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Abstract: The cytoskeleton plays an important role in
epilepsy; however, the mechanism is unknown. Therefore,
this study aimed to reveal the mechanism of cytoskeletal
proteins in epilepsy by investigating the expression of
cytoskeletal proteins and synaptophysin (SYP) in mice at
0, 3, 6, and 24 h, 3 days, and 7 days in a kainic acid (KA)-
induced epileptic model. Our results demonstrated that the
expression of F-actin decreased significantly between 3 and
6 h, 6 and 24 h, and 24 h and 3 days (P < 0.05). Meanwhile,
the expression of the neurofilament light chain, neurofila-
ment medium chain, and neurofilament heavy chain sub-
units was significantly decreased (P < 0.001) at 3 h after the
KA injection compared to the KA 0 h group, followed by an
elevation at 6 h and a further decrease at 24 h compared to
at 6 h. SYP expression was significantly decreased between
0 and 3 h as well as between 3 and 6 h (P < 0.05). At 24 h,
the level was increased compared to at 6 h and continued to
increase at 3 days after the KA injection. Thus, we propose

that cytoskeletal proteins may be involved in the pathogen-
esis of epilepsy.
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1 Introduction

Epilepsy is a significant cause of disability and death
worldwide [1–3]. The World Health Organization has
listed epilepsy as one of the five major global neurolo-
gical and mental diseases and has advocated specific
actions to solve the high burden of epilepsy on society
[4,5]. Concerning the pathogenesis of epilepsy, it is known
that it is related to neurotransmitters and ion channels, but
its exact mechanisms are not well understood.

The neuronal cytoskeleton represents the basic struc-
tural framework for maintaining the morphology, struc-
ture, and biological function of neuronal cells [6,7]. The
cytoskeleton of neurons, which includes microfilaments,
microtubules, and neurofilaments (NFs, including the
light chain, medium chain, and heavy chain subunits,
NF-L, NF-M, NF-H, respectively), participates in main-
taining neuronal cell stability; moreover, its dysregulation
is involved in various nervous system diseases [8–10].
Specifically, the physiological structure, function, distri-
bution, and abnormal expression of neuronal cytoskeletal
proteins are linked to the occurrence and maintenance of
epilepsy [11,12]. Importantly, the cytoskeleton has been
shown to play a role in the process of neuronal synchro-
nization during epilepsy [13,14]. In addition, synapto-
physin (SYP) has been demonstrated to be a biomarker
of synaptic transmission and synaptic reconstruction, which
can trigger synaptic remodeling during epilepsy [14].

In this study, we aimed to reveal the mechanism of
cytoskeletal proteins in epilepsy by analyzing the levels
of cytoskeletal proteins and SYP during seizures in mice
intraperitoneally injected with kainic acid (KA). Since
cytoskeletal remodeling may contribute to the pathogen-
esis of epilepsy, it could potentially represent an unex-
plored therapeutic strategy for this debilitating disorder.
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2 Materials and methods

2.1 Animals

Male and female adult C57BL/6 mice (weighing 20–22 g,
aged 10 weeks old, and purchased from the Experimental
Animal Center of Bethune Medical Department) had free
access to food and drinking water and were housed at 25
± 1°C with an alternating 12-h light/dark cycle.

Ethical approval: The research related to animal use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals.
All animal experiments were carried out with the permis-
sion of The First Hospital, Jilin University (license number:
20210831) and in accordance with the Chinese laws for
animal protection so that the number of animals used
per experiment and their suffering were minimized.

2.2 Animal groups and drug administration

KA monohydrate (cat no. 58002-62-3) and sodium pento-
barbital (cat no. 803-21-1) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). KA monohydrate was dis-
solved in 0.9% NaCl and administered intraperitoneally
(30mg/kg). The mice were divided into six groups of six
animals each as follows: KA 0 h, KA 3 h, KA 6 h, KA 24 h,
KA 3 days, and KA 7 days. The mortality rate of the mice
was 30%. Sodium pentobarbital (Nembutal) (50mg/kg)
injected intraperitoneally was used as the anesthesia.

2.3 Behavioral studies

The behavior of the mice (three per experimental group)
was studied by continuous observation after KA admin-
istration for 7 days. The Racine scale with minor modifi-
cations [15] was used to assess the seizure severity in the
animals as follows: 0, behavioral arrest (motionless), hair
raising, excitement, and rapid breathing; 1, movement of
the mouth, lips, and tongue, vibrissae movement, and sal-
ivation; 2, head clonus and eye clonus; 3, forelimb clonus,
“wet dog shakes”; 4, clonic rearing; 5, clonic rearing with
loss of postural control and uncontrollable jumping.

