The limited number of positive results did not yield
statistically significant differences in Modic classification
between pairwise comparisons, thus the correlation between
endplate degeneration and the severity of LDH symptoms
could not be confirmed. This finding contradicts the results
of studies suggesting a high diagnostic value of Modic
changes for discogenic LBP [39]. However, a systematic
review also found no association between Modic classifica-
tion and LBP-related outcomes [40].

The ligamentum flavum is distributed between adja-
cent vertebral laminae and is rich in elastic fibers, making
it tough and thick. Due to its close proximity to the dura
mater, thickening of the ligamentum flavum can cause
compression and irritation of the dura mater. In addition,
most patients with ligamentum flavum hypertrophy will
also experience symptoms of nerve root canal stenosis.
Due to its high content of elastic fibers, the ligamentum
flavum appears as a “V” shape on axial MRI images,
allowing clear visualization of its thickening and deforma-
tion. This enables an accurate assessment of the degree of
compression on the dura mater and the extent of spinal
canal narrowing. However, in this study, statistical analysis
revealed that there was no significant statistical difference
observed in the thickness of the ligamentum flavum within
the LDH pain group. Therefore, there is no evidence to sup-
port any correlation between ligamentum flavum hyper-
trophy and LDH symptoms.

MSU regional localization is an assessment criterion
for evaluating the size and location of lumbar disc protru-
sions within and outside the spinal canal. The size of the
protruded nucleus pulposus is categorized into three levels:
1, 2, and 3. The location of the protrusion is classified into
four regions: A, B, AB, and C. From an anatomical perspec-
tive, regions B and C appear narrower than region A.
Therefore, when the protruded disc is located in regions B
or C, it usually indicates more severe compression of the
spinal nerves. In this study, both the MSU protrusion size
classification and the MSU protrusion location classification
showed statistical significance among the three groups.
Furthermore, both the MSU protrusion size classification
and the MSU protrusion location classification were signifi-
cantly correlated with pain symptom scores, indicating that
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the size and location of the protrusion are important ima-
ging features for evaluating LDH symptoms.

The AN angle serves as an indicator of the proximity
of the protruding nucleus pulposus to the intervertebral
space and the level of compression exerted on the nerve
root. The results of this study showed a significant correla-
tion between the AN angle and the degree of pain, which is
consistent with the findings of Kobayashi et al. [41]. Their
findings indicated that nerve root compression led to
reduced blood flow and neuronal cell count, consequently
impacting neurotransmitter metabolism and resulting in
impaired nerve function.

The study results demonstrated significant correlations
between the following indicators of intraspinal occupancy:
MSU regional localization (MSU protrusion size classifica-
tion and MSU protrusion location classification), SI, STI, TI,
AN angle, and LDH pain. These findings are consistent with
Thapa et al’s study [42], which analyzed the correlation
between clinical characteristics and MRI-visible abnormal
imaging features (such as disc protrusion type, location,
nerve root, and intervertebral foramen damage) in LDH
patients. Thapa found a good correlation between disc pro-
trusion with significant compression of the nerve root and
clinical features, supporting the theory of mechanical com-
pression. The theory of mechanical compression is currently
the most widely accepted view due to its directness. According
to this theory, the protruded nucleus pulposus of the interver-
tebral disc directly or indirectly compresses the nerve root
and/or the dura mater, affecting the normal blood supply to
the nerve root and inducing symptoms of nerve root irritation.
Mixter and Barr [43] first reported sciatic nerve pain asso-
ciated with LDH, suggesting that it is caused by mechanical
injury to the nerve root, with the main factors being indirect
compression of the spinal nerve root and the tension effect on
the nerve root. The symptoms are related to changes in the
position of the protruded disc tissue, the transmission of pain
information within the nervous system, and the interaction
between the nucleus pulposus, dura mater, or nerve root. In
addition, it may also be related to local microcirculation and
inflammatory changes caused by protruded nucleus pulposus,
as well as osteophyte degeneration and changes in lumbar stress
posture. However, clinical studies have found that many asymp-
tomatic individuals still show compressive changes in LDH ima-
ging [44-46]. Whether the theory of mechanical compression
alone can cause pain requires further investigation.