2.4 Tissue preparation

All animals were decapitated following sodium pentobar-
bital anesthesia. Immediately after, the hippocampi of

the brains were removed, frozen in liquid nitrogen, and
stored at −80°C.

2.5 Western blotting

The whole hippocampal tissue lysates were prepared in
radioimmunoprecipitation assay lysis buffer supplemented
with Protease Inhibitor Cocktail and Phosphatase Inhibitor
Cocktail. The total protein content was estimated by using
a Pierce™ BCA Protein Assay Kit (Thermo Scientific),
according to the manufacturer’s protocol. Equal amounts
of proteins (60 μg per lane) from different groups (KA 0 h,
KA 3 h, KA 6 h, KA 24 h, KA 3 days, and KA 7 days) were
separated with BeyoGel™ SDS-PAGE Precast Gel and
transferred onto a polyvinylidene difluoride membrane.
The membranes were blocked for 30min at room tempera-
ture in blocking buffer (5% skimmed milk in tris-buffered
saline containing 0.1% Tween-20 (TBST)) and then probed
overnight at 4°Cwith the appropriate primary antibody:mouse
monoclonal anti-NF-H (1:100, Santa Cruz Biotechnology);
mouse monoclonal anti-F-actin (1:500, Abcam); mouse
monoclonal NF-L and NF-M (1:500, Santa Cruz Biotechnology);
and mouse monoclonal anti-SYP and β-actin (1:2,000,
Santa Cruz Biotechnology). β-actin was used as the loading
control. The membrane was incubated with horseradish
peroxidase-conjugated mouse IgGκ-binding protein (1:2,000;
Santa Cruz Biotechnology) for 1 h at room temperature, fol-
lowed by four washes with TBST. Images were captured using
X-ray film (Fujifilm, Tokyo, Japan), and the band density was
quantified using Image-Pro Plus (v. 6.0, Media Cybernetics,
Silver Spring, MD, USA).

2.6 Histopathological staining

The paraffin sections were dewaxed with xylene (30min
for xylene I and 30min for xylene II), dehydrated with an
ethanol gradient (5 min for 100% ethanol I, 5 min for
100% ethanol II, 5 min for 95% ethanol, 5 min for 90%
ethanol, and 5min for 80% ethanol), washed with dis-
tilled water for 5 min (three times in total), soaked in
hematoxylin for 10–20min (paying attention to observe
the color of the nucleus), immersed in hydrochloric acid–
ethanol solution for 30 s for differentiation, washed with
tap water several times, soaked in eosin dye solution for
10 min, rinsed with tap water, dehydrated and made
transparent with alcohol, and sealed with neutral resin.
Finally, the morphological changes of the hippocampus
were observed under an optical microscope.
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2.7 Statistical analysis

All western blot experiments were repeated three times.
All statistical procedures were performed using the SPSS
(18.0) statistical software package (IBM, New York, NY, USA).
Data were represented as the mean ± standard deviation
(SD). The comparisons between the control and experimental
groups were performed using a one-way analysis of variance
with a Tukey-Kramer post hoc test. The significance of all
statistical comparisons was set at P < 0.05.

3 Results

3.1 Time-dependent seizure behavior of the
epileptic mice

The KA-induced seizure mouse model is extensively used
in epilepsy research. In our study, we intraperitoneally
injected KA into mice to induce seizure development.
During the course of the experiment, the KA-injected
mice were attributed a score of 0–5, according to the
modified Racine scale (Table 1 and Figure 1). No seizure
behavior was observed in the KA 0-h group (only normal
activity and behavior). Injection of KA produced scores of
0, 1, and 2 during the first 1 h after administration; while
scores of 3, 4, and 5 were recorded from 2–3 h. Scores of 4
and 5 were observed from 4 to 6 h postinjection. At 24 h, 3
days, and 7 days, scores of 4 and 5 were observed one to
two times per day. In summary, the behavior assessment
of the KA-injected mice was in line with the standards for
an epilepsy model (Racine scores of 3, 4, and 5).

3.2 Dynamic expression of F-actin, NF-L,
NF-M, and NF-H

To study the dynamic changes of microfilaments and NFs
during the epileptic period, the expression levels of F-
actin and the main components of NFs (NF-L, NF-M,
and NF-H) were analyzed at different time points after
the KA injection, i.e., 3, 6, and 24 h, 3 days, and 7 days,
using western blotting (Figure 2a). We found that F-actin
expression was significantly decreased between 3 and 6 h
(P = 0.02), 6 and 24 h (P < 0.001), and 24 h and 3 days (P <
0.001). Meanwhile, the expression levels of NF-L, NF-M,
and NF-H became significantly decreased (P < 0.001, P =
0.007, and P = 0.028, respectively) at 3 h after the KA

injection compared to the KA 0 h group, followed by an
elevation at 6 h and a further decrease at 24 h compared
to at 6 h (Figure 2b).