During the degenerative process of lumbar interver-
tebral discs, there is an increase in the number of senes-
cent cells. It induces the upregulation of pro-inflammatory
cytokines, chemokines, and tissue-damaging proteases,
including tumor necrosis factor-alpha (TNF-a) and inter-
leukin-1 alpha (IL-1a). This can induce local inflammation,
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leading to neurological signs such as radicular pain and
exacerbating pain in patients with LDH [47]. Pain signals
originating from the intervertebral disc can be transmitted
through adjacent structures via peripheral nerve fibers. The
interaction between nerve fibers and inflammatory media-
tors in the nucleus pulposus can trigger lower back pain.
However, this study focuses primarily on the analysis of
LDH imaging features and cannot confirm whether the
pain associated with LDH is related to the chemical radicu-
litis theory.

In recent years, the development of machine learning
has greatly enhanced the ability to handle complex and
large amounts of information, particularly in the field of med-
ical diagnosis. Numerous researchers have utilized machine
learning techniques for in-depth automated grading and pre-
dictive diagnosis of diseases. For instance, Jamaludin trained a
convolutional neural network to automatically grade lumbar
intervertebral discs and vertebral bodies [48]. Abdel-Zaher
and Eldeib designed a neural network, DBN-NN, for automatic
diagnosis of breast cancer, achieving an overall accuracy of
99.68%, sensitivity of 100%, and specificity of 99.47% [49].
Kleesiek et al. conducted work on the classification of lung
nodules, achieving an accuracy of 75.01% and sensitivity of
83.35%. In a 10-fold cross-validation, the false positive rate
per patient was 0.39 [50]. Wei and Yang discovered that a
back propagation artificial neural network model demon-
strated higher predictive accuracy for non-invasive diag-
nosis of digestive system diseases compared to linear regres-
sion [51].

The BP neural network is a multi-layer feedforward
neural network structure developed by McClelland and
Rumelhart for supervised learning [52]. It uses a variety
of training samples to modify the weights in order to mini-
mize the error value. The error function is obtained through
a recursive process of BP starting from the output layer.
Therefore, it is based on the backpropagation algorithm
and is also known as an error BP neural network.

The design of a multi-layer neural network enables the
BP neural network to learn more feature information from
the input, thus completing more complex classification
tasks. It is suitable for simulating the approximate relation-
ship between input and output in computational modeling.
The network operation involves two steps: forward propa-
gation and backward learning. During forward propaga-
tion, the input data passes through the hidden layers layer
by layer from the input layer. During network training,
optimization is performed in the direction that reduces
the value of the loss function. the value of the loss function
becomes smaller and smaller. In the reverse learning pro-
cess, numerical adjustments are made from the output
layer to the input layer to achieve the desired output of
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the network. With the deepening of the learning process of
BP neural network, its performance in complex model fit-
ting and distribution approximation is obviously superior
to the traditional statistical methods. [53]. The BP neural
network transforms linear data into nonlinear data through
activation functions, making it capable of handling linearly
inseparable problems, which aligns with the characteristics
of the data in this study.

Prior literature research revealed lack of studies applying
the BP neural network model to LDH research. Hence, devel-
oping an LDH pain prediction model based on the BP neural
network holds significant importance for LDH diagnosis and
pathogenesis investigation. In this study, we successfully
developed and validated a BP neural network for automated
LDH pain grading, which displayed impressive performance
in pain classification. The study results indicated the BP
neural network model’s convergence and approaching sta-
bility, as evidenced by the decreasing loss and increasing
recognition accuracy. The BP neural network training model
results showed the specificity (95 + 2%, mean value: 95.63%),
sensitivity (91 2%, mean value: 91.08%), and accuracy (91 =
2%, mean value: 91.03%) of the model. The area under the
ROC curve for predicting pain type 0 (mild), type 1 (mod-
erate), and type 2 (severe) were 0.98, 0.96, and 1.00, respec-
tively. Compared to similar studies, the results of this study
are at a relatively high level. The macro-average ROC curve
and micro-average ROC curve are average indicators for
multi-classification problems. The high values of both
micro-average and macro-average (both above 95%) indi-
cate good classification performance of the model in this
study.

In this study, we meticulously weighed the pros and
cons of the BP neural network and strategically employed
suitable techniques to address its limitations. Consequently,
the BP neural network’s performance reached an impressive
level. Despite the small data size, the utilization of oversam-
pling techniques, and k-fold cross-validation effectively miti-
gated overfitting concerns. This successful approach validated
the BP model’s predictive classification capability for asses-
sing the degree of LDH pain.
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