3.3 Dynamic expression of SYP

The protein level of SYP was determined by western blot
at 3, 6, 24 h, 3 days, and 7 days after KA administration
(Figure 3a). We found that SYP expression was signifi-
cantly decreased between 0 and 3 h (P = 0.002) as well as
between 3 and 6 h (P < 0.001). At 24 h, the level was
increased (compared to at 6 h; P = 0.003) and continued
to increase at 3 days after the KA injection (Figure 3b).

3.4 Histopathological changes of the
hippocampus in epileptic mice

The hippocampal neurons in the 0-h group had a normal
morphology, were orderly arranged, and had a complete
structure (Figure 4a). At 3 h after the KA injection, the
neurons were mainly degenerated and showed interstitial
edema (Figure 4b). At 6 h after the KA injection, the neu-
rons were obviously lost or died (Figure 4c). At 24 h, 3
days, and 7 days after the KA injection, the lesion was

Table 1: Seizure behavior of KA-injected mice according to the
modified Racine scale

Mouse number Behavior score at time points after the KA injection

0–1 (h) 2–3 (h) 4–6 (h)

1 0/1/2 3/4/5 5
2 0/2 3/4/5 5
3 0/1/2 3/4/5 5
4 0/1/2 3/4 4/5
5 0/1 3/4 4/5
6 0/2 4/5 5
7 0/1/2 4/5 5
8 0/2 3/4/5 5
9 0/1/2 4/5 5
10 0/1/2 4/5 4/5
11 0/1 3/4 4/5
12 0/1/2 3/4/5 5
13 0/1/2 4/5 5
14 0/2 3/4/5 5
15 0/1/2 3/4/5 5
16 0/1/2 3/4 5
17 0/1/2 3/4 4/5
18 0/1/2 4/5 5
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further aggravated, with obvious neuronal loss, disor-
dered arrangement of residual neurons, and proliferation
of glial cells to different degrees (Figure 4d–f).

4 Discussion

This study aimed to investigate the time-dependent expres-
sion changes of cytoskeletal proteins and SYP in a KA
mouse model. Our results demonstrated that F-actin
expression was significantly decreased between 3 and
6 h, 6 and 24 h, and 24 h and 3 days. Meanwhile, the
expression of NF-L, NF-M, and NF-H became significantly
decreased at 3 h after the KA injection compared to the KA

0 h group, followed by an elevation at 6 h and a further
decrease at 24 h compared to at 6 h. The initially decreased
and subsequently increased expression of NFs was accom-
panied by a decrease of F-actin expression, which could
result in the recombination of synapses. Meanwhile,
SYP expression diminished and then gradually became
elevated.

The pathogenesis of epilepsy is complex, involving
many factors such as genetic predisposition, malforma-
tions, traumatic brain injury, chemical exposure, hypoxia,
or stroke [16–18]. There are only a few studies reported
in the literature regarding the pathogenesis of epilepsy
focusing on the neuronal cytoskeleton. They have demon-
strated that the irregular arrangement and winding of
microtubules and microfilaments, synaptic reconstruction

Figure 1: Time-dependent seizure behavior of the epileptic mice. The seizure behavior of the epileptic mice at 0–1 h (a), 2–3 h (b), and 4–6 h
(c) after the KA injection.

Figure 2: Time-dependent changes of the levels of F-actin, NF-L, NF-M, and NF-H in the brains of KA-injected mice. (a) Representative
western blot images of protein bands. β-actin was used as a loading control. (b) Quantification of protein expression from the western blot
images. The F-actin levels significantly decreased in a time-dependent manner. The levels varied and fluctuated over time. Data are
presented as the mean ± SD. *P < 0.05.
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and remodeling, and the reduction of dendritic branches
and spinous processes of neurons are the main patholo-
gical changes of the cytoskeletal components implicated in
epilepsy [12,14].

Microfilaments are the smallest of the three neuronal
cytoskeleton components and are mainly composed of
actin. They are involved in the maintenance of neuronal
cell morphology and the formation of tight junctions
between cells [19,20]. Microfilaments exist in the form
of globular actin or aggregated filamentous or fibrous

actin (F-actin) [21]. It has been shown that the main mor-
phological changes in the cerebral cortex during epilepsy
are a decrease in dendritic components of pyramidal
cells, especially dendritic spines, and a decrease in the
number of axons and their terminals [22]. The decrease in
the number of axons and their terminal dendritic spines
is closely associated with the decrease of F-actin [23]. Our
results demonstrated that the expression of F-actin in the
brains of epileptic mice decreased significantly and con-
tinued to decline over time.

Figure 3: Time-dependent changes of SYP protein expression in the brains of KA-injected mice. (a) Representative western blot images of
the protein bands. β-actin was used as a loading control. (b) Quantification of protein expression from the western blot images. The
expression of SYP decreased at 6 h after the KA injection and then gradually increased until day 7. Data are presented as the mean ± SD.
*P < 0.05.

Figure 4: Histopathological changes of the hippocampus in epileptic mice. The time-dependent changes of hippocampal neurons at 0 h
(a), 3 h (b), 6 h (c), 24 h (d), 3 days (e), and 7 days (f) after the KA injection.

Cytoskeletal proteins and epilepsy  5



Alternatively, the significant decrease in F-actin expres-
sion suggests that microfilament depolymerization is neces-
sary for the growth of neuronal axons [24]. A looser actin
network is conducive to the extension of microtubules in
the synaptic reconstruction process, but excessive microfi-
lament depolymerization can cause its excessive growth. In
addition, the increase of calcium influx and intracellular
calcium overload can activate calpain, a calcium-depen-
dent protease, which decomposes its substrates: actin and
tubulin [25]. Activation of calpain by increased intracel-
lular calcium can trigger activation of effector caspases
and induce cell apoptosis. The neural cytoskeleton becomes
disintegrated, leading to the excitatory injury of dendrites
[26]. In addition, it has been reported that the density of
dendritic spines in pyramidal cells of the hippocampus and
neocortex is significantly decreased in the brain tissue of
epileptic patients and animal models of focal epilepsy
[27,28]. The reduction of dendritic spines is often accompa-
nied by disarrangement of the dendritic part [29]. In the
context of epilepsy, there is also the reconstruction of neural
circuits [27]. Moreover, mossy fiber sprouting, which causes
the formation of abnormal excitatory connections between
nerve cells and increases excitatory sensitivity, contributes
to seizure progression [24].

NFs are intermediate filaments found in neurons and
axons that play important roles in maintaining the mor-
phology of neurons and intercellular transmission [30].
The interactions among NFs, microtubules, microfila-
ments, and other cytoskeletal proteins regulate the dia-
meter of axons and axoplasmic transport [31]. Therefore,
the modifications of NFs can directly lead to changes in
the shape and function of neurons and axons. Our results
demonstrated that the expression of nerve filaments in
the brains of epileptic mice significantly decreased in the
beginning and then increased. We speculate that the exci-
tatory injury occurred upon KA administration [23–29]. NFs
exist in an unphosphorylated form in the perinuclear body
and dendrites of neurons. Pathological phosphorylation of
NFs may also result in a disorder of this neuronal arrange-
ment. In addition, the aggregation of NFs and other cyto-
plasmic components in axons can affect the axoplasmic
transport of various components, finally leading to neu-
ronal death [32]. Furthermore, our results showed that the
three different subunits of NFs did not change equally,
which may have resulted in the disorganization of NFs.

SYP can be used as a molecular marker of the pre-
synaptic vesicle membrane and also as a biomarker of
synaptic transmission and synaptic reconstruction, which
exists in almost all nerve terminals [33]. It has been pre-
viously reported that the synaptic density observed by
electron microscopy was consistent with that measured

by immunohistochemistry [33]. Therefore, as a reliable
biomarker of nerve terminals, the localization and quanti-
fication of SYP-immunoreactive products can accurately
reflect the distribution and density of synapses. SYP
expression is elevated during axon sprouting, which
leads to an increase in the number of presynaptic term-
inals and synaptic vesicles and hence the number of
synapses, causing the occurrence of seizures [34]. Our
results demonstrated that in the brains of epileptic mice,
SYP expression was significantly decreased between 0
and 3 h as well as between 3 and 6 h. At 24 h, the level
increased (compared to at 6 h) and continued to increase
at 3 days after the KA injection. In fact, similar findings
also have been discovered in the brain tissue of patients
with temporal lobe epilepsy [33,34]. In addition, SYP par-
ticipates in the release of Ca2+-dependent neurotransmit-
ters (e.g., acetylcholine and glutamate), which regulate the
release of endogenous glutamate in vesicles and affect
synaptic plasticity [35]. Thus, the changes in the cytos-
keleton and synaptic reconstruction after epilepsy are
related to the development and persistence of KA-induced
seizures.

5 Conclusions

In the current study, we demonstrated that different pro-
teins involved in the composition of the cytoskeleton,
such as F-actin, NF-L, NF-M, and NF-H, dynamically
changed in the brains of KA-injected mice. Therefore,
the cytoskeleton and its binding proteins, being the struc-
tural basis of neural network formation, may play an
important role in the development of epilepsy. However,
further research is still needed.
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